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Abstract: Even with state-of-the-art techniques there are individuals whose paralysis prevents them
from communicating with others. Brain–Computer-Interfaces (BCI) aim to utilize brain waves to
construct a voice for those whose needs remain unmet. In this paper we compare the efficacy of
a BCI input signal, code-VEP via Electroencephalography, against eye gaze tracking, among the
most popular modalities used. These results, on healthy individuals without paralysis, suggest
that while eye tracking works well for some, it does not work well or at all for others; the latter
group includes individuals with corrected vision or those who squint their eyes unintentionally
while focusing on a task. It is also evident that the performance of the interface is more sensitive to
head/body movements when eye tracking is used as the input modality, compared to using c-VEP.
Sensitivity to head/body movement could be better in eye tracking systems which are tracking
the head or mounted on the face and are designed specifically as assistive devices. The sample
interface developed for this assessment has the same reaction time when driven with c-VEP or with
eye tracking; approximately 0.5–1 second is needed to make a selection among the four options
simultaneously presented. Factors, such as system reaction time and robustness play a crucial role in
participant preferences.

Keywords: SSVEP; eye tracking; c-VEP; EEG; BCI

1. Introduction

Assistive devices play an important role in the daily life of the individuals with disabilities.
These devices can improve the quality of life by a great margin. However, the overall performance
of these devices affects their usability. Factors such as, information transfer rate (ITR), error rate,
reliability, robustness and supported applications are among the most considered factors determining
how effective these devices are.

Delivering viable communication often requires customizing the interface to an individual’s
unique abilities. Unfortunately, these considerations are among the most difficult to consider in the
research setting where such devices are designed. This is true of the visual system, a popular input
modality choice. The idea of interpreting the gaze position as the intended point has been used in
many eye-tracking based interfaces. However, due to natural rapid saccade and fixation movements
of the human eye, proper tracking requires complex real-time image processing, challenged by factors
such as eyeglasses, contact lenses, and scars from surgeries, limits how the position of gaze can be
used as a reliable indicator of human intent in assistive technologies.

Non-invasive EEG-based brain interfaces, especially designs that exploit visually evoked
potentials (VEPs) have attracted increasing attention as an alternative physiological input modality
(considering the fact that many neuromotor disabilities also lead to poor gaze control and visual acuity).
The visual cortex response to flashing lights manifests in EEG as signals with relatively large
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amplitudes, and with periodic flashes, large-amplitude waves called steady state VEPs (SSVEPs)
can be evoked. E. Sutter proposed using pseudorandom on/off sequences to flash multiple stimuli to
induce visual cortex activity that generates EEG to track the location of gaze with high accuracy [1,2].
Bin & Gao also took a similar approach in using c-VEP to build a BCI system [3]. With the advancements
in the technology, EEG acquisition systems are becoming more affordable and practical. The setup
time is decreasing by using active electrodes instead of the passive electrodes and while still quite new,
soon dry electrodes would decrease the setup time even more. Although these systems are still in the
research settings, EEG-based brain interfaces are becoming more attractive and capable.

There has been a debate, that if the individual can control their eyes , would using an eye tracker
be cheaper, less irritating and easier compared to an EEG-based brain interface. For individuals without
gaze control eye trackers are of no use. It has been shown that it is possible to shift the visual attention
without shifting the gaze [4–7]. This phenomenon is called covert attention. SSVEP responses under
covert condition have been studied and the separability has been detected [8–10]. Although, in such
conditions a performance decrease is expected. Furthermore, separation of overlapping SSVEP stimuli
is also shown to be possible [11], which could also be used to overcome the lack of eye gaze control.
A study by Golla on the individuals with cerebellar disorders [7], unveiled that the contributions of the
cerebellum to attention are confined to overt manifestations based on goal-directed eye movements.
They found that saccadic dysmetria did not predict performance in the covert attention paradigm.
These findings suggest that brain interfaces which only utilize shifts in visual attention could be an
attractive alternative to gaze control devices [12,13].

