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Abstract: The cerebral organization of language in epilepsy patients has been studied with 

invasive procedures such as Wada testing and electrical cortical stimulation mapping and 

more recently with noninvasive neuroimaging techniques, such as functional MRI. In the 

setting of a chronic seizure disorder, clinical variables have been shown to contribute to 

cerebral language reorganization underscoring the need for language lateralization and 

localization procedures. We present a 14-year-old pediatric patient with a refractory 

epilepsy disorder who underwent two neurosurgical resections of a left frontal epileptic 

focus separated by a year. He was mapped extraoperatively through a subdural grid using 

cortical stimulation to preserve motor and language functions. The clinical history and 
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extensive workup prior to surgery is discussed as well as the opportunity to compare the 

cortical maps for language, motor, and sensory function before each resection. 

Reorganization in cortical tongue sensory areas was seen concomitant with a new zone of 

ictal and interictal activity in the previous tongue sensory area. Detailed 

neuropsychological data is presented before and after any surgical intervention to 

hypothesize about the extent of reorganization between epochs. We conclude that 

intrahemispheric cortical plasticity does occur following frontal lobe resective surgery in a 

teenager with medically refractory seizures. 

Keywords: language; motor; cortical stimulation; reorganization; pediatric 

 

1. Introduction 

Medically refractory epilepsy in children may lead to resective surgery if the epileptogenic zone can 

be localized. Seizure control is the goal following surgery with or without the need for continued 

anticonvulsant therapy. Prior to surgery, a variety of tests and mapping techniques are completed 

depending on the age and cooperation level of the patient, including neuropsychological assessment, 

Wada testing, Single-Photon Emission Computed Tomography (SPECT), Positron Emission 

Tomography (PET), Diffusion Tensor Imaging (DTI), functional MRI (fMRI), and a Magnetic 

Encephalogram (MEG). A subdural grid array is then surgically placed on the brain to better delineate 

the margins of the epileptogenic zone and to perform extraoperative electrical cortical stimulation 

(ECS). Together, these localization techniques provide information to pinpoint the epileptic focus that 

should be removed as well as identify the areas for motor, sensory, and language function so they can 

be avoided to minimize post-operative functional deficits. 

While plasticity of motor and language functions to the contralateral hemisphere have been 

extensively studied in pediatric patients with early acquired lesions or who have undergone functional 

hemispherectomies [1], the intrahemispheric organization of motor and language functions in children 

has received relatively less attention. Case studies in pediatric [2] and adult [3] patients with cortical 

dysplasia show that resections in the primary hand motor cortical areas may result in an immediate 

complete motor deficit. However, the deficit may be transient since a substantial recovery can still 

occur in children and young adults after several months of rehabilitation. Similarly, resections of 

language areas in pediatric patients that result in either expressive or receptive language deficits in the 

early postoperative period are also able to reorganize intrahemispherically [4]. This intrahemispheric 

cortical plasticity and postlesional functional reorganization is thought to depend on the preservation 

of white matter tracts, and so far it appears that damage to white matter precludes structural plasticity [5]. 

White Matter Maturation and Cognitive Development 

The prefrontal cortex is involved in several cognitive functions, including executive function, 

attention, memory, reasoning, and language comprehension. There is an extensive literature that 

explores the concurrent changes in neuroanatomical structure and cognitive maturation throughout 

childhood [6–10]. Changes in the prefrontal cortex of developing children include synaptic density, 
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increased dendrites, and increases in the diameter and myelination of axons [11]. Several recent 

imaging studies have shown that maturation of white matter tracts, particularly during the latter part of 

childhood, has correlated to more discrete functional processes and abilities [12] such as the 

development of visuospatial working memory and reading ability [13]. 

In this paper, we report the case of a pediatric patient who underwent two surgical resections of  

a left frontal seizure focus at the ages of 12 and 13 and four serial neuropsychological assessments at 

the ages of 6, 10, 13 and 14. Based on past studies in cortical stimulation, the role of frontal subcortical 

anatomy and frontal lobe functional development, we hypothesized that we would see a mixture of 

stable as well as reorganized functional areas in and around the temporal and frontal lobes. 

