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Abstract: Over the past decade, much progress has been made regarding our 
understanding of neurogenesis in both young and old animals and where it occurs 
throughout the lifespan, although the growth of new neurons declines with increasing age. 
In addition, physical activity can reverse this age-dependent decline in neurogenesis. 
Highly correlated with this decline is the degree of inter and intracellular Wnt signaling, 
the molecular mechanisms of which have only recently started to be elucidated. So far, 
most of what we know about intracellular signaling during/following exercise centers 
around the CREB/CRE initiated transcriptional events. Relatively little is known, however, 
about how aging and physical activity affect the Wnt signaling pathway. Herein, we briefly 
review the salient features of neurogenesis in young and then in old adult animals. Then, 
we discuss Wnt signaling and review the very few in vitro and in vivo studies that have 
examined the Wnt signaling pathways in aging and physical activity. 
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1. Introduction 

The myriad benefits physical activity confers is now universally accepted, not only on the general 
health of the individual, but also on brain function [1–4]. Physical activity has been shown to enhance 
memory and cognition in both humans [5–7] and other animals [8–12]. As long as exercise is 
performed consistently, these benefits are robust and enduring [8,13,14], even if such exercise is 
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started relatively late in life [15,16]. The study of such mechanisms and pathways reveals not only how 
exercise benefits the brain, but also underscores the need to elucidate natural progression of how 
neural circuitry develops and refines itself over the lifespan in response to the varying environmental 
demands placed on the organism. Thus, the inter and intracellular signaling pathways and plasticity of 
the brain of a habitually physically active animal (a normal and natural lifestyle) will be significantly 
different from one who is confined in a cage with little-to-no opportunity to exercise (a life of 
impoverishment and deprivation) [17,18]. 

One of the enduring neuronal hallmarks of an active and enriching lifestyle is an enhanced ability of 
the brain to grow new neurons or adult neurogenesis [19]—that is, more new neurons than would 
appear in a sedentary lifestyle. Over the past several years, there has been intense interest and effort 
focusing on the intracellular signaling pathways in the hippocampus, one of two putative neurogenic 
structures and which is well known for its central role in learning and memory, particularly spatial 
memory [20]. As such, decreased intracellular MAPK and Akt pathway signaling [21], decreased 
intercellular neural cell adhesion molecule [22] and altered neuronal circuitry, such as dendritic spine 
shortening [23,24], have also been shown in the hippocampus to occur in various disorders [25], such 
as depression [2,26,27] and Alzheimer’s Disease [28–30]. These molecular and cellular aberrations 
may underlie the behavioral and clinical manifestations of these disorders. Thus, an inability to learn 
new coping skills, or forget old ones, in response to life-changing events, such as that which may occur 
with stress and depression, may be a hippocampally derived problem [22,31,32]. Such behavioral or 
learning problems may belie an inability of the hippocampus to adequately grow new neurons in 
response to the stressors of environmentally imposed demands [24]. 

One signaling pathway that is putatively known to regulate neurogenesis is the canonical Wnt or 
Wnt/β-catenin signaling pathway [33]. Although this pathway has been characterized in depth and is 
the subject of several excellent reviews [33–35], relatively few studies have addressed how this 
pathway responds to physical activity and aging. The purpose of this brief review, therefore, will be to 
elucidate what we currently know about hippocampal Wnt/β-catenin signaling, induced neurogenesis 
during aging and the effects of physical activity on this process. 

2. Wnt Signaling 

Wnts are a family of ligand proteins whose numbers exceed 14 and whose receptors, termed 
frizzled (fzl), exceed at least eight in mammals [36]. Although this large number of ligands and 
receptors allow the mammalian genome to regulate crucial central nervous system functions, such as 
development, each Wnt isoform/receptor combination may act like a molecular switch by activating 
certain transcription factors as they interact with their specific DNA elements (see below). 

Wnts are postranslationally acetylated in the endoplasmic reticulum by an acetyltransferase, called 
porcupine (Figure 1). Following transfer and subsequent removal from the Golgi, another protein, 
called Wntless, acts like a chaperone for the transfer of Wnts to endosomes, whose membrane fuses 
with the plasma membrane, resulting in the secretion of Wnts to the extracellular space [37],  
Figure 1. What follows is a brief review highlighting the three Wnts that have been shown to play the 
largest roles in adult hippocampal neurogenesis: Wnt3(a), Wnt1 and Wnt7(a). 
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application or exposure to Wnt3(a) has increased expression of various neuronal markers, such as 
doublecortin (dcx, a microtubule-binding protein; see below) in proliferating neuroblasts and immature 
postmitotic neurons in the dentate gyrus (reviewed by Gage [33] dishevelled2 (a fzl receptor binding 
protein; see below) in an immortalized human neuroprogenitor cell line [46], NeuroD1 (a transcription 
factor in the Wnt canonical pathway; see below), and nuclear and cytoplasmic β-catenin in 
synaptogenesis [47]. 

Finally, and importantly for signaling interaction and receptor cross-talk with several other  
growth-promoting pathways, this indicates that Wnt3 signaling plays an important role along with 
others, such as sonic hedgehog [48], brain-derived neurotrophic factor (BDNF) [49], vascular 
endothelial growth factor [50] and insulin [51] in adult hippocampal neurogenesis. Consistently, 
Wnt3a (and Wnt7a, see below) also promotes presynaptic protein clustering, increased presynaptic 
recycling sites and increased rate of synaptic vesicle neurotransmitter release [52,53]. 

2.2. Wnt1 

Although cells expressing Wnt1 makes up a relatively small percentage of hippocampal stem cells 
that express Wnt proteins (only about 10%, [54]), Wnt1 has also been shown to be required for 
neurogenesis in the subgranular zone as a dominant negative mutant of Wnt1 blocks this process [42]. 
More recent evidence indicates that mutation of Wnt1 results in the absence of the midbrain  
(reviewed in [55]). 

2.3. Wnt7 

Environmental enrichment increases expression of Wnt7(a) in CA3 pyramidal neurons [56]; 
conversely, application of Wnt7 to these neurons mimicked the effects of environmental enrichment on 
synapse and mossy fiber terminal Wnt7 levels whose concentrations reached their peak in mice aged  
6–12 months; the age-related decline in synapses and Wnt7 were reversed by environmental 
enrichment [56]. Again, consistently, just as with Wnt3 (above), Wnt7 also increases presynaptic 
protein clustering, vesicle aggregation and neurotransmitter release [52,53] and synaptogenesis 
through up-regulation of the fzl5 receptor [57,58] and nuclear and cytoplasmic β-catenin levels [47]. 

In vitro application of Wnt7(a) to adult hippocampal neuroprogenitors leads to increased 
proliferation [41], whereas mutation of Wnt7a results in decreased hippocampal neurogenesis 
(reviewed in [55]). Just as with Wnt3 (above), in vitro stimulation of an immortalized human 
neuroprogenitor cell line resulted in increased Wnt7a mRNA and a corresponding up-regulation of fzl7 
and fzl9 receptor transcripts [46].  

2.4. Wnt Signaling Receptors and Cascades 

Wnt signaling is turned on when Wnts secreted from either an astrocyte or a neuroprogenitor cell 
diffuses to a nearby neuroprogenitor cell (paracrine), where it finds its receptor, fzl, or it may  
bind to fzl embedded in the membrane of the same cell that secreted it (autocrine). Frizzled is  
a G-protein-coupled receptor (GPCR) whose extracellular N-terminus contains a cysteine-rich domain 
that directly binds Wnt [37]. The C-terminus has a conserved KTxxxW motif that interacts with 
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It is well known that to enter the nucleus, β-catenin has a nuclear export sequence, which explains 
its ability to enter and exit the nucleus in response to the status of Wnt signaling. Once in the nucleus, 
β-catenin interacts with the TCF family of transcription factors, which includes TCF-1, LEF-1, TCF-3, 
and TCF-4. When unbound, TCF/LEF family members actively recruit co-repressors histone 
deacetylases (HDACs) and GROUCHO/TLE-1 to inhibit transcription. GROUCHO/TLE, in turn, 
interacts with hypoacetylated histone H3, perhaps to maintain the structural integrity of the  
chromatin [37]. However, once β-catenin enters the nucleus, it binds TCF-4, displaces 
GROUCHO/TLE-1 from TCF/LEF, and then recruits co-activators through its N- and C-terminal 
transactivation domains [37]. The N-terminal transactivation domain of β-catenin interacts directly 
with BCL9/legless (Lgs), which then recruits the transcriptional co-activator, Pygopus (Pygo) [37]. 
The C-terminal transactivation domain of β-catenin recruits the histone acetylators, P300 and CBP, 
thereby loosening the chromatin structure and facilitating the binding of other transcriptional  
co-activators ([37] and references cited therein) (Figure 2). 