Generally speaking, even among individuals capable of controlling their gaze, both input
modalities have their drawbacks. Eye trackers might not be very responsive for individuals with
corrected vision, especially individuals wearing eye glasses. Working based on image analysis
and dealing with rapid eye movements, eye trackers usually require expensive video capture and
processing equipment [14,15]. Non-invasive VEP-based brain interfaces using visual flickering stimuli
could cause irritation and fatigue and require setting up electrodes. Considering the low signal to
noise ratio of EEG signals, these systems are also sensitive to environmental noise and equipment cost
although decreasing is still on high. Additionally, combining the two input modalities to overcome the
shortcomings of each in a hybrid BCI system has gained interest and shown to have the potential to
increase the overall performance [16,17].

This study compares the two input modalities. In addition to communication efficacy, we measure
user comfort and setup considerations, both of which are essential considerations when a user selects
a device. A few comparisons between different brain responses and eye tracking have been done
in the past. These studies were more focused on the P300 and SSVEP responses [18–20]. Factors
such as system reaction time can affect the user experience and preferences. In this study, we utilize
one of our applications, FlashPlayTM, using c-VEP-based EEG stimulation and eye tracking as input
modalities [21]. The system can provide more applications such as typing, navigation and object
manipulation with the same interface, for this study, we have chosen FlashPlayTM, a simple virtual
game, to decrease the setup time [22].

2. User Interface & Application

We describe the user interface, which can be considered in three parts: Stimuli, Application and
Feedback (see Figure 1). The checkerboard corners serve as the stimuli to provide the flickering pattern,
alternating red and green in time for c-VEP input with no flickering for eye tracker input. Their position
is chosen to provide maximum distance between the visual stimuli to mitigate inter stimuli interference.
The area in the center of the screen is reserved for visualizing the Application and the Feedback combined
or separated where applicable.

The system provides two separate feedbacks. First is the immediate feedback, provided by a
yellow colored frame around the selected or targeted stimulus. Second is the application specific
feedback. In some applications, i.e., the Maze game, this feedback is provided by an action



Brain Sci. 2018, 8, 130 3 of 18

performed by the indicator icon in response to the selected stimulus. In other applications, such
as FlashTypeTM [23], this feedback is provided by a frame around the selected icon, symbol or text and
shown in the Feedback section by printing the chosen target.

Figure 1. An example of the screen with four stimuli. The blue rectangle in the center shows the area
reserved for visualizing the applications. The orange rectangle shows the area reserved to provide the
visual feedback. The purple rectangles show the area in which the stimuli labels appear. The yellow
frame around the lower left checkerboard is the indication of that checkerboard being the target in this
screen shot.

One of the main features of this interface is its adaptability to different applications and
input modalities. Having accurate, fast and reliable responses to the specific visual stimuli, the system is
highly adaptable and can be used in different applications. This adaptability is achieved by utilizing the
provided stimuli in different roles. Stimuli roles are presented by stimuli labels shown beneath or above
each stimulus.

3. Input Modalities

Both gaze tracking and c-VEP work to estimate the focal point of one’s eyes. Gaze tracking
estimates directly via infrared images of the eyes themselves. Alternatively, c-VEP utilizes a unique
visual stimulation per some fixed set of locations. Gaze is estimated by examining the visual cortex’s
frequency response to estimate the visual stimuli which the user is looking at. The system deduces the
user’s gaze point by utilizing a fixed mapping from stimuli to gaze positions.

We have made every effort possible adjusting the settings such that they are reasonable and fair
for both input modalities to be able to make a just comparison. These settings include the decision
rate, the decision show time between the consecutive decisions, and the area assigned to each stimulus.
Decision rate has been set to 1 Hz. The decision show time, set to two seconds, is the duration the
application will pause after executing a decision and before starting the stimulation for the next decision.
This parameter can be changed based on the user preference, we have found that shorter durations
increase the cognitive load on the participants, especially for the novice users. The stimuli area and
location are kept the same for both input modalities. Under this design, both input modalities are
bounded to the same theoretical ITR, however, as stated by Yuan [24,25], ITR is not an accurate measure
of online BCI or assistive technologies due to assumptions such as equal decision probability for all
the options, fixed decision rate and uniform error probability.