Reorganization is discussed in a context of possible age-related changes versus changes induced by 

pathology or surgically-induced functional changes in frontal areas. 

2. Results and Discussion—Case Report 

2.1. History and Neurological Examination 

This 14-year-old left-handed male originally presented at two and a half years of life with new 

onset seizures. Birth was via emergent cesarean section due to fetal bradycardia. APGAR 

(Appearance, Pulse, Grimace, Activity, Respiration scores of 0–2 each that are summed to assess the 

health of a newborn with a resulting score range of 0–10, with 7 and above considered normal) scores 

were six at one minute, and nine at five minutes of life. The patient was reportedly in good health and 

undergoing normal development until 18 months of age when his first seizure was observed and was 

characterized by elevation of his right arm. Over the course of the next few months the patient had 

several more similar episodes, which escalated to include hyperventilation and fits of laughter. Two 

ambulatory EEGs were performed. The first EEG captured a seizure described as left hemisphere 

dysrhythmia without spreading. The second EEG did not capture seizure activity but demonstrated 

interictal epileptogenic regions in the frontotemporal region (F3). Computerized Tomography (CT) 

scan and Magnetic Resonance Imaging (MRI) of the head were normal (see Figure 1, left column). 

Because the patient did not tolerate initial management with gabapentin due to side effects, he was 

transitioned to a combination of lamotrigine and topiramate. At the age of 9, the patient had a vagal 

nerve stimulator installed due to continued medically refractory seizures, which unfortunately did not 

appear to have any significant effect on his seizure control. Until the age of 11, the patient was 

unsuccessfully medically managed at an outside institution. At the time of presentation to our 

institution at age 11, his seizures were reported to consist of upward and rightward eye deviation,  

leg kicking, gurgling, shallow breathing, and grinding of his teeth. The right arm became tonically 

flexed during these episodes. The patient was unresponsive during these events. These seizures most 

frequently occurred between midnight and six o’clock in the morning in clusters lasting approximately 

15 min. 
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Figure 2. Neuropsychological testing timeline for cognitive abilities. WISC IV = Wechsler 

Intelligence Scale for Children-Fourth Edition; WASI = Wechsler Abbreviated Scale of 

Intelligence; FSIQ = Full Scale Intelligence Quotient; VCI = Verbal Comprehension Index; 

PRI = Perceptual Reasoning Index; WMI = Working Memory Index, PSI = Processing 

Speed Index. Qualitative classification ranges for standard scores [Very Superior (>129), 

Superior (120–129), High Average (110–119), Average (90–109), Low Average (80–89), 

Borderline (70–79), and Impaired (<70)]. Scores have a mean of 100 and Standard 

Deviation (SD) of 15. See Supplementary Information for core subtest descriptions.  

* Decrease by >1 standard deviation from previous assessment within index. Surgery 1 and 2 

refer to the timing of the first and second surgical resections. 

 

Figure 3. Neuropsychological testing timeline for memory and cognitive abilities. Wide 

Range Assessment of Memory and Learning (WRAML-2) and Woodcock-Johnson tests of 

Cognitive Abilities-III, qualitative classification ranges for standard scores: Very Superior 

(>129), Superior (120–129), High Average (110–119), Average (90–109), Low Average 

(80–89), Borderline/Mildly Deficient (70–79), and Impaired/Extremely Low (<70). Scores 

have a mean of 100 and Standard Deviation (SD) of 15. See Supplementary Information 

for core subtest descriptions. * Decrease by >1 standard deviation from previous assessment 

within index. § Increase by >1 standard deviation from previous assessment within index. 