Wnt signaling is turned off when the ligand is bound in the extracellular space by one or more 
inhibitor and intracellular β-catenin is subsequently degraded (Figure 2). The clear role of canonical 
Wnt signaling is to regulate the stability of β-catenin whose cytoplasmic concentrations is tightly 
regulated by the ubiquitin-proteosome degradation complex, which contains the scaffold protein, axin, 
as well as β-catenin, casein kinase 1, glycogen synthease kinase-3β (GSK3β), and tumor suppressor 
protein adenomatous polyposis (APC) ([37] and references cited therein). Phosphorylated APC 
displaces β-catenin from the axin complex because it has a higher affinity for the former. After  
β-catenin is phosphorylated at the N-terminus by casein kinase 1 and GSK-3β, it is then ubiquitinated 
by β-Trcp, upon which, β-catenin is immediately degraded by the proteosome (Figure 2). 

β-Catenin regulates the basic helix-loop-helix transcription factor, NeuroD1, which is required for 
the survival and differentiation of newborn neurons in the adult subgranular zone. A wide variety of 
stimuli (e.g., running, seizures, environmental enrichment) can profoundly induce neurogenesis. It is 
possible that these stimuli may act, in part, via NeuroD1 target downstream genes to control the 
survival and maturation of newborn neurons [59]. β-Catenin also associates with LEF/TCF binding 
sites in the Prox1 enhancer and promotes Prox1 expression in adult hippocampal neural stem cells.  

Prox1 is expressed in neural progenitors and in both mature and immature neurons in the adult 
dentate gyrus, indicating that Prox1 is a direct Wnt target that promotes neurogenesis [60] by 
regulating the expression of differentiation and survival factors that are required for early and late 
stages of hippocampal neurogenesis [60]. Thus, β-catenin-TCF/LEF-dependent transcription 
selectively up-regulates Prox1 expression, leading to the expression of VEGF receptor, FGF receptor 
and α-9 integrin [60]. Once a granule cell has fully matured, therefore, Prox1 expression levels remain 
high, rather than being down-regulated [60]. 

Both NeuroD1 and Prox1 are also regulated. The Sox family of transcription factors represses 
expression of prosurvival genes. Specifically, Sox2/9 maintains neural stem cells in an undifferentiated 
state [60]. Conversely, the Prox1 enhancer region represses Sox9 expression [60]. Thus, in the mouse 
dentate gyrus, Wnt signaling and repressed Sox2 lead to increased NeuroD1 expression [61]. Further, 
Wnt3 knockouts and NeuroD1 deficiency led to no dentate gyrus formation [61]. Thus, Wnt/β-catenin 
signaling contributes to the gradual progression of adult hippocampal neurogenesis by removing Sox2 
repression and turning on NeuroD1 [61] and Prox1 [60]. 
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Repression of the NeuroD1 gene, and therefore, neurogenesis, is carried out by the repression 
complex, HDAC/Sox2, which binds to the Sox/LEF element, which is located in the NeuroD1 
promotor [62]. Repression of NeuroD1 also prevents transcription of genes at any number of LINE1 
(L1) retrotransposon loci. Astocytic secretion of Wnt3a turns the Sox/LEF switch on via β-catenin 
activation, which accumulates in the neural progenitor cell nucleus, where it complexes with and 
activates the TCF/LEF. This leads to transcription of the NeuroD1 gene, which allows granule cell 
neurogenesis and maturation. Moreover, the L1 family of mobile transposable elements are  
up-regulated and retrotransposed during neurogenesis. For example, one particular L1 element could 
be up-regulated by Wnt/TCF signaling through the same direct interaction as the NeuroD1 gene. 
Several of these LINE1 elements are located near other genes that are involved in neurogenesis, such 
as dcx and neuregulin4 [62]. Because L1 retro-element sequences contain Sox/LEF DNA regulatory 
elements, the Sox/LEF binding sites induce promotors to cause nearby neuronal genes to become  
de-silenced and activated during adult neurogenesis. Because L1 elements are active during 
neurogenesis, both NeuroD1 and LINE1 transcription factor expression are specifically induced only 
when Sox2-positive neural stem cells transition to newborn neurons upon Wnt/β-catenin activation [61]. 

3. Stages of Adult Hippocampal Neurogenesis 

Several years ago, Kempermann et al. [63] outlined six clearly identifiable adult hippocampal 
neurogenic stages, based on morphology, the ability to proliferate and the expression of various 
markers, such as glial fibrillary acidic protein (GFAP), Sox2, doublecortin (dcx), calretinin, calbindin 
and NeuN. Stage 1 begins the putative stem cell stage (type I cells) in the dentate gyrus subgranular 
zone wherein the stem cell has virtually unlimited renewal capacity; morphologically, this cell has 
processes reminiscent of both astrocytes and radial glial cells. Both nestin and GFAP are therefore 
expressed at this stage. In the subgranular zone, there are three populations of precursors that will 
eventually become mature granule cells: radial neural stem cells (type I progenitors, above), nonradial 
neural stem cells (type 2 progenitors) and neuroblasts. Neuroblasts will migrate into the adjacent 
granule cell layer where they will mature into granule neurons [64]. 

At Stage 2, (type 2a cells), the transition to putative progenitor cell with limited self-renewal 
capacity has been made, but GFAP is no longer expressed. At Stages 3 and 4, (types 2b and 3), the 
progenitor cell still has limited self-renewal capacity. As progression from Stages 2 through 4 is made, 
the lineage becomes increasingly determined to that of a neuron. This is an important milestone, 
because sometime between Stages 3 and 4, glial markers are no longer expressed. Thus, no overlap 
between glial and neuronal markers has ever been observed at this time [63]. After Stage 3, (type 2b 
cells), nestin is no longer expressed; and after Stage 2, dcx expression begins (type 2b cells). 
Doublecortin is a microtubule-binding protein that is expressed by at least some proliferating 
neuroblasts and immature postmitotic neurons in the adult dentate gyrus. [33]. 

Then, the transition from Stage 4 (type 3 cells) to Stage 5 (immature granule cell) marks the end of 
the mitotic phase and begins the postmitotic phase. During Stage 4 in type 3 cells, the nucleus enlarges 
and the expression of neural cell adhesion molecules begins [63]. At Stage 5, during the early 
postmitotic period, as dcx expression persists and calretinin and NeuN expression begins, the neuron 
starts sending out connections to establish itself in the network, beginning the selection and expression 
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of genes that would help ensure its long-term survival. Finally, by Stage 6 (postmitotic granule cell), 
both dcx and calretinin expression have ceased, but that of calbindin has begun; NeuN expression 
persists. At this final stage, the terminally differentiated granule cell elaborates its processes, weaving 
itself into the hippocampal circuitry [63]. 

4. Physical Activity Increases Neurogenesis in Young Adults 

It is well known that in the young adult rat, the dentate gyrus generates thousands of new cells  
daily [65], although clear estimates of how many thousands of cells are not currently known. Given 
that BrdU labeling/incorporation is at best 50%, conservative estimates of new granule cells during one 
month in the life of a young adult is 5% [65]. Later, Cameron and McKay [66] found that  
BrdU-labeled newly born cells appeared in the inner granule cell layer. In the young adult rat, up to 
9000 new neurons are born per day and survive with a half-life of 28 days [66]. During adulthood, the 
numbers of these granule cells decrease with age [65,67], suggesting that over the lifetime of a rat, the 
hippocampus would grow gradually larger, were it not, however, for substantial granule cell  
death [68], via exercise-induced accelerated granule cell turnover in the dentate gyrus [69], leading to a 
rather static population of neurons with death rate keeping up with birth rate. Thus, it is possible that 
although exercise has been shown to increase hippocampal volume in older humans [70,71], it is 
probably not due to neurogenesis [69], but rather, to any number of lifestyle and health related issues 
(see [70] for brief review). 