From the user perspective, there are two main differences between the stimuli for the two
input modalities. Firstly, stimuli areas are presented by checkerboards for both input modalities, but,
due ot tiring and irritating flickering effects, flickering is disabled when the eye tracker is used as the
input modality. Secondly, when the eye tracker is used as the input modality, a blue circular frame
presenting the estimated gaze point, is presented to the user. Currently with this BCI system estimating
user gaze point using EEG in real-time is not possible, but, the eye tracker can provide gaze point
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estimates in almost real-time. The gaze point presentation, provides the user with a feedback. In this
study, aiming for more accurate eye tracker calibrations with the head fixed eye tracker, we allowed
users to make slight head movements, adjusting their gaze point to the presented estimated gaze point.
While this plays an advantage towards the eye tracker and might not be possible for the individuals
with severe disabilities, we found not allowing this very frustrating for the participants.

3.1. Code Visually Evoked Potentials

Visual Evoked Potentials (VEPs) are the responses of the visual cortex to a flash of light.
Historically, flashing at some regular frequency (i.e., Steady State Visually Evoked Potential) has
been used as it provides robust signal generation and relatively simple EEG classification schemes.
Code Visually Evoked Potentials (c-VEPs) are an alternate VEP which seek to improve performance
beyond SSVEPs [26]. Instead of a consistent frequency, a pseudorandom binary sequence of On/Off is
used for user stimulation. The On and Off states are defined based on the stimulation pattern used.
For simple symbol/LED, it is just turning the symbol/LED on and off, while for a reversed color
checkerboard pattern, one pattern is assigned to the On state and the reverse pattern is assigned to
the Off state. Figure 2, shows the stimulus pattern for the On and Off states as well as the stimuli
arrangement on the screen. Here we use a c-VEP-based stimulation method in which m-sequences [27],
a special category of pseudorandom binary sequences, are used as the control bit sequences. Each
stimulus is assigned a unique m-sequence of length 63 bits to control its flashing pattern. These
sequences have maximum Hamming distance with their lags and their pairwise distance is large.
Bit presentation rate of 110 Hz was used to present the stimuli. This combination of the control
bit sequence length and bit presentation rate results in trails of 0.57 s long. A trial is a complete
presentation of the corresponding patterns in the control bit sequence. For such stimuli , different
parameters are important, such as the bit presentation rate, control bit sequence length, stimulus size,
color, placement and the size of the blocks used in each checkerboard. The parameters in this study
are set based on the previous studies [26,28].

(a) (b) (c)

Figure 2. (a) The checkerboard pattern corresponding to the Off state, bit “0” in the control bit sequence;
(b) The checkerboard pattern corresponding to the On state, bit “1” in the control bit sequence, and
(c) The target arrangement of the stimuli [29].

In this study, every stimulus consists of a 5× 5 square checkerboard and its reversed pattern.
The size of every stimulus is chosen as 1/3 of the screen height. Having a wide screen layout, the
specific size used, provides a well-sized stimulus, keeping the inter-stimulus distance equal to at
least one stimulus. In addition, each block being 1∼2 degrees of visual field usually provides a
strong response [30]. Blocks in each checkerboard are flipping their colors between Red and Green
to provide stronger responses and less irritation simultaneously, the specific choice of color pairs
was made based on the results of a previous study [29]. The same study shows that the black
and white color pair would provide nearly similar results, useful for individuals who might be
colorblind. Flipping between reversed color checkerboards provides a constant illumination, in
addition every block in the checkerboard is always visible resulting in stimulation for both On and Off
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states. Additionally, m-sequences having an almost equal number of ones and zeros play a significant
role in balancing the stimuli illumination at each time instance. The number of ones and zeros in any
m-sequence is only different by one, meaning that using an m-sequence for stimulation results in
showing the two patterns almost equal number of times per trial, in case of 63 bit long m-sequences
the ratio of the number of zeros over the number of ones is 0.96875.

A g.USBAMP bio-signal amplifier , g.GammaBox and a single g.Butterfly electrode from g.Tec
(Graz, Austria) is used for EEG data acquisition [31]. The sampling rate of 256 Hz and a single active
electrode placed on top of the occipital lobe, Oz, according to the 10–20 standard has been used.
A notch filter placed at 60 Hz was used to eliminate the AC power line noise. EEG signal was then
filtered using a band-pass FIR filter (2.5 Hz–100 Hz). Use of a single channel has been shown to be
adequate to provide highly accurate decisions and ease of use at the same time [26,28].