Surgeries 1 and 2 refer to the timing of the first and second surgical resections. 
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Noted trends were that prior to the first surgery, almost all cognitive domain scores decreased by 

more than one standard deviation from 2005 to 2009 (from Average to Low Average/Borderline) with 

the exception of the PRI, representing stability in analyzing and synthesizing abstract visual stimuli, 

abstract categorical reasoning ability, and general nonverbal intelligence. Declines in VCI, WMI, PSI, 

and FSIQ were concurrent with increases in seizure frequency and decreases in responsiveness to  

anti-epileptic medications. Lower VCI scores represented declines in verbal reasoning and concept 

formation, auditory comprehension, and verbal expression. Lower WMI scores represented declines in 

auditory short-term memory, sequencing skills, attention/concentration, visual-spatial imaging, and 

mental manipulation, and lower PSI scores represented declines in speed of visual scanning, cognitive 

flexibility, visual-motor coordination, short-term visual memory, visual discrimination, and 

concentration. Following the first surgical partial frontal lobe resection, the PRI index decreased by 

more than one standard deviation (Low Average to Borderline) representing a decrease in analyzing 

and synthesizing abstract visual stimuli, abstract categorical reasoning ability, and general nonverbal 

intelligence. Scores for the FSIQ, VCI, and PRI remained stable following the second surgical resection. 

Memory and executive function showed similar trends in that verbal and visual memory and 

auditory attention saw declines between 2005 and 2009, while attention-concentration scores remained 

stable. The Verbal Memory Index estimates how well meaningful verbal information and relatively 

rote verbal information can be learned and recalled. The Visual Memory Index estimates how well 

meaningful (i.e., pictorial) and minimally related, rote (i.e., design) visual information can be learned 

and recalled; both indices have implications for both daily and academic tasks. Auditory attention 

measures speech-sound discrimination, including the ability to overcome the effects of auditory 

distortion or masking in understanding oral language. Following the first surgical resection, auditory 

attention continued to decline, while verbal memory remained stable and visual memory improved. 

Following the second surgical resection, verbal memory again remained stable while all other memory 

and executive function domains declined to borderline or impaired levels. 

2.3. Grid Mapping 1 

At the age of 12, the patient underwent placement of bitemporal and bifrontal strip electrodes for 

seizure mapping, which demonstrated that the seizures lateralized to the left frontal lobe. Three months 

later, the patient underwent a craniotomy to implant a 6 × 8 (48-contact) frontal and 4 × 6 (24-contact) 

temporal grid array for seizure localization and extraoperative mapping, with seizure onset 

characterized by semi-rhythmic sharp activity evolving into faster frequencies, followed by spread 

(Figure 4). Each grid array used 5-mm-diameter electrodes embedded in Silastic with center-to-center 

interelectrode distances of 1 cm. The exposed cortical surface and grid position were documented using 

digital photography and schematic diagrams, functional sites were marked with a sterile 5-mm2 tag 

(Figure 5A). Brainlab (iPlan Cranial 3.0, Westchester, IL, USA) was used to co-register a pre-operative 

MRI and post-grid CT scan to produce a three-dimensional reconstruction of the brain with overlaid grid. 

Post-resection MRI scans were then co-registered to demonstrate each resection cavity. (Figure 5B,C). 

We used a standard stimulation procedure [14] with biphasic square-wave pulses of 0.5 ms duration at 

60 Hz, with a maximum train duration of 4 s. Grid contacts were stimulated systematically 

extraoperatively at 4–6 mA to perform mapping of motor and language function. The stimulation 

threshold was determined by escalating up the amplitude until reaching the afterdischarge threshold. 
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In the present patient, both stable and reorganized functional areas were identified with extraoperative 

stimulation prior to the first and second surgical resections. A stable area across the two grid maps was 

found in the temporal lobe for auditory naming within the middle portion of the STG. Auditory 

naming errors with cortical stimulation were primarily semantic paraphasias and comprehension 

errors. The stability of this area can likely be accounted for by its relatively distant location from the 

first resection, which spared this cortical area, as well as the anterior indirect segment of the superior 

longitudinal fasciculus (SLF) subcortical tract. This subcortical fiber tract connects the posterior part 

of the superior temporal gyrus behind Heschl’s gyrus (Wernicke’s area) with the posterior portion  

of the frontal operculum lateral to the arcuate fasciculus [25]. Although the patient’s Verbal 

Comprehension Index (VCI) score fell from Average to Borderline between 2005 and 2009 coinciding 

with an increase in seizure frequency and intractability to anti-seizure medications, the stability of this 

index following both surgical resections is consistent with preserved cortical and subcortical areas in 

the posterior STG and anterior segment of the SLF. 

