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Abstract: Objective: To answer the question of whether the anatomical center of the subthalamic
nucleus (STN), as calculated indirectly from stereotactic atlases or by direct visualization on magnetic
resonance imaging (MRI), corresponds to the best functional target. Since the neighboring red nucleus
(RN) is well visualized on MRI, we studied the relationships of the final target to its different borders.
Methods: We analyzed the data of 23 PD patients (46 targets) who underwent bilateral frame-based
STN deep brain stimulation (DBS) procedure with microelectrode recording guidance. We calculated
coordinates of the active contact on DBS electrode on postoperative MRI, which we referred to
as the final “functional/optimal” target. The coordinates calculated by the atlas-based “indirect”
and “direct” methods, as well as the coordinates of the different RN borders were compared to
these final coordinates. Results: The mean ± SD of the final target coordinates was 11.7 ± 1.5 mm
lateral (X), 2.4 ± 1.5 mm posterior (Y), and 6.1 ± 1.7 mm inferior to the mid-commissural point
(Z). No significant differences were found between the “indirect” X, Z coordinates and those of the
final targets. The “indirect” Y coordinate was significantly posterior to Y of the final target, with
mean difference of 0.6 mm (p = 0.014). No significant differences were found between the “direct”
X, Y, and Z coordinates and those of the final targets. Conclusions: The functional STN target is
located in direct proximity to its anatomical center. During preoperative targeting, we recommend
using the “direct” method, and taking into consideration the relationships of the final target to the
mid-commissural point (MCP) and the different RN borders.
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1. Introduction

Deep brain stimulation (DBS) is the gold standard surgical treatment of advanced Parkinson’s
disease (PD). The subthalamic nucleus (STN) has been used for the last two decades as the target of
choice for this procedure [1].

The STN is a small gray matter structure located at the junction of the midbrain and
diencephalon. It has anatomic relationships to the internal capsule and the Globus Pallidus Internus
(GPi) anterolaterally, the Zona Incerta (ZI) and the thalamus superiorly, fibers of the third nerve
anteromedially, the red nucleus (RN) posteromedially, and the cerebral peduncle and the Substantia
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Nigra (SN) ventrally [2,3]. The target of DBS is the sensorimotor (dorsolateral) part of the STN [4,5].
This complex anatomy of the STN necessitates precise targeting during DBS surgeries.

There are two conventional methods for pre-operative localization of the STN [6]. The first
is the indirect targeting; in which a brain atlas is used to define the coordinates of the STN in
relation to the midcommissural point (MCP). The second is the direct method, which was developed
by the work of Bejjani et al. in 2000 [7] in which the STN is directly visualized as a hypointense
structure on T2 weighted images. Direct localization became easier with the improvements of magnetic
resonance imaging (MRI) sequences and the use of special stereotactic software to perform 3D image
reconstruction and help in the calculations [8–12]. Many studies assessed the direct coordinates and
compared them to the coordinates obtained by the indirect method [13–17]. Yet, the exact correlation
between these two conventional methods and the postoperative final (functional) target has not
been established.

In this paper, we considered the final position of the best active electrode contact on the
postoperative MRI images as the “true functional stimulation site” or the “final target”. This final target
position is confirmed by the intra-operative microelectrode recording (MER) and the postoperative
improvement of the Parkinsonian symptoms. We compared these final coordinates to the initial
coordinates calculated by both the direct and indirect methods.

2. Objectives

Assessment of the accuracy of the conventional methods of “direct” and “indirect” localization of
STN target vs. the final functional target. This may help us to determine the optimal coordinates for
the STN DBS target. We also aim to study the relationships of the final functional target coordinates to
the coordinates of the different borders of the RN, in attempt to find any new relationships that can
improve the preoperative planning. This may eventually increase the accuracy of the preoperative
targeting, and subsequently decrease the intra-operative time needed for the MER and the number
of microelectrode insertion tracks needed to reach the target, and consequently reducing the rate
of complications.

3. Methods

After obtaining an appropriate institutional review board (IRB) approval, we retrospectively
analyzed the data of all patients diagnosed with advanced Parkinson’s disease who underwent
bilateral STN-DBS at the University of Illinois at Chicago (UIC) in the period from January 2013 to
December 2014. From a total of 40 bilateral STN-DBS procedures that were performed over this period,
we included in this analysis 23 patients (46 targets) who had available postoperative MRI images, and
a minimum follow up period of 6 months with documented clinical improvement on fixed stimulation
parameters. We excluded the patients with postoperative complications causing abnormalities in the
electrode position (1 patient), those who did not get a beneficial clinical effect from the stimulation
(1 patient), and those whose follow-up visits (15 patients) took place in other institutions.