Definitions below are used to explain c-VEP stimuli.

• Trial, is the presentation of all the patterns corresponding to one period of the designated control
bit sequence for each stimulus.

• Epoch, consists of one or several trials.

The developed c-VEP interface presents all the stimuli to the user simultaneously. Control bit
sequences corresponding to every stimulus have the same number of bits. Using a common bit
presentation rate, this results in trials of the same length for all the stimuli. The system presents the
stimuli trials time-locked to each other so that they start and end at the same time. The onset of the
trials is marked on the EEG signals using a hardware trigger provided using the parallel port and the
digital input channel on the amplifier. Participants are required to behave consistently while using
the system. In other words, since the system uses the gathered data from a user during a Calibration
session to classify user intent, it is important that the users continue the same strategy they were
following during the Calibration while using the system to do different tasks. This consistency plays a
key role in keeping a high performance.

During every epoch, the stimuli will present one or more trials. Once the classifier reaches the
predefined confidence threshold, stimulation stops and the system reacts to the detected command.
Once the action corresponding to the detected command is complete, the user is given a short period
of time to decide on the next command and the stimulation starts again. The presentation of different
trials in an epoch is not distinguishable from the user perspective. In other words, the user experiences
a series of different checkerboard patterns presented until a decision is made presented and presented
on the screen.

3.2. Eye Tracking

An Arrington Research USB220 binocular head fixed eye tracker with ViewPoint EyeTracker software,
from Arrington Research, Scottsdale, AZ, USA, has been used [32]. The sampling rate of the eye tracker
is 220 Hz on average. Eye tracking is done on both eyes using two independent cameras pointing at
the user’s eye from approximately 7 cm. Working based on image processing principles, the sampling
rate is affected by a few factors such as the processing speed and the processing load on the system,
hence, it is not constant. Figure 3 illustrates the eye tracker and display assembly.

Using eye tracking as input modality is a two-step process. The first step is to find the gaze point
accurately, and the second step is to determine if the user has an intent over that point. Finding the gaze
point can be done by several methods [33], some of which are proprietary to the producer company.
In this study, the ViewPoint EyeTracker software from Arrington Research with a USB220 Binocular
eye tracker provides the gaze point estimates.
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Figure 3. Experiment setup showing the head-fixed binocular eye tracker.

4. Calibration

Calibration is a session during which, labeled data is gathered from the user for the corresponding
input modality. Depending on the stability and consistency of the Calibration data, there might be a
need to repeat the Calibration session when the previously collected Calibration data is not performing
well enough. However, the stability of the Calibration data depends on the input modality and might
also differ from one individual to the other. In this study, Calibration sessions for eye tracker and the
EEG-based input modalities are collected separately.

4.1. c-VEP

The Calibration for c-VEP input modality requires collecting enough responses for every stimulus
to build a template response. The designed Calibration, presents all the stimuli simultaneously to the
user. Twenty epochs are presented to the user in each Calibration session. While the order of the epochs
is chosen randomly at run-time, 5 epochs are presented for each stimulus. Each epoch consists of
12 trials during the Calibration session. Discarding the first trial to decrease the visual cue effects, the
above scheme results in 50 sample trial responses to each stimulus [26]. Taking the median over the
time samples gathered for the trials of each stimulus results in a robust reliable template response [34].

The Calibration data collected for the c-VEP-based input modality is fairly stable and consistent
for every participant. Although, different strategies can be used initially, to optimize the generated
responses of the visual cortex for each participant, once a good Calibration data is collected it can be
used for an extended amount of time, months for example. The main difference between different
strategies is the point of focus on the stimulus. Some examples are, the center or the inner or the
outer block on the diagonal pointing towards the center of the screen on every stimulus. In addition,
for some users looking at the edge of the block produces stronger responses compared to looking at
the center of the same block. The quality of the Calibration data depends mainly on factors such as
electrode placement and user behavior. As long as these factors are kept fairly constant, the same
Calibration data can be used. A more controlled study is required to estimate the overall statistics,
we have been able to successfully use a Calibration data for a participant after a period of 12 months.