Stable areas across the two grid mapping sessions in the frontal lobe were: (1) posterior areas of the 

SFG and MFG showing no motor, sensory, or language function (using visual naming); (2) DPrG for 

hand motor function, found both extraoperatively and intraoperatively (Figure 9A,B, tag A); (3) the 

superior portion of VPrG and middle portion of MPrG showing face/mouth motor function (Figure 9B, 

tag F); and (4) the anterior/superior portion of the MPoG for face sensory function. 

A lack of function as seen by cortical stimulation in the SFG and MFG could be due to a number of 

factors. Cortical stimulation during visual naming has induced errors in the MFG in a similarly-aged 

patient [4], though the proximity of this area to an ictal onset (grid map 1), surgical cavity (grid map 2),  

a low stimulation current (4 mA), or age-related lag of frontal association-area development [26] could 

each account for either a lack of function or a failure to illicit function through cortical stimulation.  

In contrast, the SFG is implicated in working memory tasks involving monitoring and manipulation, 

particularly those involved in spatially oriented processing [27]. Neuropsychological scores in the 

visual aspect of working memory—which tests visual-spatial imaging and mental manipulation—indicated 

a dramatic decrease in this function prior to the first surgery, when the patient’s seizures and intractability 

increased, which is consistent with dysfunction in this area. Although this index score increased after 

the first resection, possibly reflecting some degree of compensation, scores again decreased following 

the second resection, which could reflect removal of reorganized cortex perilesionally to the first 

resection. Since a working memory task was not conducted in this region during cortical stimulation 

due to time constraints, a lack of function using visual naming tasks was somewhat expected. Overall 

decreases in the visual Working Memory Index and the Perceptual Reasoning Index lead us to 

speculate that this area was likely destabilized by cortical dysgenesis [28–29] and that this area did not 

reorganize a second time following the second surgical resection. 

Stable hand motor function in the DPrG and face/mouth motor function in the MPrG/VPrG may be 

accounted for by their relative distance from the first resection (>2.5 cm and 2 cm, respectively) as 

well as the preservation of corticospinal tracts (CST) that project into these areas of primary motor 

cortex. As the head of the caudate nucleus and the frontal horn of the lateral ventricle were spared, the 

internal capsule fibers passing through the corona radiata into these areas of motor cortex [30] were 

also likely left intact. Cortical areas for face sensory function also remained stable between the two 



Brain Sci. 2013, 3 1609 
 

functional maps, which is likely accounted for by the sparing of subcortical fibers running from this area 

of the cerebrum to the ventral posterior medial thalamic nucleus and beyond to the trigeminal lemniscus. 

The main areas that appear to differ in function across the two grid maps include: (1) tongue 

sensory in the ventral postcentral gyrus (VPoG), which reorganized superiorly to the middle  

post-central gyrus (MPoG); (2) visual naming hesitations in the superior area of the operculum of the 

inferior frontal gyrus (OpIFG); and (3) speech arrest within the inferior area of OpIFG. Motor and 

sensory areas are some of the earliest to mature developmentally and in terms of grey matter volume, 

maturing earlier than temporal lobe association areas [26]. Given the stability of auditory naming sites 

in the posterior STG—an area that matures later than frontal motor and sensory areas—age-related 

changes are not likely to account for the shift in sensory areas. The tongue sensory area in each map  

is >2 cm away from the first resection, making surgically-induced changes in cortical or subcortical 

areas also unlikely to account for the change in location. However, an interval change in the location 

of the epileptogenic zone was found, with epileptigenic activity shifting posteriorly and inferiorly from 

anterior/middle MFG to the operculum of the IFG, extending posteriorly to VPrG and VPoG. With this 

shift in the epileptic zone came a directly superior shift in tongue/mouth sensory function from the 