3.1. The Preoperative Planning and the Surgical Procedure

The surgery was done in two stages. The first stage involves implantation of the DBS electrodes
under local anesthesia. Procedure starts with application of Leksell stereotactic frame Model G
(Elekta Instruments, Atlanta, GA, USA) to the patient’s head.

A high-resolution MRI of the patient’s brain with a 3 Tesla scanner (Signa 3T94 VHi; General
Electric Medical Systems, Milwaukee, WI, USA) was done. Two main sequences were obtained.
The first is a 3D T1-weighted, spoiled gradient echo imaging of the entire head (section thickness:
2 mm; field of view: 26 × 26 cm; TR: 7.0–8.0 milliseconds; TE: ~400 milliseconds; flip angle: 12; band
width: 31.25 KHz; acquisition time: <7 min). The second is high-resolution, contiguous, T2-weighted,
fast spin-echo imaging through the region of the midbrain and basal ganglia (section thickness: 1.5 mm;
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slice interval: 0 mm; matrix size: 512 × 512; field of view: 26 × 26 cm; TR: 4600–6200 milliseconds; TE:
95–108 milliseconds; acquisition time: <5 min) (Figure 1).
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Figure 1. An axial T2 weighted magnetic resonance image (MRI) at the level of the midbrain showing 
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At the end of the scan, we chose the axial T2 image (or two adjacent images) in which the anterior 
commissure (AC) and the posterior commissure (PC) are identified (Figure 2). Then, we measured 
the distance between the middle and lower fiducials on both sides of the frame, and a maximum of 2 
mm difference was allowed. The X and Y MR coordinate of the center of the frame was obtained at 
the point of meeting of two diagonal lines drawn on the MR console between the opposing anterior 
and posterior fiducials. After that, the X and Y MR coordinates of both the AC, the PC, and the center 
of the frame (Figure 3) were obtained from the MR console, and entered into a simple Excel worksheet 
(Microsoft, Redmond, WA, USA) designed by the senior author. 

 
Figure 2. An axial T2 weighted magnetic resonance image showing the anterior commissure and the 
posterior commissure at the same cut. 

Figure 1. An axial T2 weighted magnetic resonance image (MRI) at the level of the midbrain showing
the two subthalamic nuclei (STN).

3.1.1. The “Indirect” Method of the STN Coordinates Calculation

At the end of the scan, we chose the axial T2 image (or two adjacent images) in which the anterior
commissure (AC) and the posterior commissure (PC) are identified (Figure 2). Then, we measured the
distance between the middle and lower fiducials on both sides of the frame, and a maximum of 2 mm
difference was allowed. The X and Y MR coordinate of the center of the frame was obtained at the
point of meeting of two diagonal lines drawn on the MR console between the opposing anterior and
posterior fiducials. After that, the X and Y MR coordinates of both the AC, the PC, and the center of
the frame (Figure 3) were obtained from the MR console, and entered into a simple Excel worksheet
(Microsoft, Redmond, WA, USA) designed by the senior author.
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shown inside the red square; (B) a crosshair at the posterior margin of the AC, with the MRI 
coordinates of the AC shown inside the red square. Two lines are drawn between the middle and the 
lower fiducials on both sides of the frame and their lengths (in the blue rectangle) are used to calculate 
the Z coordinate of the AC; (C) two diagonal lines intersecting at the center of the frame at the PC 
level with the MRI coordinates of the center of the frame shown inside the red square; (D) a crosshair 
at the anterior margin of the PC, with the MRI coordinates of the PC shown inside the red square. 
Two lines are drawn between the middle and the lower fiducials on both sides of the frame and their 
lengths (in the blue rectangle) are used to calculate the Z coordinates of the PC.  

Afterwards, the frame coordinates of the AC, PC, the mid-commissural point (MCP), and the 
intercommissural distance (should be from 21 to 28 mm) were calculated with the help of this Excel 
worksheet by using the following formulas: 

X coordinates of the AC = 100 + MRI scanner X coordinates of the AC − MRI Scanner X 
coordinates of the center of the frame 

(1) 

Y coordinates of the AC = 100 + MRI scanner Y coordinates of the AC − MRI scanner Y 
coordinates of the center of the frame 
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Z coordinates of the AC = 40 + distance between the lower and middle fiducials at the AC-
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Intercommisural distance = √ [(XAC − XPC) × (XAC − XPC) + (YAC − YPC) × (YAC − YPC) + (ZAC − 
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XMCP = (XAC + XPC)/2 (5) 

YMCP = (YAC + YPC)/2 (6) 

ZMCP = (ZAC + ZPC)/2 (7) 