4.2. Eye Tracker

Calibrating the eye tracker starts with adjusting participant’s head in the head fixed setup using
the chin holder, the nose bracket, and the side holders. Next, is setting up the cameras and their
corresponding infrared LEDs to point at the participant’s eyes. The process continuities with adjusting
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the camera lens opening and focus for each eye and some software settings, such as the distance
between the participant’s eyes and the screen and the eye frame placed around the eye image coming
from the cameras. Once all the hardware and software settings are adjusted, it is the participant’s
turn to follow a set of calibration points on the screen. The number of calibration points is adjustable.
For this study, we have used 9 calibration points distributed in a 3× 3 matrix covering all the corners
and the center points on the screen. Using more calibration points usually provide more accurate
calibration, but, it also requires longer calibration time. Nine calibration points usually provide a good
balance between accuracy and calibration time. After the calibration, a collection of estimated gaze
points is provided to the operator, which can describe how well the points are estimated. For example,
after performing the calibration on a rectangular screen, the estimated gaze points should also present
a rectangle with the same side ratios. If estimated Calibration gaze points are not representing the
screen shape accurately, the calibration process should be repeated for all the points or for selected
points for whom the calibration is not accurate. Next, the participant is asked by the operator to look at
the four corners of the screen to make sure the estimated gaze points presented by ViewPoint software
are matching closely to the actual participant gaze point.

5. Classification

Different classification methods have been used to classify user intent based on the input modalities.

5.1. c-VEP

User intent classification is done using a two-fold classifier. First using leave one out on the
responses collected during the Calibration session, templates are built and correlation scores are
obtained for every sample response in the Calibration data. Templates for each stimulus are built by
taking the sample median among the time locked samples of trials with the same target. Use of median
as the averaging method, makes the estimation up to 50% more robust to the outliers. [34]

rc
i = tr[xc

t ]t
c
i (1)

Here, rc
i is the correlation score for channel c and the ith stimulus. xc

t represents the EEG response
of channel c during trial t, tc

i represents the template response corresponding to the ith stimulus and
channel c and tr[.] represents the transpose operation.

Although, in the Calibration data, every trail has a single target stimulus, but, the correlation scores
with the other stimuli are also considered. This consideration, models the inter-stimuli interference
from the non-target stimuli and makes the classification more robust. In this study, having four stimuli
results in 1× 4 correlation score vectors. Next, considering EEG as a Gaussian process and using the
correlation scores, class conditional independent multivariate Gaussian densities, P(Xt|set = s), are
estimated for the responses to each stimulus. s represents the stimulus and set represents the stimulus
for epoch e and trial t. The main goal is to estimate the conditional probability of each stimulus
given the EEG evidence, P(set = s|x). Although it is not possible to calculate the probability of the
EEG evidence, but, applying the Bayes’ rule, we can estimate the class conditional probabilities and
maintain the same ratio.

P(set = s|Xt) =
P(Xt|set = s)P(set = s)

P(Xt)
(2)

where Xt = [x1
t , . . . , xNc

t ]. Denominator is the only term in Equation (2) that cannot be estimated,
however, being a common term and not depending on the stimulus there is no need for its value.
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Assuming EEG evidences from different trial are independent, we can calculate the conditional
probability of multiple trials in an epoch as

P(Xe|se = s) =
Nt

∏
t=1

P(Xt|st = s) (3)

where Nt is the number of trials in epoch e. Having 50 samples per stimulus and using only one EEG
channel, there exist enough samples to use the maximum likelihood estimates for the mean and the
covariance of the above densities [35]. There might be a need to collect more trials per stimulus if
using more channels is desired. Collecting more trials translates to longer Calibration sessions which
is not desirable and might not be feasible. However, introducing some structure on the covariance
matrix using methods such as Graphical lasso [36] or using regularization and shrinkage methods
such as Regularized Discriminant Analysis (RDA) [37] may reduce the requirement on the number of
training trials.

Ultimately, we can also consider the information extracted from the context as an independent
source of information and fuse this information with the EEG evidence.