Physical activity increases vascularization throughout the frontal lobe and hippocampus, resulting 
in increased oxygen delivery [72] and neuronal survival and neurogenesis [72]; and learning further 
enhances the survival of these neurons [73,74]. Running has also been shown to increase neurogenesis 
and dendritic complexity and length of granule cell processes [75] in the dentate gyrus [65,75], 
regardless of whether they are wild- or captive-bred rats [76]: These investigators hypothesized that 
the extent of neurogenesis would be higher in wild rats than in the captive-bred strains, but instead, 
found no significant differences in neurogenesis between the two groups, suggesting that the highly 
stimulating enriched environment of the former did not influence neurogenesis [76]. In addition, 
Hauser et al. [77] did not find any two-week running effect on neurogenesis in the hippocampi of  
wild-caught mice, compared to that in wild-caught sedentary mice. Both of these findings flew in the 
face of earlier, well-established results [19,78–80]. The caveat here, however, is that strain differences 
might account for the neurogenic potential of these two groups. Moreover, besides differences  
in strain [81], differences in hippocampal neurogenic potential may be influenced by motivation and 
emotional content of stimuli [82] and species lifespan [83]. These studies underscore the fact that 
rodents appear to differ with respect to their hippocampal anatomy. For example, the neurogenesis 
quiescent zone (NQZ) does not seem to exist in mice. The NQZ is a small region in the rat dentate 
gyrus in which neurogenesis does not occur and until adolescence, does not reveal any mitotic neurons, 
but which can be activated after only one week of exercise [84]. It is not known why this difference 
exists between rats and mice [84], but it is possible that in the mouse, age-induced neurotrophic 
support occurs evenly throughout the entire length of the dentate gyrus, rather than in an exclusive 
highly focused sub-region of the dentate gyrus [84]. It is also possible that in rats, dentate gyrus 
granule cells are more numerous and mature faster than in that of mice [85]. After two months of 
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running exercise, neurogenesis is significantly increased in the mouse dentate gyrus [86]. The 
importance of running as the critical factor of enriching lifestyle in stimulating significant 
neurogenesis has been demonstrated by several investigators. The stimulating complexity of an 
enriched environment is not enough to increase brain-derived neurotrophic factor (BDNF) levels and 
neurogenesis if running per se is not part of that environment [87]. Likewise, exercise can prime the 
neurogenic niche for possible eventual environmental enrichment [79]. Consistently, Steiner et al. [88] 
had earlier found that running exercise, but not in an enriched environment, induced astrogenesis, 
which is critical for Wnt signaling (below). Further, these investigators [88] provide evidence 
delineated by Kempermann et al. [63] (above) that the adult dentate gyrus has two distinct populations 
of cells, glia and neurons, that do not overlap at any neurogenic stage [63,88]. 

Intracellular Signaling of Neurogeneis in Young Adults 

Adult hippocampal neurogenesis enhances learning [89] and prevents cognitive decline [90] 
through an up-regulation of BDNF, which, upon binding to its receptor, TrkB [90], activates a wide 
array of intracellular signaling cell survival pathways (see [91] for review; [90], (Figure 3)). Likewise, 
exercise in young adults up-regulates various neurotrophins, particularly BDNF (and TrkB), in the 
hippocampus [87,91–93], eNOS and NO, leading to enhanced angiogenesis [94,95] or insulin-like 
growth factor I (IGF-1) from the periphery [96], thereby promoting neurogenesis [97,98]. As an 
epigenetic mechanism, such up-regulation may be mediated via suspension of the transcriptional 
repressing effects on transcription, specifically, for example, methyl CpG binding protein 2 (MeCp2), 
which is most commonly seen in sedentary rats (reviewed in [92]). As neurons depolarize McCp2 
dissociates from the bdnf promotor IV region and then is phosphorylated as much as 25% in adult 
exercising rats [92]. 

Exercise-induced plasticity is mediated by hippocampal BDNF and myriad genes involved in 
synaptic plasticity (see [91] for review). The locus coeruleus, which synthesizes and releases 
norepinephrine, and the raphé, which synthesizes and releases serotonin, sends afferents to the 
hippocampus, which, in turn releases BDNF, thereby activating other plasticity-related genes, 
including those involved in neurogenesis [99,100], Figure 3. In addition, the septal nucleus, which 
synthesizes and releases acetylcholine, is also activated in response to exercise, which, in turn, 
promoted neurogenesis; lesioning this system decreased neurogenesis and application of cholinergic 
drugs promoted it in both young and aged mice [101]. 
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than pathological [107]. Indeed, over 1100 genes have been identified that are differentially expressed 
as a result of aging between the young and old dentate gyrus [108]. Because exercise promotes 
neurogenesis, which, in turn, enhances learning/cognition, in the dentate gyrus of aged rats, as many as 
85 genes were differentially expressed between rats that had learned the Morris Water Maze, from 
those who had not [108]. In addition, it is also possible that the number of new neurons does not 
actually decline with aging, but rather, become more quiescent, perhaps because of a smaller vascular 
and/or neurogenic niche [107]. Thus, the etiology of these declining numbers suggest that the putative 
decreased trophic support combined with increased sensitivity to negative regulators, such as 
glutamate and cortisol [109], with age may lead to a suppression of neural stem cell proliferation and 
maturation [107,110]. Or perhaps in old animals, the rate of neural progenitor cell proliferation in the 
dentate gyrus is much lower than that in younger ones [111]. Alternatively, perhaps there is decreased 
survival of neural progenitor cells or change in neural differentiation [111].  

Physical activity regulates neurogenesis in both the young adult and aging brain [102,112], although 
young runners had higher neurogenesis levels than the older [112,113] or middle-aged [114] runners. 
Consistent with the findings of Redila and Christie [75], who found that in rats, running is not 
correlated with granule cell dendritic complexity, others found that exercise restores the loss of  
intra-hippocampal connectivity [114,115], neurogenesis [105,112,114,116] and BDNF and TrkB  
levels [114] that accompanies sedentary aging [67]. Temporally, aging suppresses in vitro neural stem 
cell proliferation in mice beginning at six months of age [117]. A short period of voluntary wheel 
running in middle-aged female mice increased neural stem cell and progenitor cells in the 
subventricular zone [117]. Thus, Blackmore et al. [117] found that 12-month old mice lose 
approximately one-half of their neurogenic capacity because of normal age-related decline. It would 
appear, then, in sedentary mice, there is a 12-month age limit (~one-half their lifespan) beyond which 
the brain can no longer effectively maintain neural stem cell and progenitor cell viability. Exercise can 
effectively raise the neurogenic potential age limit to 18 months, as shown by the ability to recuperate 
neural stem cell proliferation levels after irradiation-induced suppression/neural stem cell death [117]. 
Consistently, exercise may increase neurotrophin expression to delay neurotrophin senescence [92]. 
However, only up to a point: In very aged mice (22 months of age), running exercise neither affected 
dentate gyrus neurogenesis nor angiogenesis [113,118], which may be a chronological extension of 
earlier findings in 18-month old mice [112]. Inconsistently, such late-onset exercise which begins 
relatively late in life, reverses the expression of many hippocampal genes changed by aging, such as by 
decreasing and increasing inflammatory and neurotrophic factor expression, respectively [119]. It is 
possible that the different mouse strains used between these two groups [118,119] accounted for the 
contradictory results. 

Age-induced increases in inflammatory responses, as well as a decline in positive regulators of 
neurogenesis and angiogenesis (e.g., IGF-1, above) suggest that the circulation would also impact the 
former. Injections of plasma from old mice into young mice inhibited neurogenesis in the latter, 
indicating the presence of soluble factors in the aged blood that inhibit neurogenesis [120].  
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The Duration of Running Exercise and the Age at Which an Animal Begins an Exercise Regimen 
Determines Whether Neurogenesis and Cell Survival Occurs 

Obviously, the younger an animal is when an exercise regimen begins, the more likely it is that 
exercise will become a lifestyle or habit, rather than just simply a regimen. Neurogenesis, therefore, 
will occur in a dose-dependent manner. In younger animals, cell proliferation was dose-dependent with 
respect to running exercise: compared to those of sedentary controls, granule cell survival increased 
after both 14 and 21 days of running [85]; in contrast, granule cell proliferation increased after 12, but 
not after 19 days of running, suggesting that running accelerated the maturation of newly generated 
neurons [85]. In older animals, although only one week of running exercise has revealed neither 
proliferation nor neurogenesis in older adult rats [84], a 21-day bout of running exercise significantly 
increased neuronal proliferation in mice 18 months of age or older [117]. Such hippocampal cell 
proliferation was also observed in 18-month old female mice that were allowed running wheel access 
following group-housing-imposed stress [121]. Although such comparisons in exercise-induced 
neurogenesis between rats and mice may not be valid (above), such results nevertheless suggest that 
overall, running exercise reverses the age-dependent decline in neurogenesis in the mouse dentate 
gyrus [116]. 

6. Wnt as a Direct Actor in Neurogenesis and its Interaction with Other Signaling Pathways 

As indicated above, Wnt signaling plays a significant role in the generation of adult hippocampal 
neurons. The convergence among multiple pathways, including that of Wnt, MAPK, PI-3K/Akt and 
PKA-cAMP to ultimately change gene expression [108] in the wake of physical activity hinges on 
exercise-induced increase in norepinephrine (and serotonin (5HT)) and subsequent release of BDNF 
(above, Figure 3). 