Figure 3. Calculating the anterior commissure (AC) and posterior commissure (PC) coordinates using
the magnetic resonance scanner console. (A) Two diagonal lines intersecting at the center of the frame at
the AC level with the magnetic resonance imaging (MRI) coordinates of the center of the frame shown
inside the red square; (B) a crosshair at the posterior margin of the AC, with the MRI coordinates of the
AC shown inside the red square. Two lines are drawn between the middle and the lower fiducials on
both sides of the frame and their lengths (in the blue rectangle) are used to calculate the Z coordinate
of the AC; (C) two diagonal lines intersecting at the center of the frame at the PC level with the MRI
coordinates of the center of the frame shown inside the red square; (D) a crosshair at the anterior
margin of the PC, with the MRI coordinates of the PC shown inside the red square. Two lines are
drawn between the middle and the lower fiducials on both sides of the frame and their lengths (in the
blue rectangle) are used to calculate the Z coordinates of the PC.

Afterwards, the frame coordinates of the AC, PC, the mid-commissural point (MCP), and the
intercommissural distance (should be from 21 to 28 mm) were calculated with the help of this Excel
worksheet by using the following formulas:

X coordinates of the AC = 100 + MRI scanner X coordinates of the AC −MRI scanner X

coordinates of the center of the frame
(1)

Y coordinates of the AC = 100 + MRI scanner Y coordinates of the AC −MRI scanner Y

coordinates of the center of the frame
(2)

Z coordinates of the AC = 40 + distance between the lower and middle fiducials

at the AC-PC plane
(3)

Intercommisural distance =
√

[(XAC − XPC) × (XAC − XPC) + (YAC − YPC) × (YAC − YPC)

+ (ZAC − ZPC) × (ZAC − ZPC)]
(4)
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XMCP = (XAC + XPC)/2 (5)

YMCP = (YAC + YPC)/2 (6)

ZMCP = (ZAC + ZPC)/2 (7)

Based on the known anatomical relationship of the STN to the MCP from previous anatomical
studies and stereotactic atlases [18–21], we selected the STN target at 12 mm lateral, 3 mm posterior,
and 6 mm inferior to the MCP. We used the following formulas to do the calculations:

XSTN = XMCP ± 12 mm (8)

Subtract for the right STN and add for the left STN

YSTN = YMCP − 3 mm (9)

ZSTN = ZMCP + 6 mm (10)

The base of the STN.

3.1.2. The “Direct” Method of the STN Coordinates Calculation

The STN is the hypointense structure located lateral and anterior to the red nucleus on axial T2
MRI (Figure 4) [8]. The center of the STN hypointensity was identified at the extension of a straight
line drawn at the anterior margin of the RN bisecting the STN. Then, the coordinates were calculated
using the same Excel worksheet.
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using intraoperative electrical microrecording and macrostimulation. 

During surgery, we performed microelectrode recording (MER) of the brain activity using a 
NeuroNav microelectrode recording system (AlphaOmega, Nazareth, Israel). Fluoroscopic 
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Figure 4. Calculating the subthalamic nucleus (STN) coordinates from the magnetic resonance imaging
(MRI) console. (A) two diagonal lines intersecting at the center of the frame at the STN level with
MRI coordinates of the center of the frame shown inside the red square; (B) a crosshair at the center of
the left STN, with its MRI coordinates shown inside the red square, two line are drawn between the
middle and lower fiducials on both sides of the frame and their lengths (in the blue rectangle) are used
to calculate the Z coordinate; (C) a crosshair at the center of the right STN, with its MRI coordinates
shown inside the red square, two line are drawn between the middle and lower fiducials on both sides
of the frame and their lengths (in the blue rectangle) are used to calculate the Z coordinate.

In the operation room, we used the FrameLink software, which is a part of StealthStation
navigation system (Medtronic, Minneapolis, MN, USA) to confirm our calculations of the direct
STN coordinates (Figure 5). This software compensates for head and frame tilt in any direction.
The final coordinates for the procedure were derived from the two techniques, and subsequently
adjusted using intraoperative electrical microrecording and macrostimulation.
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During surgery, we performed microelectrode recording (MER) of the brain activity using
a NeuroNav microelectrode recording system (AlphaOmega, Nazareth, Israel). Fluoroscopic
confirmation of the target approach was obtained at 5 mm intervals, 2 mm above the target, and
at the target (Figure 6).

During MER, the STN is the most electrically active structure encountered during the recording.
An indicator of entry into the STN is the increase of the background activity (Figure 7). The STN cells
have a mean firing rate of 37 ± 17 Hz with high amplitude and irregular firing pattern [22]. We used
the following criteria for choosing an ideal STN target:

- The length of the STN, measured along its trajectory, is 4–5 mm.
- Dense discharge patterns recorded in the STN.
- The presence of an identifiable region of increased neuronal firing at the STN on sensorimotor

stimulation of the contralateral limbs.
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Figure 7. Microelectrode recording appearance of the subthalamic nucleus signal; note the increase in
background activity, with high amplitude irregular firing.