P(se = s|Xe, ωe) =
P(Xe, ωe|se = s)P(se = s)

P(Xe, ωe)

=
P(Xe|se = s)P(se = s|ωe)

P(Xe)
(4)

here, ωe represents the context information while epoch e has been in process. Use of the context
information can boost the classification accuracy as long as the context information is in line with
the user intent. It can also boost the performance by decreasing the probability of the options which
are determined unlikely or infeasible based on the context information. In the absence of the context
information, all the options are simply considered equally probable.

Finally, a maximum a posteriori decision role is employed to choose the stimulus with the highest
posterior probability as the intended stimulus of the epoch.

5.2. Eye Tracking

Several methods can be used for intent detection such as blinking and fixating. Targeting a group
of disabled individuals, intentional blinking would not be a feasible option, leaving the fixation as
a better candidate. In this study, two simultaneous methods have been used, fixation detection by
ViewPoint software, and the effective position of the gaze during the decision period. A natural way
of using an eye tracker is very similar to using a mouse. Gaze point will be used as the location of
the mouse indicator on the screen and the intent detection will act similar to making a left click with
the mouse.

The same four square areas at the four corners of the screen are used as eye tracking stimuli.
To select a stimulus the user has to keep their gaze inside the area assigned to their target stimulus.

Two simultaneous methods have been used to identify the user intent, detecting a fixation point
and the effective position of the gaze during the decision period.

5.2.1. Fixation Based

Fixation is defined as maintaining the gaze at a specific location. A common method to detect fixation
is to monitor the gaze point using a sliding time window. If the gaze point is kept in the predefined area
without rapid movements, then, a fixation point can be estimated. However, parameters such as the area
of the specific location, variations of the gaze point and the duration of time that the gaze has to be kept
constant have a large impact on the fixation estimation quality. ViewPoint calculates fixation as the length
of time that the velocity stays below the saccade velocity criterion. Fixation events are detected using the
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ViewPoint software with a dwell time of one second to match the system parameters and decrease the
number of false positives.

5.2.2. Gaze Based

The position of the gaze changes both rapidly and frequently, especially when an individual
is searching over an area in the visual field. On the other hand, fixating over a point is tiring and
sometimes not feasible when eye movements are not all intentional. Here we propose an intent
detection method solely based on the gaze points during the decision time window. In this method,
wide areas are assigned to the stimuli and only gaze locations are considered, relaxing the fixating
parameters to make things easier for the user. With the decision rate of 1 Hz, the location of the gaze
is monitored over the 1 s period. To estimate a single point as the intended point for each decision
period, there is a need to combine the information gathered from all the gaze point estimates during
that period. Here, the number of samples is about 220 samples per decision. Considering the fast
and sometimes unintentional movements of the eyes, a method, robust to the outliers, would make
a better estimate. Hence, we use the median as a dimensionality reduction tool which has a better
tolerance to outliers. Every gaze point is defined by two values representing the horizontal and the
vertical location. We estimate the intended point during each epoch by taking the median over the
horizontal and vertical dimensions independently.

When a single point is estimated as the gaze point, it will be matched against the areas assigned
to the stimuli. In case of an overlap between one of the stimuli and the estimated gaze point, that
stimulus will be selected, otherwise, a new trial will begin.

6. Experiments

Ten healthy individuals, 6 females and 4 males, with normal or corrected vision between the ages
of 23 and 30 were consented and participated. Participants were graduate students who were not a
member of this project and nor under the influence of any chemicals, such as caffeine. Data collections
were performed based on an approved IRB protocol at Northeastern University. Participants were
seated comfortably in front of an LCD screen at 80 cm from the screen with their head fixed by use of
the head-fixed setup. EEG was recorded using at 256 Hz sampling rate from a single EEG electrode
placed at Oz positioned according to the International 10/20 system was used to record brain activity
using a g.GAMMAcap (electrode cap). This electrode was grounded with respect to FPz and referenced
against an ear-clip electrode placed on the right earlobe.