6.1. In the Absence of Wnt Signaling 

When Wnt signaling is off, β-catenin is associated with adherins and cadherins at the cell-cell 
junctions. Any β-catenin not associated with these proteins is rapidly degraded by proteosomes (above, 
Figure 2). Large multi-protein complexes will recruit β-catenin and at least three other proteins [34]: 
(i) GSK-3β, which will phosphorylate β-catenin, where the latter is subject to ubiquination in 
proteosomes, making it unstable; (ii) APC, which helps promote the degradation of β-catenin by 
increasing the affinity of the degradation complex for β-catenin (such as that carried out by GSK-3β); 
and (iii) the scaffolding, chaperonin-like protein, axin, which holds the protein complex  
(GSK-3β/APC/axin) together ([34], Figure 2). 

6.2. In the Presence of Wnt Signaling 

When Wnt signaling is on, Wnt binds to its fzl receptor, which is complexed with LDL co-receptor, 
LRP, thereby activating dsh1, which then inactivates GSK-3β in the degradation complex  
(GSK-3β/APC/axin) [122]. Another kinase, casein kinase I, also phosphorylates GSK-3β, thereby 
inactivating it. As a result, β-catenin is neither phosphorylated nor degraded and therefore; 
accumulates in the cytoplasm and nucleus (above, Figure 2). In the latter, β-catenin binds to LEF/TCF 
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regulatory proteins, displaces a co-repressor, GROUCHO, and then acts as a co-activator to stimulate 
the transcription of the Wnt-responsive genes, one of which is c-myc. 

Neurogenesis and Wnt Signaling 

Adult hippocampal neural progenitors are self-sustaining, employing an autocrine baseline Wnt 
signaling loop within the neurogenic niche [41] (however, see below for evidence for astrocyte release 
of Wnt). Thus, adult hippocampal progenitor cells express Wnt3, whose Wnt3/β-catenin pathway is 
active in the neurogenic niche [42]. Moreover, over-expression of Wnt3 increases neurogenesis in 
these cells and inhibition of Wnt drastically decreases neurogenesis from these adult hippocampal 
progenitors [42]. In addition, Wnts, their fzl receptors and their co-receptors are activated as soon as  
24 h after initial differentiation in a human hippocampal progenitor cell line [46]. Thus, β-catenin 
signaling increases neurogenesis in the subgranular zone; and inhibition of GSK-3β increases β-catenin 
signaling [55,123]. Recently, Valvezan and Klein [55] reviewed evidence that mutations in Wnt1, 3, 
and 7 genes resulted in decreased or delayed hippocampal neurogenesis. Further, in dominant negative 
Wnt mutant rats, hippocampally dependent learning was impaired [39]. Located at the NeuroD1 
promotor are several LEF/TCF binding sites [81]. Transcription of the NeuroD1 gene in the 
subgranular zone is increased as a result of Wnt3a signaling, in turn, leading to increased numbers of 
neuroprogenitors [55] (above and Figure 1). 

Consistent with their role in initiating BDNF-mediated neurogenesis, in cultured hippocampal 
neurons, over-expression of fzl-1 receptors led to increased presynaptic clustering of bassoon [53] and 
in cultured astrocytes, Wnt3 shRNA led to increased expression of synapsin I [124]. In addition, 
treatment with Wnt3a [53] or Wnt7a [52] promoted presynaptic protein clustering, increased functional 
presynaptic recycling sites, and the rate of synaptic vesicle neurotransmitter release [52,53]. 

6.3. Wnt Signaling in Aging and Physical Activity 

With general aging, there is a down-regulation of axonal growth, cytoskeletal assembly and 
transport, signaling, lipogenic uptake pathways and concomitant increase in immune/inflammatory 
lysosomal, protein/lipid degeneration, cholesterol transport, TGF and cAMP-mediated pathways [125]. 
In cognitively impaired aged rats, there is down-regulation of Wnt, insulin and its influences in lipid 
and glycogen pathways, and GPCR signaling [125]. However, recently, Miranda et al. [109] 
investigated the communication between neural progenitor cells and astrocytes. They applied survivin, 
a chromosomal passenger protein (aka Birc5), to neural progenitor cells. Age-associated changes in 
neural progenitor cell proliferation reveal an inverse correlation of a decrease in neural progenitor cell 
with age, indicating that astrocytes in the neurogenic niche initiate regulate changes in Wnt signaling 
via surviving regulation within neural progenitor cells [109]. That is, Wnts secreted from neighboring 
astrocytes regulate survivin expression and proliferation of adult neural progenitor cells [109]. 

Moreover, the secretion of Wnts by astrocytes regulates neural stem cell gene expression: in neural 
stem cells, a repressor complex, consisting of Sox2 and HDAC1 silences the NeuroD1 gene promotor 
(above, [62]). Upon Wnt stimulation by astrocytes, β-catenin is activated accumulates in the nucleus, 
where it complexes with LEF/TCF, leading to transcription of the NeuroD1 gene, leading to 
neurogenesis and maturation (above, [62]). Others have found that with age, NeuroD1 expression 
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declines [59,61]. In neural stem cells, there are several L1 mobile elements that also contain multiple 
Sox/LEF sites and are normally silenced, but are activated following Wnt-mediated neurogenesis 
(above, [62]). 

Aging specifically compromises, whereas exercise increases, Wnt3 pathway signaling [126] and 
expression, thereby reversing the decline in neurogenesis brought on by age [124], as well as genes 
downstream of it [3,4] (Figure 4). In addition, as mentioned above, the study by Gogolla et al. [56] in 
which an enriched environment and Wnt7/7a application had the same effects on neurogenesis, it is 
possible that the running component of their living conditions was the crucial factor in eliciting 
neurogenesis [87]. The elegant studies by Okamoto et al. [124] have done much to contribute to our 
understanding of intercellular crosstalk between astrocytes and neural progenitor cells. In vivo, as age 
increases, astocytic Wnt3/3a expression and release decreases [126]. In addition, their in vitro 
experiments shed much light about the genetic regulation of Wnt-mediated neurogenesis. Their 
knockdowns of fzl1 and β-catenin using siRNAs lead to a down-regulation of the TCF/LEF reporter 
expression in both young and aged neural stem cells, indicating that the expression of Wnt canonical 
signaling pathway intermediates was not impaired in aged neural stem cells. Moreover, lentivirus 
expressing Wnt3 shRNA in young and aged astrocytic cultures resulted in increased tubulin III and 
synapsin I expression, indicating that astrocytic Wnt3a causes a neurogenic effect on adult 
hippocampal neural stem cells in an age-dependent manner and that such cells are primed for increased 
growth and neurotransmitter release. Such specific function of what will eventually be the granule cell 
may be regulated by the Prox1 promotor, which remains highly active throughout the maturation of the 
granule cell and may be responsible for specifying the neuronal phenotype [35]. Furthermore, 
Okamoto et al. [124] found that the dcx genes are among the L1 loci; specifically, the dcx promotor 
contains two L1 sequences regions with Wnt signaling regulatory sites. At the NeuroD1 promotor, 
binding of acetylated histone A3, β-catenin, and CREB gradually decreases with age, indicating that 
the aging process controls the repressed chromatin state. Physical activity and Wnt, through increased 
release of norepinephrine, may lift this repression (see Section 4 above; Figure 4). 
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7. Summary and Conclusions 

It is clear from the forgoing that although much is known about the effects of physical activity on 
neurogenesis, there is even more that is not known, specifically, the role of physical activity during the 
aging process. Several key studies and reviews reveal that in just the past five years, we have gained 
much understanding about the paracrine Wnt signaling between astrocytes and neural stem or 
progenitor cells. Although more than one transcriptional pathway is no doubt responsible for 
neurogenesis [127] and synaptogenesis (CREB, for example), much more work will have to be done to 
achieve the same level of understanding that we have with the CREB-mediated pathways. But, what 
happens during the aging process as it interacts with decreasing exercise? It is well known that animals 
tend to be less active as they age. Is it the aging process itself or lower physical activity levels or both 
that contribute to decreased Wnt signaling? Or, perhaps it is some other underlying pathology? 
Diabetic patients who do not exercise (enough) may experience impaired learning and memory 
because adult hippocampal neurogenesis from undifferentiated neural stem cells is severely  
curtailed [51], Figure 4). We know that less neuronal stimulation means less neurotransmitter and 
BDNF activity, and therefore, less transcriptional activity via CREB. But what about neural progenitor  
cell-derived Wnt vs. astrocytic Wnt signaling to neural stem cells? Which one prevails? And under 
what conditions? When during the animal’s lifetime? We reviewed studies showing that Wnt signaling 
decreases during aging, but is it physical activity per se that restores it? At the cellular level, exercise 
reverses the age-related decline in neurogenesis, but how does this happen? Clearly, more studies are 
needed to address these questions and possibly provide additional pharmacological therapeutic targets 
in aging and hippocampal pathology.  

Conflict of Interest 

The authors declare no conflict of interest.  