After identification of the STN borders and depth by the MER, we started high frequency
macrostimulation. The aim of the stimulation was to confirm the optimal target, which provides
adequate control of the parkinsonian symptoms (most identifiable is the tremor), with no undesirable
effects from stimulation below 4 V.

We tried to minimize the number of the tracks used for recording and stimulation to reach the
STN as possible (Figure 6). The maximum number of tracks we used for a single side target was three
(Figure 8).
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Figure 8. Fluoroscopic confirmation of the electrode position showing (A) a second microelectrode
is inserted posterior to the original one due to suboptimal subthalamic nucleus (STN) signal during
mapping along the original trajectory; (B) the final position of the deep brain stimulation (DBS)
electrode in the new posterior trajectory.

Once we reached our desired target, we removed the microelectrode and replaced it with a
standard four contact (0–3) deep brain stimulation electrode (Medtronic DBS lead 3389). Generally, we
placed the deepest electrode contact (0) at or just beyond the target point. Then, we repeated the testing
using this electrode in order to confirm the reproducibility of the beneficial effects and high thresholds
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for the undesirable effects (Figures 6 and 8). We locked the electrode in place using a Stimloc device
(Medtronic, Minneapolis, MN, USA). Then, the same procedure was repeated again for the opposite
side electrode.

After removal of the stereotactic frame, the patient was transferred to the intensive care unit.
Upon arrival, all patients had a CT scan of the head to rule out the presence of intracerebral hemorrhage.
They all had an MRI of the brain in the same day of surgery or the next day to check the position of the
electrodes prior to discharge home.

The patient returned to hospital after one week for the second stage, in which the implantable
pulse generator (IPG) was implanted under general anesthesia.

3.2. Postoperative Calculation of the Active Contact Coordinates

Postoperative MRI images of the patients were loaded to the Medtronic Stealth station and the
Framelink stereotactic software was used to perform fusion of the pre and the postoperative MRI
images. This allowed us to get the coordinates of the active DBS electrode in relation to the mid
commissural point (MCP). The first step after image fusion was to identify the tip of the DBS electrode.
We chose a point at the center of the hypointense signal representing the tip of the electrode in all
the three orthogonal planes and we marked it as our target. Then, we identified and marked the
entry point of the electrode into the brain. The computer software then was able to draw a trajectory
overlapping the electrode’s pathway through the brain. Then, using a probe eye view we could
move along this trajectory from the distal tip upwards. We moved by 0.25 mm increments until we
reached the predetermined position of the active contact and we got its coordinates in relation to the
MCP coordinates.

As all our patients were followed up for at least a period of 6 months, in our study, we collected
the data of the stimulating electrodes combinations that gave them optimal clinical response and no
undesirable effects at the lowest stimulation voltage. The Medtronic 3389 electrode which we used has
four contacts that can be named 0, 1, 2, 3 (or 4, 5, 6, 7 or 8, 9, 10, 11) with contacts 0, 4 or 8 being the
most distal and they are located 1.5 mm proximal to the tip of the electrode (Figure 9). The contacts are
1.5 mm in length and are separated by 0.5 mm intervals. We used a previously published methodology
to calculate the coordinates of the active contact [23,24]. The midpoint of the first contact (0, 4, or 8) is
located 2.25 mm cranial to the tip of the electrode, the midpoints of the second contact (1, 5, or 9) is
located 4.25 mm cranial to the tip, the midpoint of the third contact (2, 6, or 10) is located 6.25 mm
cranial to the tip, and the midpoint of the fourth contact (3, 7, or 11) is located 8.25 mm cranial to
the tip. If the patient had a double monopolar electrodes combination, we chose our target to be the
midpoint between the two cathodes. If he had a bipolar combination, we chose the cathode as our
target [23,24].
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Figure 9. An illustration showing the geometry of the distal end of the 3389 deep brain stimulation
(DBS) electrode model (Medtronic, Minneapolis, MN, USA).