The experiment consists of two main parts, in which, the input modalities are different. During the
first half, c-VEP was used as the input modality and during the second half eye tracker. The order
of the input modalities for different participants was not counterbalanced mainly due to the limited
number of participants within each vision status category. However, a long enough rest period of five
minutes or more if desired by the participant, based on user judgments, were considered to eliminate
the fatigue effects. In each part, participants were asked to complete four different mazes. The mazes
were designed randomly beforehand and chosen to have almost the same number of decisions per
stimulus. Maze 1 and 4 require 22 and maze 2 and 3 require 21 consecutive correct decisions to reach
the final point. Table 1 is presenting the detailed number of consecutive correct decisions required to
successfully complete each maze.

Table 1. Number of consecutive correct decisions required for each maze.

Maze ID Left Right Up Down Total

1 4 6 6 6 22
2 3 6 4 8 21
3 2 6 6 7 21
4 4 6 4 8 22
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Experiments were designed to be extremely similar with input modality being the only difference.
Participants used the c-VEP-based input modality first and then used the eye tracking to perform

the exact same tasks. Based on the stability of the Calibration, the calibration process had to be repeated
a few times. For eye tracking, this was determined by looking at the estimated gaze locations which
should illustrate a matrix with the same size ratio as the screen with proportional gaze points used for
calibration. For c-VEP a minimum calibration accuracy of 85% was considered. For the c-VEP-based
input modality, different strategies were used to achieve a Calibration data with good performance.
Once a well-performing Calibration data was achieved, it was used throughout the c-VEP tasks. For eye
tracking, Calibration was evaluated before every task and repeated if determined necessary.

Tasks were the same for both input modalities, having gone through them during the c-VEP part,
participants were more familiar with the tasks during the eye tracking part. While the c-VEP input
modality can incorporate the information about the context to boost the performance and the accuracy
of the decisions, in this study, we have not used the context information to keep the comparison fair.

Figure 4 illustrates four mazes that were presented to the participants. Mazes were presented to
the participants in the same order when using different input modalities. In each maze, the start point
is marked with a red block and the end point is marked with a green block. The correct path is unique,
20 blocks long and highlighted in yellow. There are incorrect, dead-end paths randomly placed along
the way and highlighted in pink. The task is to move a mice indicator from the start point to get a
piece of cheese placed at the endpoint. If the participant makes a mistake and leads the mice into an
incorrect path, the mistake has to be corrected by coming back to the correct path.

(a) Maze 1 (b) Maze 2

(c) Maze 3 (d) Maze 4

Figure 4. (a) First task; (b) Second task; (c) Third task; and (d) Fourth task.

Stimuli roles for this task are, turn left, turn right, go down and go up starting from the top left
corner and moving clockwise. The specific roles of the stimuli in this application might suggest using
the corresponding locations for the stimuli, however, to take advantage of the screen real estate, keep
the application area larger and maximize the space between the stimuli, four corners where used.
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Figure 5 illustrates the screen during maze tasks. In this figure, the blue circle is only present when eye
tracker is used as the input modality and indicates the estimated gaze point. A total timeout of 10 min
is considered for each task.

Figure 5. Illustration of how the screen looks like during task Maze 1. The blue circle, in the upper left
corner, is an indication of the estimated gaze point presented only when eye tracking input modality
is active.

7. Results and Discussion

7.1. User Experience

Participants sat in front of a 22-inch computer display at a distance of 80 cm. The height of the chair,
head-fixed setup, and the computer display were adjusted such that looking straight, participant’s
eyes were pointing at the top 1/3 of the computer display. After the experimentation session, every
participant was asked to fill out a survey with a few questions about their preferred input modality
and their reasoning. Questions and results are summarized below. Although the participants in this
study were all healthy individuals with normal or corrected vision, we tried to have a variety of users
covering different vision categories to evaluate both input modalities better. Factors such as wearing
glasses, contact lenses or having normal vision were considered.

Among the 10 participants, 8 voted in favor of the c-VEP input modality and 2 were in favor of
the eye tracking input modality. Participants were asked fill out a questionnaire after completing all
the tasks which included the following questions. Q1: Which input modality you prefer? Q2: Which
input modality you think was following your commands better? Q3: Which input modality you found
faster? Q4: Which input modality was easier to use? Table 2 summarizes participants’ responses
and vision status. Participants particularly were not comfortable with the head fixed setup for the
eye tracker. In this table, we also provided their Calibration accuracy for the c-VEP input modality.