References 

1. Dishman, R.K.; Berthoud, H.R.; Booth, F.W.; Cotman, C.W.; Edgerton, V.R.; Fleshner, M.R.; 
Gandevia, S.C.; Gomez-Pinilla, F.; Greenwood, B.N.; Hillman, C.H.; et al. Neurobiology of 
exercise. Obesity 2006, 14, 345–356. 

2. Deslandes, A.; Moraes, H.; Ferreira, C.; Veiga, H.; Silveira, H.; Mouta, R.; Pompeu, F.A.M.S.; 
Coutinho, E.S.F.; Laks, J. Exercise and mental health: Many reasons to move. 
Neuropsychobiology 2009, 59, 191–198. 

3. Stranahan, A.M.; Zhou, Y.; Martin, B.; Maudsley, S. Pharmacomimetics of exercise: Novel 
approaches for hippocampally-targeted neuroprotective agents. Curr. Med. Chem. 2009, 16, 35, 
4668–4685. 

4. Stranahan, A.M.; Lee, K.; Becker, K.G.; Zhang, Y.; Maudsley, S.; Martin, B.; Cutler, R.G.; 
Mattson, M.P. Hippocampal gene expression patterns underlying the enhancement of memory by 
running in aged mice. Neurobiol. Aging 2010, 31, 1937–1949. 

5. Stroth, S.; Hille, K.; Spitzer, M.; Reinhardt, R. Aerobic endurance exercise benefits memory and 
affect in young adults. Neuropsychol. Rehabil. 2009, 19, 223–243. 



Brain Sci. 2012, 2 761 
 
6. Erickson, K.I.; Weinstein, A.M.; Lopez, O.L. Physical activity, brain plasticity, and Alzheimer’s 

Disease. Arch. Med. Res. 2012, doi:10.1016/j.arcmed.2012.09.008. 
7. Kimura, K.; Yasunaga, A.; Wang, L.Q. Correlation between moderate daily physical activity  

and neurocognitive variability in healthy elderly people. Arch. Gerontol. Geriatr. 2012,  
doi:10.1016/j.archger.2012.10.004. 

8. Alaei, H.; Moloudi, R.; Sarkaki, A.R.; Azizi-Malekabadi, H.; Hanninen, O. Daily running 
promotes spatial learning and memory in rats. Pathophysiology 2007, 14, 105–108. 

9. Pietrelli, A.; Lopez-Costa, J.; Goni, R.; Brusco, A.; Basso, N. Aerobic exercise prevents  
age-dependent cognitive decline and reduces anxiety-related behaviors in middle-aged and old 
rats. Neuroscience 2012, 202, 252–266. 

10. Falls, W.A.; Fox, J.H.; MacAulay, C.M. Voluntary exercise improves both learning and 
consolidation of cued conditioned fear in C57 mice. Behav. Brain Res. 2010, 207, 321–331. 

11. Lin, T.W.; Chen, S.J.; Huang, T.Y.; Chang, C.Y.; Chuang, J.I.; Wu, F.S.; Kuo, Y.M.; Jen, C.J. 
Different types of exercise induce differential effects on neuronal adaptations and memory 
performance. Neurobiol. Learn. Mem. 2012, 97, 140–147. 

12. Yao, Z.H.; Zhang, J.J.; Xie, X.F. Enriched environment prevents cognitive impairment and tau 
hyperphosphorylation after chronic cerebral hypofusion. Curr. Neurovasc. Res. 2012, 9, 176–184. 

13. Falone, S.; D’Alessandro, A.; Mirabilio, A.; Petruccelli, G.; Cacchio, M.; di Ilio, C.; di Loreto, S.; 
Amicarelli, F. Long-term running biphasically improves methylglyoxal-related metabolism, 
redox homeostasis and neurotrophic support within adult mouse brain cortex. PLoS One 2012, 7, 
doi:10.1371/journal.pone.0031401. 

14. Marosi, K.; Felszeghy, K.; Mehra, R.D.; Radak, Z.; Nyakas, C. Are the neuroprotective effects of 
estradiol and physical exercise comparable during ageing in female rats? Biogerontology 2012, 
13, 413–427. 

15. Kohman, R.A.; Rodriguez-Zas, S.L.; Southey, B.R.; Kelley, K.W.; Dantzer, R.; Rhodes, J.S. 
Voluntary wheel running reverses age-induced changes in hippocampal gene expression.  
PLoS One 2011, 6, doi:10.1371/journal.pone.0022654. 

16. Rosano, C.; Venkatraman, V.K.; Guralnik, J.; Newman, A.B.; Glynn, N.W.; Launer, L.;  
Taylor, C.A.; Williamson, J.; Studenski, S.; Pahor, M.; Aizenstein, H. Psychomotor speed and 
functional brain MRI 2 years after completing a physical activity treatment. J. Gerontol. A Biol. 
Med. Sci. 2010, 65, 639–647. 

17. Gould, E.; Tanapat, P.; Rydel, T.; Hastings, N. Regulation of hippocampal neurogenesis in 
adulthood. Biol. Psychiatry 2000, 48, 715–720. 

18. Würbel, H. Ideal homes? Housing effects on rodent brain and behaviour. Trends Neurosci. 2001, 
24, 207–211. 

19. Kempermann, G.; Gast, D.; Gage, F.H. Neuroplasticity in old age: Sustained fivefold induction 
of hippocampal neurogenesis by long-term environmental enrichment. Ann. Neurol. 2002, 52, 
135–143. 

20. Grace, L.; Hescham, S.; Kellaway, L.A.; Bugarith, K.; Russell, V.A. Effect of exercise on 
learning and memory in a rat model of developmental stress. Metab. Brain Dis. 2009, 24,  
643–657. 



Brain Sci. 2012, 2 762 
 
21. Qi, H.; Mailliet, F.; Spedding, M.; Rocher, C.; Zhang, X.; Delagrange, P.; McEwen, B.;  

Jay, T.M.; Svenningsson, P. Antidepressants reverse the attenuation of the neurotrophic 
MEK/MAPK cascade in frontal cortex by elevated platform stress; reversal of effects on LTP is 
associated with GluA1 phosphorylation. Neuropharmacology 2009, 56, 37–46. 

22. McEwen, B.S. From molecules to mind. Stress, individual differences and the social 
environment. Ann. N. Y. Acad. Sci. 2001, 935, 42–49.  

23. McEwen, B.S. Stress and hippocampal plasticity. Annu. Rev. Neurosci. 1999, 22, 105–122. 
24. Davidson, R.J.; McEwen, B.S. Social influences on neuroplasticity: Stress and interventions to 

promote well-being. Nat. Neurosci. 2012, 15, 689–695.  
25. Elder, G.A.; de Gasperi, R.; Gama Sosa, M.A. Research update: Neurogenesis in adult brain and 

neuropsychiatric disorders. Mt. Sinai J. Med. 2006, 73, 931–940. 
26. Blugeot, A.; Rivat, C.; Bouvier, E.; Molet, J.; Mouchard, A.; Zeau, B.; Bernard, C.; Benoliel, J.J.; 

Becker, C. Vulnerability to depression: From brain neuroplasticity to identification of biomarkers. 
J. Neurosci. 2011, 31, 12889–12899. 

27. Dias, G.P.; Cavegn, N.; Nix, A.; do Nascimento Bevilaqua, M.C.; Stangl, D.; Zainuddin, M.S.A.; 
Nardi, A.E.; Gardino, P.F.; Thuret, S. The role of dietary polyphenols on adult hippocampal 
neurogenesis: Molecular mechanisms and behavioural effects on depression and anxiety. Oxid. 
Med. Cell. Longev. 2012, 2012, doi:10.1155/2012/541971. 

28. Foster, P.P.; Rosenblatt, K.P.; Kuljiš, R.O. Exercise-induced cognitive plasticity, implications  
for mild cognitive impairment and Alzheimer’s disease. Front. Neurol. 2011, 2, 
doi:10.3389/fneur.2011.00028. 

29. Graff-Radford, N.R. Can aerobic exercise protect against dementia? Alzheimers Res. Ther. 2011, 
3, doi:10.1186/alzrt65. 

30. Intlekofer, K.A.; Cotman, C.W. Exercise counteracts declining hippocampal function in aging 
and Alzheimer’s disease. Neurobiol. Dis. 2012, in press. 

31. McEwen, B.S. Stress, sex and neural adaptation to a changing environment: Mechanisms of 
neuronal remodeling. Ann. N. Y. Acad. Sci. 2010, 1204, E38–E59.  

32. Eiland, L.; McEwen, B.S. Early life stress followed by subsequent adult chronic stress potentiates 
anxiety and blunts hippocampal structural remodeling. Hippocampus 2012, 22, 82–91. 