We also calculated X coordinate of the lateral RN border, Y coordinate of the anterior RN border,
and Z coordinate of the superior RN border to compare them with X, Y, and Z coordinates of the active
contact respectively.
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3.3. Data Processing and Statistical Analysis

The final active contact coordinates, being confirmed intra-operatively in all the patients as the
STN functional target, and with documented postoperative beneficial clinical effect, were compared to
the coordinates obtained by the preoperative indirect atlas based calculations and to those obtained
by direct visualization. All coordinates were recorded based on the relationships of the target to
the MCP, and all the distances were measured in millimeters. Data were initially recorded using
a Microsoft Excel work sheet. We subtracted X, Y, and Z of the final active electrode coordinates
from the corresponding X, Y, and Z of direct and indirect STN coordinates. We also calculated the
distances between X coordinate of the lateral RN border, Y coordinate of the anterior RN border, and
Z coordinate of the superior RN border and the final coordinates. We also calculated the Euclidean
distances between the final active contact coordinates and the preoperative direct and indirect targets
coordinates in three dimensions. The Euclidean distance is the “ordinary” (i.e., straight-line) distance
between two points (p and q) in the Euclidean space. With this distance, the Euclidean space becomes
a metric space. In a three-dimensional system with p at (p1, p2, p3) and q at (q1, q2, q3). The Euclidean
distance is calculated by using the formula [d(p,q) =

√
(p1 − q1)2 + (p2 − q3)2 + (p3 − q3)2].

We coded, tabulated, and statistically analyzed our data using the IBM SPSS statistics software
version 22.0 (IBM Corp., Chicago, IL, USA). Descriptive statistics were done for quantitative data
as minimum & maximum of the range, mean ± SD (standard deviation), median, and confidence
interval (CI) while we calculated numbers and percentages for qualitative data, as well as well as
95% confidence interval for both. Inferential analyses were done using the one-sample t-test and the
paired t-test. The null hypothesis was that there is no difference between the direct, the indirect STN
targets, the borders of RN, and the final electrode coordinates. The level of significance was taken at
p-value < 0.05.

4. Results

The most commonly used electrode contacts for stimulation were the second (1, 5, 9) and the third
contacts (2, 6, 10), and each of them was used in used in 15 targets (32.6%). The most commonly used
double monopolar combination was between the second and the third contact (N = 4, 8.7%) (Figure 10).
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Figure 10. The distribution of the active contacts used as the final targets.

4.1. X Coordinates

The mean value of X coordinate of the final active contact was 11.7 mm lateral to MCP, with SD of
1.5 mm, median of 11.5, range 8.2–16.0 mm, and 95% CI of 11.2–12.2 mm (Figure 11). Comparison of
the direct X coordinate to the final X coordinate showed no statistically significant difference with the
mean value of the difference (X direct-X final) is−0.2 mm (95% CI−0.7–0.2 mm) (Table 1). The number
of the direct X coordinates that lie within 1 mm lateral and 1 mm medial to the final X coordinates
was 24/46 (52.2%, 95% CI = 37.2%–67.2%) (Table 2). Comparison of the indirect X coordinate to
the final X coordinate also showed no statistically significant difference with the mean value of the
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difference (X indirect-X final) was 0.3 mm (95% CI = −0.2–0.8 mm). The number of the indirect
X coordinates that lie within 1 mm lateral and 1 mm medial to the final X coordinates was 23/46 (50.0%,
95% CI = 35.0%–65.0%) (Table 2).
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Figure 11. The X coordinates in relation to the mid-commissural point (MCP).

Table 1. The differences between the direct and indirect coordinates of STN from the final active
electrode coordinates.

Method Directions Mean ± SD
(mm)

Variance
(mm)

Range
(mm)

95% CI
(mm) p

Direct

X −0.2 ± 1.5 2.2 −2.9–3.0 −0.7–0.2 0.271
Y −0.4 ± 1.9 3.6 −4.9–6.5 −0.9–0.2 0.205
Z −0.1 ± 1.7 3.0 −3.5–4.6 −0.6–0.4 0.650

ED 2.7 ± 1.2 1.5 0.4–6.8 2.4–3.1 <0.001 *

Indirect

X 0.3 ± 1.5 2.3 −4.0–3.8 −0.2–0.8 0.186
Y 0.6 ± 1.5 2.3 −3.2–3.0 0.1–1.0 0.014 *
Z −0.1 ± 1.7 2.9 −3.0–4.5 −0.6–0.4 0.810

ED 2.6 ± 0.9 0.8 0.9–4.5 2.4–2.9 <0.001 *

Total = 46 targets, SD: standard deviation, CI: Confidence interval, p: p-value of one sample t-test, ED:
Euclidean distance, * Significant: Differences are direct/indirect—final: Positive-X = lateral to the final X,
Negative-X = medial to the final X; Positive-Y = posterior to the final Y, Negative-Y = anterior to the final Y;
Positive-Z = inferior to the final Z, Negative-Z = superior to the final Z.

Table 2. Numbers and percentages of the coordinates of the direct, indirect and RN borders within
±1.0 mm of the final targets.