VPrG and VPoG to the lower portion of the MPoG. Reorganization of primary somatosensory area in 

epilepsy associated with cortical dysplasia in a pediatric patient has previously been reported, showing 

reorganization of the left thumb area into a restricted area of normal frontal lobe adjacent to the 

dysplastic brain [31,32], as has reorganization of the motor hand area in an older teen (19 years) with 

cortical dysplasia [3]. The source of spikes observed on EEG remains controversial, with evidence 

pointing both to surrounding cortex [33] as well as over the lesion itself [34]. In the present patient it 

appears that interictal spikes originated over normal cortex adjacent to the lesion, suggesting an 

irritative zone that may have promoted reorganization of the tongue sensory area to its new location. 

Newly found areas in the operculum of the inferior frontal gyrus include both visual naming delays 

and speech arrest, the former located immediately superior to the latter within this subregion, which is 

classically identified as Broca’s area. Speech arrest and hesitations in this area are associated more 

with a speech-motor function than a frontal language function. This is consistent with visual naming 

deficits being relatively rare in frontal lobe epilepsy pediatric patients [35] and the location of visual 

naming errors during cortical stimulation found more superiorly in the MFG [4], likely as a result of 

terminations of the arcuate fasciculus, which is implicated in various aspects of language [25,36]. 

Together, these visual naming delays point to a speech-motor function with an earlier developmental 

profile and away from age-related functional changes. The presence of afterdischarge activity in this 

area during the first grid mapping limited the stimulation current given (4 mA), so it is possible that 

the current was too low to elicit disruption of this function and produced a false-negative compared 

with a relatively higher stimulation current (7 mA) used in the second mapping. 

Neuropsychological profiles of this patient are likely accounted for by a combination of surgical 

resections as described above and known cognitive consequences of frontal lobe epilepsy. Prior to the 

first surgical resection, declines in VCI, PSI, WMI, and FSIQ were seen, which is consistent with 

profiles seen in frontal lobe pediatric epilepsy studies [35,37–39]. The wide range of cognitive 

impairment prior to surgical intervention may be the result of rapid propagation of epileptic discharges 

both inter- and intra-hemispherically [38] or from subcortical abnormalities that prevent efficient 

communication between cortical areas [40]. Following surgical interventions, declines continued in 
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auditory attention, visual memory, and executive functions. Executive functions such as planning, 

attention, organization, and motor coordination, as well as visuo-spatial attention and visuomotor 

integration, which are all mediated by the frontal lobe, have been known to decline following surgical 

intervention in lesional frontal lobe pediatric patients [35], potentially resulting from a combination of 

both cortical and subcortical resections. 

3. Experimental Section 

3.1. Fiber Tracking 

DTI MR images were obtained following the first resection in 2012 with a 3.0-T system 

(SignaHDxt, GE Healthcare, Waukesha, WI, USA) using an echo-planar sequence (12,000/91.5/1 

[TR/TE/NEX]), 21-cm field of view, matrix 92 × 92, 2.5 mm section thickness, b = 0/1000 s/mm2, 

with diffusion encoding in 25 directions. 

Tractography was performed on a dedicated workstation (Advantage Windows workstation,  

GE Healthcare, Waukesha, WI, USA) using commercially available fiber tracking software (FuncTool 

version 9.4.05a, GE Healthcare, Waukesha, WI, USA). The white matter tracts were defined by 

manually placing a seed region of interest in mirrored locations in the right and left hemisphere based 

on known tract locations [41]. Tract propagation was then carried out in both antegrade and retrograde 

directions, using a minimum FA value of 0.18. 