33. Gage, F.H. Molecular and cellular mechanisms contributing to the regulation, proliferation and 
differentiation of neural stem cells in the adult dentate gyrus. Keio J. Med. 2010, 59, 79–83. 

34. Komiya, Y.; Habas, R. Wnt signal transduction pathways. Organogenesis 2008, 4, 68–75. 
35. Karalay, Ö.; Jessberger, S. Translating niche-derived signals into neurogenesis: The function of 

Prox1 in the adult hippocampus. Cell. Cycle 2011, 10, 2239–2240. 
36. Dale, T.C. Signal transduction by the Wnt family of ligands. Biochem. J. 1998, 329, 209–223. 
37. Chen, X.; Yang, J.; Evans, P.M.; Liu, C. Wnt signaling: The good and the bad. Acta Biochim. 

Biophys. Sin. 2008, 40, 577–594 and references cited therein. 
38. Zhou, C-J.; Zhao, C.; Pleasure, S.J. Wnt signaling mutants have decreased dentate granule cell 

production and radial glial scaffolding abnormalities. J. Neurosci. 2004, 24, 121–126. 
39. Jessberger, S.; Clark, R.E.; Broadbent, N.J.; Clemenson, G.D.; Consiglio, A.; Lie, D.C.;  

Squire, L.R.; Gage, F.H. Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial 
and object recognition memory in adult rats. Learn. Mem. 2009, 16, 147–154. 



Brain Sci. 2012, 2 763 
 
40. Toledo, E.M.; Colombres, M.; Inestrosa, N.C. Wnt signaling in neuroprotection and stem cell 

differentiation. Prog. Neurobiol. 2008, 86, 281–296. 
41. Wexler, E.M.; Paucer, A.; Kornblum, H.I.; Palmer, T.D.; Geschwind, D.H. Endogenous Wnt 

signaling maintains neural progenitor cell potency. Stem Cells 2009, 27, 1130–1141. 
42. Lie, D.C.; Colamarino, S.A.; Song, H.J.; Désiré, L.; Mira, H.; Consiglio, A.; Lein, E.S.; 

Jessberger, S.; Lansford, H.; Dearie, A.R.; et al. Wnt signalling regulates adult hippocampal 
neurogenesis. Nature 2005, 437, 1370–1375. 

43. Muroyama, Y.; Kondoh, H.; Takada, S. Wnt proteins promote neuronal differentiation in neural 
stem cell culture. Biochem. Biophys. Res. Comm. 2004, 313, 915–921. 

44. Yoshinaga, Y.; Kagawa, T.; Shimizu, T.; Inoue, T.; Takada, S.; Kuratsu, J.; Taga, T. Wnt3a 
promotes hippocampal neurogenesis by shortening cell cycle duration of neural progenitor cells. 
Cell. Mol. Neurobiol. 2010, 30, 1049–1058. 

45. Lee, S.M.; Tole, S.; Grove, E.; McMahon, A.P. A local Wnt-3a signal is required for 
development of the mammalian hippocampus. Development 2000, 127, 457–467. 

46. Mazemondet, O.; Hubner, R.; Frahm, J.; Koczan, D.; Bader, B.M.; Weiss, D.G.;  
Uhrmacher, A.M.; Frech, M.J.; Rolfs, A.; Luo, J. Quantitative and kinetic profile of  
Wnt/β-Catenin signaling components during human neural progenitor cell differentiation. Cell. 
Mol. Biol. Lett. 2011, 16, 515–538. 

47. Davis, E.K.; Zou, Y.; Ghosh, A. Wnts acting through canonical and noncanonical signaling 
pathways exert opposite effects on hippocampal synapse formation. Neural Dev. 2008, 3, 32–48. 

48. Lai, K.; Kaspar, B.K.; Gage, F.H.; Schaffer, D.V. Sonic hedgehog regulates adult neural 
progenitor proliferation in vitro and in vivo. Nat. Neurosci. 2003, 6, 21–27. 

49. Lee, J.; Duan, W.; Mattson, M.P. Evidence that brain-derived neurotrophic factor is required for 
basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction 
in the hippocampus of adult mice. J. Neurochem. 2002, 82, 1367–1375. 

50. Cao, L.; Jiao, X.; Zuzga, D.S.; Liu, Y.; Fong, D.M.; Young, D.; During, M.J. VEGF links 
hippocampal activity with neurogenesis, learning and memory. Nat. Genet. 2004, 36, 827–835. 

51. Machida, M.; Fujimaki, S.; Hidaka, R.; Asashima, M.; Kuwabara, T. The insulin regulatory 
network in adult hippocampus and pancreatic endocrine system. Stem Cells Int. 2012, 2012,  
doi:10.1155/2012/959737. 

52. Cerpa, W.; Godoy, J.A.; Alfaro, I.; Farıas, G.G.; Metcalfe, M.J.; Fuentealba, R.; Bonansco, C.; 
Inestrosa, N.C. Wnt-7a modulates the synaptic vesicle cycle and synaptic transmission in 
hippocampal neurons. J. Biol. Chem. 2008, 283, 5918–5927. 

53. Varela-Nallar, L.; Grabowski, C.P.; Alfaro, I.E.; Alvarez, A.R.; Inestrosa, N.C. Role of the  
Wnt receptor Frizzled-1 in presynaptic differentiation and function. Neural Dev. 2009, 4, 
doi:10.1186/1749-8104-4-41. 

54. Sieber-Blum, M. Ontogeny and plasticity of adult hippocampal neural stem cells. Dev. Neurosci. 
2003, 25, 273–278. 

55. Valvezan, A.J.; Klein, P.S. GSK-3 and Wnt signaling in neurogenesis and bipolar disorder. 
Front. Mol. Neurosci. 2012, 5, doi:10.3389/fnmol.2012.00001. 



Brain Sci. 2012, 2 764 
 
56. Gogolla, N.; Galimberti, I.; Deguchi, Y.; Caroni, P. Wnt signaling mediates experience-related 

regulation of synapse numbers and mossy fiber connectivities in the adult hippocampus. Neuron 
2009, 62, 510–525. 

57. Ciani, L.; Boyle, K.A.; Dickins, E.; Sahores, M.; Anane, D.; Lopes, D.M.; Gibb, A.J.;  
Salinas, P.C. Wnt7a signaling promotes dendritic spine growth and synaptic strength  
through Ca2+/calmodulin-dependent protein kinase II. Proc. Natl. Acad. Sci. USA 2011, 108, 
10732–10737. 

58. Park, M.; Shen, K. WNTs in synapse formation and neuronal circuitry. EMBO J. 2012, 31, 
2697–2704. 

59. Gao, Z.; Ure, K.; Ables, J.; Lagace, D.C.; Nave, K.A.; Goebbels, S.; Eisch, A.J.; Hsieh, J. 
NeuroD1 is essential for the survival and maturation of adult-born neurons. Nat. Neurosci. 2009, 
12, 1090–1092. 

60. Karalay, Ö.; Doberauer, K.; Vadodaria, K.C.; Knobloch, M.; Berti, L.; Miquelajauregui, A.; 
Schwark, M.; Jagasia, R.; Taketo, M.M.; Tarabykin, V.; et al. Prospero-related homeobox 1 gene 
(Prox1) is regulated by canonical Wnt signaling and has a stage-specific role in adult 
hippocampal neurogenesis. Proc. Natl. Acad. Sci. USA 2011, 108, 5807–5812. 

61. Kuwabara, T.; Hsieh, J.; Muotri, A.; Yeo, G.; Warashina, M.; Lie, D.C.; Moore, L.;  
Nakashima, K.; Asashima, M.; Gage, F.H. Wnt-mediated activation of NeuroD1 and  
retro-elements during adult neurogenesis. Nat. Neurosci. 2009, 12, 1097–1105. 

62. Vanderhaeghen, P. Wnts blow on NeuroD1 to promote adult neuron production and diversity. 
Nat. Neurosci. 2009, 12, 1079–1081. 

63. Kempermann, G.; Jessberger, S.; Steiner, B.; Kronenberg, G. Milestones of neuronal 
development in the adult hippocampus. Trends Neurosci. 2004, 27, 447–452. 

64. Miller, F.D.; Gauthier-Fisher, A. Home at last: Neural stem cell niches defined. Cell Stem Cell 
2009, 4, 507–510. 

65. Cameron, H.A.; McKay, R.D. Restoring production of hippocampal neurons in old age. Nat. 
Neurosci. 1999, 2, 894–897. 

66. Cameron, H.A.; McKay, R.D. Adult neurogenesis produces a large pool of new granule cells in 
the dentate gyrus. J. Comp. Neurol. 2001, 435, 406–417. 