Method Coordinates N (%) 95% CI

Direct

X 24 (52.2%) 37.2%–67.2%
Y 26 (56.5%) 41.6%–71.4%
Z 22 (47.8%) 32.8%–62.8%

ED 1 (2.2%) 0.0%–6.6%

Indirect

X 23 (50.0%) 35.0%–65.0%
Y 19 (41.3%) 26.5%–56.1%
Z 22 (47.8%) 32.8%–62.8%

ED 2 (4.3%) 0.0%–10.5%

Y coordinate of the anterior RN border 22 (47.8%) 32.8%–62.8%

Total = 46 targets, CI: Confidence interval, ED: Euclidean distance, RN: red nucleus.
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The mean value of X coordinate of the lateral RN border was 8.3 mm lateral to MCP (SD of
1.1 mm, median of 8.2, range 6.0–11.9 mm). The mean distance between X coordinates of the lateral
RN border and X coordinate of the final target (X of the RN-X final) was 3.4 mm on the medial side
(95% CI −4.0–−2.9 mm, p < 0.001) (Table 3).

Table 3. The distances between the different RN borders and the final active electrode coordinates.

Coordinates Mean ± SD
(mm)

Variance
(mm)

Range
(mm)

95% CI
(mm) p

X of the lateral RN border −3.4 ± 1.8 3.3 −6.5–1.0 −4.0–−2.9 <0.001 *
Y of the anterior RN border −0.2 ± 1.9 3.7 −5.2–4.1 −0.7–0.4 0.562
Z of the superior RN border −3.5 ± 1.8 3.3 −6.8–1.0 −4.0–−2.9 <0.001 *

Total = 46 targets, SD: standard deviation, CI: Confidence interval, p: p-value of one sample t-test, * Significant:
Differences are direct/indirect—final: Positive-X = lateral to the final X, Negative-X = medial to the final X;
Positive-Y = posterior to the final Y, Negative-Y = anterior to the final Y; Positive-Z = inferior to the final Z,
Negative-Z = superior to the final Z.

4.2. Y Coordinates

The mean value of Y coordinate of the final active contact is 2.4 mm posterior to MCP (SD of
1.5 mm, median of 2.1, range 0–6.2 mm, 95% CI 2.0–2.9 mm) (Figure 12). Comparison of the direct
Y coordinate to the final Y coordinate showed no statistically significant difference with the mean value
of the difference (Y direct-Y final) was −0.4 mm (95% CI −0.9–0.2 mm) (Figure 13). The number of the
direct Y coordinates that lie within 1 mm anterior and 1 mm posterior to the final Y coordinates was
26/46 (56.5%, 95% CI = 41.6%–71.4%). Comparison of the indirect Y coordinate to the final Y coordinate
showed a statistically significant difference with the mean value of the difference (Y indirect-Y final)
was 0.6 mm (95% CI 0.1–1.0 mm, p = 0.014). The number of the indirect Y coordinates that lie within
1 mm anterior and 1 mm posterior to the final Y coordinates was 19/46 (41.3%, 95% CI = 26.5%–56.1%).
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Figure 12. The Y coordinates in relation to the mid-commissural point (MCP).

The mean value of Y coordinate of the anterior RN border was 2.3 mm lateral to MCP (SD of
1.1 mm, range 0–4.7 mm). There was no statistically significant difference between Y coordinate of the
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anterior RN border and Y coordinate of the final target with the mean value of the difference (Y of
RN-Y final) was −0.2 mm (95% CI −0.7–0.4 mm. p = 0.562).
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4.3. Z Coordinates

The mean value of Z coordinate of the final active contact is 6.1 mm inferior to MCP (SD of
1.7 mm, median of 6.1, range 1.5–9.0 mm, 95% CI 5.6–6.6 mm) (Figure 14). Comparison of the direct
Z coordinate to the final Z coordinate showed no statistically significant difference with the mean
value of the difference (Z direct-Z final) was −0.1 mm(95% CI −0.6–0.4 mm). The number of the direct
Z coordinates that lie within 1 mm superior and 1 mm inferior to the final Z coordinates is 22/46
(47.8%, 95% CI = 32.8%–62.8%). Comparison of the indirect Z coordinate to the final Z coordinate
showed no statistically significant difference with the mean value of the difference (Z indirect-Z final)
was −0.1 mm (95% CI −0.6–0.4 mm). The number of the indirect Z coordinates that lie within 1 mm
superior and 1 mm inferior to the final Z coordinates is 22/46 (47.8%, 95% CI = 32.8%–62.8%).
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Figure 14. The Z coordinates in relation to the mid-commissural point (MCP).
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The mean value of Z coordinates of the superior RN border was 2.6 mm inferior to MCP (SD of
0.9 mm, range 1.0–4.2 mm). The mean distance of Z coordinates of the superior border of RN superior
to the STN and Z coordinates of the final contact (Z of RN-Z final) was −3.5 mm (95% confidence
interval −4.0–−2.9 mm, p < 0.001) (Figure 15).
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4.4. The Euclidean Distances

The Euclidean distance (ED) between the final position of the active contact and the preoperative
planned position of STN by the direct visualization method was found to be statistically significant with
a mean of 2.7 mm (95% confidence interval 2.4–3.1 mm, and p < 0.001). The number of the direct STN
targets that lie within 1 mm in any direction of the final targets is only 1/46 (2.2%, 95% CI = 0%–6.6%).