3.2. Mapping of Motor, Sensory, Speech-Motor, and Language Function 

Parental consent and child assent were obtained in accordance with the guidelines of the Internal 

Review Board of Duke University Health System (Pro00004155, 11/26/2002 and Pro00020555, 

11/02/2009). Testing prior to the 2011 resection was performed in two sessions over two days. The 

area of exposure included frontal, temporal, and parietal areas. Eight electrodes in the frontal grid  

(21, 22, 23, 24, 29, 30, 31, 32) and eight electrodes in the temporal grid (16, 17, 18, 20, 21, 22, 23, 24) 

were tested in pairs on the first day using visual and auditory naming (see Supplementary Information 

for stimuli). Forty-six electrodes in the frontal grid (1–46) were tested in pairs on the second day for 

motor, sensory, and speech-motor functions. Testing prior to the 2012 resection was performed in  

a single session. The area of exposure was similar, including frontal, temporal, and parietal areas. 

Thirty-six electrodes were tested in pairs for motor, sensory, and speech-motor functions and using 

visual and auditory naming. Baseline performance was measured by pre-testing all tasks several days 

prior to grid placement. Only items that the patient successfully completed at least twice each at 

baseline during the testing were administered during cortical mapping. The reliability of errors for 

each site in each task was calculated relative to the unstimulated baseline error rate using the Fisher 

Exact Test and a significance level of 0.05. 

To ensure that receptive language was not compromised during testing, stimulation was 

administered following presentation of the picture (visual naming) or auditory definition (auditory 

naming). Before each response, the patient spoke the carrier phrase “This is a …” to ensure stimulation 

was not causing a general speech arrest. The presentation of the picture was accompanied by an aural 

cue with the presentation software, alerting the neurosurgeon that the stimulus was on the screen. 
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Stimulation was initiated immediately following this aural cue with a delay of approximately 1000 ms, 

with the stimulus on the screen for 5000 ms. Stimulation for auditory naming was initiated 

immediately after the beginning of the definition without an additional aural cue. The short delay after 

the appearance of the stimulus allowed stimulation to proceed immediately after the stimulus was on 

the screen or began to be heard but before the patient began his oral response of the carrier phrase and 

stimulus item. 

The following error types [42] were noted: (1) semantic paraphasias (for example, substituting  

a semantically related item such as “chair” for “table”); (2) phonological paraphasias (for example, 

clear substitution of one phoneme for another such as /f/ for /v/ or /tr/ for /dr/); (3) semantic/phonological 

blends (for example, substituting “train” for “plane”); (4) off-target responses, that is those responses 

not semantically or phonologically related to the correct response (for example, substituting “tree” for 

“fork”); (5) no-target responses, that is, the patient correctly says the carrier phrase but is unable to 

give a response to the stimulus; (6) perseveration, in which the patient responds to a previous stimulus 

within five trials; (7) apraxic errors such as a slur or stutter; (8) phonological reduction, in which a 

syllable is dropped from a word (for example, responding with “can” instead of “candle”);  

(9) neologism, where the response is a pronounceable non-word, such as “zobluch” for “kite”, and  

(10) comprehension error, where the patient was unable to comprehend the definition presented aurally 

during stimulation. 

4. Conclusions 

In summary, widespread and significant cognitive, memory, and IQ declines were seen during  

a period of increased seizure frequency and intractability to antiepileptic medications prior to the first 

surgical resection. The two cortical grid maps prior to each resection showed stability in posterior 

temporal regions that involved auditory naming, consistent with the preservation of cortical areas and 

SLF subcortical tracts in this region, and as further reflected in verbal domains of neuropsychological 

testing scores. Grid maps also showed stability in motor areas of face/mouth and hand, also consistent 

with CST subcortical preservation that projected to these regions. Conversely, areas of reorganization 

were seen in cortical tongue sensory areas concomitant with a new zone of ictal and interictal activity 

in the previous tongue sensory area. Increased current stimulation during the second grid mapping 

most likely accounts for new areas of speech-motor function found in the IFG. Additional cortical and 

subcortical tract removal (anterior AF and medial SLF) anterior to the motor strip in the second 

resection appears to have led to additional declines in visual working memory and attention measures 

in the presence of lowered seizure frequency. 
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