67. Kuhn, H.G.; Dickinson-Anson, H.; Gage, F.H. Neurogenesis in the dentate gyrus of the adult rat: 
Age-related decrease of neuronal progenitor proliferation. J. Neurosci. 1996, 16, 2027–2033. 

68. Dayer, A.G.; Ford, A.A.; Cleaver, K.M.; Yassaee, M.; Cameron, H.A. Short-term and long-term 
survival of new neurons in the rat dentate gyrus. J. Comp. Neurol. 2003, 460, 563–572. 

69. Kitamura, T.; Sugiyama, H. Running wheel exercises accelerate neuronal turnover in mouse 
dentate gyrus. Neurosci. Res. 2006, 56, 45–52. 

70. Erickson, K.I.; Prakash, R.S.; Voss, M.W.; Chaddock, L.; Hu, L.; Morris, K.S.; White, S.M.; 
Wójcicki, T.R.; McAuley, E.; Kramer, A.F. Aerobic fitness is associated with hippocampal 
volume in elderly humans. Hippocampus 2009, 19, 1030–1039. 

71. Erickson, K.I.; Voss, M.W.; Prakash, R.S.; Basak, C.; Szabo, A.; Chaddock, L.; Kim, J.S.;  
Heo, S.; Alves, H.; White, S.M.; et al. Exercise training increases size of hippocampus and 
improves memory. Proc. Natl. Acad. Sci. USA 2011, 108, 3017–3022. 



Brain Sci. 2012, 2 765 
 
72. Walton, N.M.; Shin, R.; Tajinda, K.; Heusner, C.L.; Kogan, J.H.; Miyake, S.; Chen, Q.;  

Tamura, K.; Matsumoto, M. Adult neurogenesis transiently generates oxidative stress. PLoS One 
2012, 7, doi:10.1371/journal.pone.0035264. 

73. Churchill, J.D.; Galvez, R.; Colcombe, S.; Swain, R.A.; Kramer, A.F.; Greenough, W.T. 
Exercise, experience and the aging brain. Neurobiol. Aging 2002, 23, 941–955. 

74. Cotman, C.W.; Berchtold, N.C. Physical activity and the maintenance of cognition: Learning 
from animal models. Alzheimers Dement. 2007, 3, S30–S37. 

75. Redila, V.A.; Christie, B.R. Exercise-induced changes in dendritic structure and complexity in 
the adult hippocampal dentate gyrus. Neuroscience 2006, 137, 1299–1307. 

76. Epp, J.R.; Barker, J.M.; Galea, L.A.M. Running wild: Neurogenesis in the hippocampus across 
the lifespan in wild and laboratory-bred Norway rats. Hippocampus 2009, 19, 1034–1043. 

77. Hauser, T.; Klaus, F.; Lipp, H.-P.; Amrein, I. No effect of running and laboratory housing on 
adult hippocampal neurogenesis in wild caught long-tailed wood mouse. BMC Neurosci. 2009, 
10, 43–50. 

78. Van Praag, H.; Kempermann, G.; Gage, F.H. Running increases cell proliferation and 
neurogenesis in the adult mouse dentate gyrus. Nat. Neurosci. 1999, 2, 266–270. 

79. Fabel, K.; Wolf, S.A.; Ehninger, D.; Babu, H.; Leal-Galicia, P.; Kempermann, G. Additive 
effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in 
mice. Front. Neurosci. 2009, 3, 50. 

80. Kempermann, G.; Fabel, K.; Ehninger, D.; Babu, H.; Leal-Galicia, P.; Garthe, A.; Wolf, S.A. 
Why and how physical activity promotes experience-induced brain plasticity. Front. Neurosci. 
2010, 4, doi:10.3389/fnins.2010.00189. 

81. Klaus, F.; Hauser, T.; Lindholm, A.K.; Cameron, H.A.; Slomianka, L.; Lipp, H.P.; Amrein, I. 
Different regulation of adult hippocampal neurogenesis in Western house mice (Mus musculus 
domesticus) and C57BL/6 mice. Behav. Brain Res. 2012, 227, 340–347. 

82. Klaus, F.; Amrein, I. Running in laboratory and wild rodents: Differences in context sensitivity 
and plasticity of hippocampal neurogenesis. Behav. Brain Res. 2012, 227, 363–370. 

83. Amrein, I.; Isler, K.; Lipp, H.P. Comparing adult hippocampal neurogenesis in mammalian 
species and orders: Influence of chronological age and life history stage. Eur. J. Neurosci. 2011, 
34, 978–987. 

84. Gil-Mohapel, J.; Simpson, J.M.; Titterness, A.K.; Christie, B.R. Characterization of the 
neurogenesis quiescent zone in the rodent brain: Effects of age and exercise. Eur. J. Neurosci. 
2010, 31, 797–807. 

85. Snyder, J.S.; Glover, L.R.; Sanzone, K.M.; Kamhi, J.F.; Cameron, H.A. The effects of exercise 
and stress on the survival and maturation of adult-generated granule cells. Hippocampus 2009, 
19, 898–906. 

86. Ảberg, E.; Perlmann, T.; Olson, L.; Brené, S. Running increases neurogenesis without retinoic 
acid receptor activation in the adult mouse dentate gyrus. Hippocampus 2008, 18, 785–792. 

87. Kobilo, T.; Liu, Q.R.; Gandhi, K.; Mughal, M.; Shaham, Y.; van Praag, H. Running is the 
neurogenic and neurotrophic stimulus in environmental enrichment. Learn. Mem. 2011, 18,  
605–609. 



Brain Sci. 2012, 2 766 
 
88. Steiner, B.; Kronenberg, G.; Jessberger, S.; Brandt, M.D.; Reuter, K.; Kempermann, G. 

Differential regulation of gliogenesis in the context of adult hippocampal neurogenesis in mice. 
Glia 2004, 46, 41–52. 

89. Sahay, A.; Scobie, K.N.; Hill, A.S.; O’Carroll, C.M.; Kheirbek, M.A.; Burghardt, N.S.;  
Fenton, A.A.; Dranovsky, A.; Hen, R. Increasing adult hippocampal neurogenesis is sufficient to 
improve pattern separation. Nature 2011, 472, 466–470. 

90. Lista, I.; Sorrentino, G. Biological mechanisms of physical activity in preventing cognitive 
decline. Cell. Mol. Neurobiol. 2010, 30, 493–503. 

91. Russo-Neustadt, A.A.; Chen, M.J. Brain-derived neurotrophic factor and antidepressant activity. 
Curr. Pharm. Des. 2005, 11, 1495–1510. 

92. Wosiski-Kuhn, M.; Stranahan, A.M. Opposing effects of positive and negative stress on 
hippocampal plasticity over the lifespan. Ageing Res. Rev. 2012, 11, 399–403. 

93. Griffin, E.W.; Bechara, R.G.; Birch, A.M.; Kelly, A.M. Exercise enhances hippocampal-dependent 
learning in the rat: Evidence for a BDNF-related mechanism. Hippocampus 2009, 19, 973–980. 

94. Lange-Asschenfeldt, C.; Kojda, G. Alzheimer’s disease, cerebrovascular dysfunction and the 
benefits of exercise: From vessels to neurons. Exp. Gerontol. 2008, 43, 499–504. 

95. Pereira, A.C.; Huddleston, D.E.; Brickman, A.M.; Sosunov, A.A.; Hen, R.; McKhann, G.M.; 
Sloan, R.; Gage, F.H.; Brown, T.R.; Small, S.A. An in vivo correlate of exercise-induced 
neurogenesis in the adult dentate gyrus. Proc. Natl. Acad. Sci. USA 2007, 104, 5638–5643. 

96. Anderson, M.F.; Aberg, M.A.I.; Nilsson, M.; Eriksson, P.S. Insulin-like growth factor-I and 
neurogenesis in the adult mammalian brain. Brain Res. Dev. Brain Res. 2002, 134, 115–122. 

97. Cotman, C.W.; Berchtold, N.C.; Christie, L.A. Exercise builds brain health: Key roles of growth 
factor cascades and inflammation. Trends Neurosci. 2007, 30, 464–473. 

98. Fuss, J.; Ben Abdallah, N.M.; Vogt, M.A.; Touma, C.; Pacifici, P.G.; Palme, R.;  
Witzemann, V.; Hellweg, R.; Gass, P. Voluntary exercise induces anxiety-like behavior in adult 
C57BL/6J mice correlating with hippocampal neurogenesis. Hippocampus 2010, 20, 364–376. 

99. Cotman, C.W.; Berchtold, N.C. Exercise: A behavioral intervention to enhance brain health and 
plasticity. Trends Neurosci. 2002, 25, 295–301. 

100. Mattson, M.P.; Maudsley, S.; Martin, B. BDNF and 5-HT: A dynamic dual in age-related 
neuroplasticity and neurodegenerative disorders. Trends Neurosci. 2004, 27, 589–594. 