ED between the final position of the active contact and the preoperative planned position of STN
by indirect method was found to be statistically significant with a mean of 2.6 mm (95% confidence
interval 2.4–2.9 mm, and p < 0.001). The number of the indirect STN targets that lie within 1 mm in any
direction of the final targets was only 2/46 (4.3%, 95% CI = 0%–10.5%).

There was no statistically significant difference in ED of the final active contact to the direct target
vs. the distance of the final active contact to the indirect target with the mean difference 0.08 mm
(95% confidence interval −0.3–0.4 mm, and p = 0.674).

5. Discussion

In our practice, we use both the direct and the indirect methods for the preoperative planning.
However, it is not unusual to move the electrode into different coordinates of STN based on
intraoperative neurophysiological findings. This may happen when our planned target does not exhibit
an adequate pattern of the STN signal on MER or it turns out to be too close to the nearby structures
causing undesired effects. Therefore, we may move the electrode position a few millimeters away from
the originally planned one to reach a better functioning stimulation site (Figure 8). Hamani et al. [25]
compared the coordinates of the different borders of STN as identified on MRI to the coordinates
identified by MER of STN activity. In their results, 15 tracks (52% of the tracks) had STN-like activity
outside the identified borders of STN on MRI (mostly by 1 mm) [25].
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This study comes as a continuation of our previous efforts to define the optimal method to
calculate the coordinates for the different DBS procedures [6,26]. We considered the final position of
the active electrode contact on the postoperative MRI as the “true functional stimulation site” or the
“final target”. This final target position is confirmed by the intra-operative MER and the postoperative
improvement of the parkinsonian symptoms. We compared these final coordinates to the initial
coordinates calculated by both the direct and indirect methods. We also studied the relations of the
final functional target coordinates to the coordinates of the different borders of RN in attempt to find
any new relations that can improve the preoperative planning. The reason why we chose RN is its
close proximity to STN, and the fact that the borders of RN are well visualized on MRI even better
than those of STN.

In our results, both the direct X and the indirect X coordinates did not show a statistically
significant difference from the final X coordinate. These results confirm that X of the final functional
target of STN corresponds to X of the anatomical center calculated by either of the two methods.
The difference between the direct X coordinate calculation and the final X had smaller mean, variance,
and narrower range, and CI than the difference between the indirect and the final X (Table 1). The mean
value of X coordinate of the final active contact was 11.7 mm lateral to MCP with 95% CI = 11.2–12.2 mm.
The mean distance between X coordinates of the lateral RN border and X coordinate of the final target
(X of RN-X final) was 3.4 mm on the medial side, with 95% CI = 4.0–2.9 mm. Accordingly, we suggest
for preoperative calculation of X coordinate to choose our X at the center of the hypointensity range
representing STN on an axial MRI image, taking into consideration that most of the functional STN
targets lie 11–12.5 mm lateral to MCP, and 3–4 mm lateral to the lateral RN border.

In regard to Y coordinate, comparison of the direct Y coordinate to the final Y coordinate showed
no statistically significant difference. In addition, there was no statistically significant difference
between the Y coordinate of the anterior RN border and the Y coordinate of the active contact.
Meanwhile, a comparison of the indirect Y coordinate to the final Y coordinate showed a statistically
significant difference. These results confirm that Y of the final functional target of the STN corresponds
to Y of the anatomical center calculated by direct visualization on MRI at the extension of a straight
line drawn at the anterior margin of the RN, as suggested by Bejjani et al. in 2000 [7]. The mean value
of the Y coordinate of the final target was 2.4 mm posterior to the MCP with 95% CI = 2.0–2.9 mm.
Accordingly, we suggest for the preoperative calculation of the Y coordinate to choose our Y at the
center of the hypointensity range representing the STN in an axial MRI image. During the calculation,
we should take into consideration that most of the functional STN targets lie 2–3 mm posterior to the
MCP, and at the same Y of a straight line drawn at the anterior margin of the RN.

In regard to the Z coordinate, both the direct Z and the indirect Z coordinates did not show a
statistically significant difference from the final Z coordinate. These results confirm that Z of the final
functional target of STN corresponds to the Z of the anatomical center calculated by either of the
two methods. The mean value of the Z coordinate of the final active contact was 6.1 mm inferior
to MCP with a 95% CI = 5.6–6.6 mm. The mean distance of the Z coordinate of the superior RN
border and the Z coordinate of the final contact (Z of RN-Z final) was 3.5 mm more superior, with the
95% CI = 4.0–2.9 mm. Accordingly, we suggest for the preoperative calculation of the Z coordinate
to choose our Z at the center of the hypointensity representing STN on coronal MRI, taking into
consideration that most of the STN functional targets lie between 5.5 and 6.6 mm inferior to MCP, and
3–4 mm inferior to the superior RN border.

The results of this study show that both the indirect and the direct methods of localization
correspond largely to the final functional target in calculating X and Z coordinates, with the direct
visualization being more accurate. Nevertheless, the indirect Y coordinate was significantly posterior to
Y of the final optimal target. Ashkan et al. [13] calculated the indirect STN coordinates at 12 mm lateral,
2 mm posterior, and 4 mm inferior to MCP. They compared these indirect coordinates with those
obtained by direct visualization. Their results showed that, on average, the directly visualized target
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compared to the atlas target was 1.7 mm more medial (p < 0.0001), 0.7 mm more anterior (p < 0.001)
and 0.7 mm more ventral (p < 0.0001).

In our indirect calculations, we used the Z coordinate at 6 mm inferior to MCP. Our results showed
that there was no significant difference between this Z coordinate and the final Z value. This is different
from other studies that used other values of Z coordinates such as 3 [27], 4 [13,28–31], or 5 [16] mm
inferior to MCP. These studies found a significant difference in the Z coordinate calculation between
the indirect and the direct [16,31] targeting or between the indirect and the final target [27,30].

To our best knowledge, no studies calculated the difference in the distance between the final
STN coordinates and the coordinates of the different RN borders. Andrade-Souza et al. [27] used
coordinates derived from the stereotactic atlases to preoperatively plan STN targets based on the
coordinates of different RN borders. They defined an X coordinate 3 mm lateral to the lateral
RN border, a Y coordinate at the same Y of the anterior RN border, and a Z coordinate as 2 mm
inferior to the superior RN border. They calculated the mean ± SD of the differences between the
preoperative RN based calculations and the final targets; X = 1.82 ± 1.38 mm, Y = 1.62 ± 1.05 mm, and
Z = 1.37± 0.93 mm. Houshmand et al. [16] used the same parameters used by Andrade-Souza et al. [27]
to calculate STN target coordinates based on the coordinates of different RN borders. They calculated
the distances between different RN borders and the STN anatomical center seen on 3T MRI. They
calculated the mean ± SD of the differences between the preoperative RN based calculation and
the final targets; X = 0.67 ± 0.45 mm, Y = 0.77 ± 0.54 mm, and Z = 0.56 ± 0.40 mm. Both of those
studies found that the RN base targeting was closer to the optimal target, than the direct or the indirect
calculations. Starr et al. [29] considered the center of the DBS electrode array in the postoperative
MRI as the final target, and they calculated the mean distance between its coordinates and X and
Y coordinates of the center of RN (X = 6.5 mm lateral, Y = 3.5 mm anterior).

Despite the great similarities of the final coordinates to that of the preoperatively planned direct
and indirect coordinates, the Euclidean distances between the final targets and both the direct and
indirect targets were found to have statistically significantly differences. This in addition to the
wide range of values of the different coordinates of the final targets in relation to MCP (X = 8.2–16.0,
Y = 0.0–6.2, Z = 1.5–9.0) exclude the possibility of depending on the preoperative planning as the sole
method of targeting STN. We believe that the intra-operative physiological and clinical confirmation
of the target is crucial in the final position confirmation. Still, initial anatomical and radiological
planning is also essential in target selection. Accurate preoperative planning would decrease the
intra-operative time needed for MER, and the number of microelectrodes tracks needed to reach the
target, and subsequently prevent additional complication. This fact is supported by our experience,
as our average number of MER tracks was 1.4 tracks.

6. Conclusions

The functional target of STN corresponds to the anatomical center of STN as seen in the three
orthogonal planes of MRI images. During the preoperative calculation of the STN target, we
prefer using the direct method, and taking into consideration that most of the functional targets
are located: (1) 11–12.5 mm lateral to MCP, and 3–4 mm lateral to the lateral RN border; (2) 2–3 mm
posterior to MCP, and at the same Y of a straight line drawn at the anterior margin of the red nuclei;
(3) 5.5–6.6 mm inferior to MCP, and 3–4 mm inferior to the superior RN border. It seems that the
preoperative anatomical/radiological planning cannot be used as the sole method of targeting the STN,
intra-operative physiological and clinical confirmation is crucial in the final position confirmation.
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