101. Itou, Y.; Nochi, R.; Kuribayashi, H.; Saito, Y.; Hisatsune, T. Cholinergic activation of 
hippocampal neural stem cells in aged dentate gyrus. Hippocampus 2011, 21, 446–459. 

102. Archer, T. Physical exercise alleviates debilities of normal aging and Alzheimer’s disease. Acta 
Neurol. Scand. 2011, 123, 221–238. 

103. Greenwood, P.M.; Parasuraman, R. Neuronal and cognitive plasticity: A neurocognitive framework 
for ameliorating cognitive aging. Front. Aging Neurosci. 2010, 2, doi:10.3389/fnagi.2010.00150. 

104. Chen, M.J.; Russo-Neustadt, A.A. Exercise activates the phosphatidylinositol 3-kinase pathway. 
Brain Res. Mol. Brain Res. 2005, 135, 181–193. 

105. Kim, S.E.; Ko, I.G.; Kim, B.K.; Shin, M.S.; Cho, S.; Kim, C.J.; Kim, S.H.; Baek, S.S.;  
Lee, E.K.; Jee, Y.S. Treadmill exercise prevents aging-induced failure of memory through an 
increase in neurogenesis and suppression of apoptosis in rat hippocampus. Exp. Gerontol. 2010, 
45, 357–365. 



Brain Sci. 2012, 2 767 
 
106. Bruel-Jungerman, E.; Veyrac, A.; Dufour, F.; Horwood, J.; Laroche, S.; Davis, S. Inhibition of 

PI3K-Akt signaling blocks exercise-mediated enhancement of adult neurogenesis and synaptic 
plasticity in the dentate gyrus. PLoS One 2009, 4, doi:10.1371/journal.pone.0007901. 

107. Lazarov, O.; Mattson, M.P.; Peterson, D.A.; Pimplikar, S.W.; van Praag, H. When neurogenesis 
encounters aging and disease. Trends Neurosci. 2010, 33, 569–579. 

108. Burger, C.; Lopez, M.C.; Baker, H.V.; Mandel, R.J.; Muzyczka, N. Genome-wide analysis of 
aging and learning-related genes in the hippocampal dentate gyrus. Neurobiol. Learn. Mem. 
2008, 89, 379–396. 

109. Miranda, C.J.; Braun, L.; Jiang, Y.; Hester, M.E.; Zhang, L.; Riolo, M.; Wang, H.; Rao, M.; 
Altura, R.A.; Kaspar, B.K. Aging brain microenvironment decreases hippocampal neurogenesis 
through Wnt-mediated survivin signaling. Aging Cell 2012, 11, 542–552. 

110. Vukovic, J.; Blackmore, D.G.; Jhaveri, D.; Bartlett, P.F. Activation of neural precursors in the 
adult neurogenic niches. Neurochem. Int. 2011, 59, 341–346. 

111. Rao, M.S.; Hattiangady, B.; Abdel-Rahman, A.; Stanley, D.P.; Shetty, A.K. Newly born cells in 
the ageing dentate gyrus display normal migration, survival and neuronal fate choice but endure 
retarded early maturation. Eur. J. Neurosci. 2005, 21, 464–476. 

112. van Praag, H.; Shubert, T.; Zhao, C.; Gage, F.H. Exercise enhances learning and hippocampal 
neurogenesis in aged mice. J. Neurosci. 2005, 25, 8680–8685. 

113. Koltai, E.; Zhao, Z.; Lacza, Z.; Cselenyak, A.; Vacz, G.; Nyakas, C.; Boldogh, I.;  
Ichinoseki-Sekine, N.; Radak, Z. Combined exercise and insulin-like growth factor-1 
supplementation induces neurogenesis in old rats, but do not attenuate age-associated DNA 
damage. Rejuvenation Res. 2011, 14, 585–596. 

114. Wu, C.W.; Chang, Y.T.; Yu, L.; Chen, H.I.; Jen, C.J.; Wu, S.Y.; Lo, C.P.; Kuo, Y.M. Exercise 
enhances the proliferation of neural stem cells and neurite growth and survival of neuronal 
progenitor cells in dentate gyrus of middle-aged mice. J. Appl. Physiol. 2008, 105, 1585–1594. 

115. Siette, J.; Westbrook, R.F.; Cotman, C.; Sidhu, K.; Zhu, W.; Sachdev, P.; Valenzuela, M.J.  
Age-specific effects of voluntary exercise on memory and the older brain. Biol. Psychiatry 2012, 
in press. 

116. Kronenberg, G.; Bick-Sander, A.; Bunk, E.; Wolf, C.; Ehninger, D.; Kempermann, G. Physical 
exercise prevents age-related decline in precursor cell activity in the mouse dentate gyrus. 
Neurobiol. Aging 2006, 27, 1505–1513. 

117. Blackmore, D.G.; Golmohammadi, M.G.; Large, B.; Waters, M.J.; Rietze, R.L. Exercise 
increases neural stem cell number in a growth hormone-dependent manner, augmenting the 
regenerative response in aged mice. Stem Cells 2009, 27, 2044–2052. 

118. Creer, D.J.; Romberg, C.; Saksida, L.M.; van Praag, H.; Bussey, T.J. Running enhances spatial 
pattern separation in mice. Proc. Natl. Acad. Sci. USA 2010, 107, 2367–2372. 

119. Kohman, R.A.; DeYoung, E.K.; Bhattacharya, T.K.; Peterson, L.N.; Rhodes, J.S. Wheel running 
attenuates microglia proliferation and increases expression of a proneurogenic phenotype in the 
hippocampus of aged mice. Brain Behav. Immun. 2012, 26, 803–810. 

120. Villeda, S.A.; Luo, J.; Mosher, K.I.; Zou, B.; Britschgi, M.; Bieri, G.; Stan, T.M.; Fainberg, N.; 
Ding, Z.; Eggel, A.; et al. The aging systemic milieu negatively regulates neurogenesis and 
cognitive function. Nature 2012, 477, 90–94. 



Brain Sci. 2012, 2 768 
 
121. Kannangara, T.S.; Lucero, M.J.; Gil-Mohapel, J.; Drapala, R.J.; Simpson, J.M.; Christie, B.R.; 

van Praag, H. Running reduces stress and enhances cell genesis in aged mice. Neurobiol. Aging 
2011, 32, 2279–2286. 

122. De Ferrari, G.V.; Papassotiropoulos, A.; Biechele, T.; Wavrant de-Vrieze, F.; Avila, M.E.;  
Major, M.B.; Myers, A.; Saez, K.; Henrıquez, J.P.; Zhao, A.; et al. Common genetic variation 
within the low-density lipoprotein receptor-related protein 6 and late-onset Alzheimer’s disease. 
Proc. Natl. Acad. Sci. USA 2007, 104, 9434–9439. 

123. Adachi, K.; Mirzadeh, Z.; Sakagichi, M.; Yamashita, T.; Nikolcheva, T.; Gotoh, Y.; Peltz, G.; 
Gong, L.; Kawase, T.; Alvarez-Buylla, A.; et al. β-Catenin signaling promotes proliferation of 
progenitor cells in the adult mouse subventricular zone. Stem Cells 2007, 25, 2827–2836. 

124. Okamoto, M.; Inoue, K.; Iwamura, H.; Terashima, K.; Soya, H.; Asashima, M.; Kuwabara, T. 
Reduction in paracrine Wnt3 factors during aging causes impaired adult neurogenesis. FASEB J. 
2011, 25, 3570–3582. 

125. Rowe, W.B.; Blalock, E.M.; Chen, K.C.; Kadish, I.; Wang, D.; Barrett, J.E.; Thibault, O.;  
Porter, N.M.; Rose, G.M.; Landfield, W.P. Hippocampal expression analyses reveal selective 
association of immediate-early, neuroenergetic, and myelinogenic pathways with cognitive 
impairment in aged rats. J. Neurosci. 2007, 27, 3098–3110. 

126. Xu, X.; Zhan, M.; Duan, W.; Prabhu, V.; Brenneman, R.; Wood, W.; Firman, J.; Li, H.; Zhang, P.; 
Ibe, C.; et al. Gene expression atlas of the mouse central nervous system: Impact and interactions 
of age, energy intake and gender. Genome Biol. 2007, 8, doi:10.1186/gb-2007-8-11-r234. 

127. Ashton, R.S.; Conway, A.; Pangarkar, C.; Bergen, J.; Lim, K.I.; Shah, P.; Bissell, M.;  
Schaffer, D.V. Astrocytes regulate adult hippocampal neurogenesis through ephrin-B signaling. 
Nat. Neurosci. 2012, 15, 1399–1408. 

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.440 841.680]
>> setpagedevice