Table 2. User response summary, B stands for Brain Interface (c-VEP), E stands for Eye Tracker.
Calibration accuracy is estimated based on the Calibration data.

Participant ID Vision Status Q1 Q2 Q3 Q4 c-VEP Calibration Accuracy

P1 Corrected (CL) B E B B 98.5
P2 Normal E E E E 96.5
P3 Normal E E B B 99.5
P4 Corrected (G) B B B B 95.5
P5 Normal B B B B 91.5
P6 Normal B B B B 86.5
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Table 2. Cont.

Participant ID Vision Status Q1 Q2 Q3 Q4 c-VEP Calibration Accuracy

P7 Normal B E E E 93
P8 Corrected (G) B B B B 93.5
P9 Corrected (CL) B E B B 93.5
P10 Normal B E B B 93.5

7.2. Performance Metrics

All participants except the sixth participant were able to finish all the four tasks using both
input modalities. Our sixth participant, couldn’t finish maze number 2 using c-VEP input modality
and made 30% progress. The same participant had an even harder time using the eye tracker.
This participant could not finish mazes 1 and 3 using the eye tracking input modality and made 0%
and 50% progress respectively. Having the same decision rate of 1 Hz under the presented stimuli with
four options, c-VEP and eye tracking input modalities provide similar theoretical ITR rate of 90.12 and
86.44 bits/min respectively calculated based on their average command accuracy and the ITR definition
in [38]. Proceeding with different performance metrics calculated from the online experiments, first,
we start with the duration of setup and calibration. Due to the sensitivity of the eye tracker, despite the
efforts to use the calibration data saved after the first Calibration, there was a need to make adjustments
before every task. These adjustments varied from one participant to the other and from recalibrating
select points or all, hence, the difference in the setup time. However, except for participants P6 and P9,
the same Calibration data was used for the c-VEP input modality for all the tasks. These two participants
needed a second Calibration mostly due to the changes in their behavior. Duration of a single calibration
routine is shorter for the eye tracking system, about 60 s compared to 181 s for the c-VEP system,
however, the total time spent calibrating the system is the main concern. Table 3 illustrates the total time
spent on setting up and calibrating each input modality for the session. More insight can be achieved by
looking at the average time spent on setup and calibration per task. Figure 6 shows the average setup
and calibration duration for each input modality averaged over the four tasks performed. Since the
c-VEP input modality mostly uses only a single Calibration data, collected over a duration of 181 s with
the settings used, the average is provided including and also excluding this time duration. For the
eye tracking system, given this was a fixed head setup, the setup and calibration were not separable in
time as most of the actions were taken towards achieving a better calibration. Since the calibration for
c-VEP input modality is not repeated for each task, the duration of time spent for Calibration becomes
negligible as the number of tasks increase. Initial setup time for c-VEP input modality, considering the
use of a single measurement electrode was minimal and is included in the setup time. Before every
task, there has been a quick EEG signal monitoring to make sure of an acceptable electrode connection
and the time duration was included in the setup time. For all the participants except P9, the total
calibration time for the eye tracker has been longer than c-VEP. While the setup times excluding
the c-VEP Calibration sessions which rarely require repetition are considerably less than eye tracking
setup time. Calibration duration for participant number 3 and 6 are much longer compared to other
participants, one observation is that these participants tend to squint their eyes, which was resulting
in the eye tracking losing the lock over their pupils. Participant number 6 had a tendency to squint
more to the point that it even affected her ability to complete the tasks using both input modalities.
This participant was not able to finish one of the tasks using c-VEP and two of them using eye tracking
input modality.
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Table 3. Total time spent setting up and calibrating each input modality for each participant only
considering the tasks completed.

Participant ID c-VEP Tasks Completed Eye Tracker Tasks Completed
(s) with c-VEP (s) with Eye Tracker

P1 218 4 366 4
P2 204 4 247 4
P3 214 4 795 4
P4 254 4 327 4
P5 320 4 387 4
P6 373 3 413 2
P7 208 4 285 4
P8 252 4 326 4
P9 369 4 275 4
P10 208 4 375 4

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
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Figure 6. Average setup and calibration duration for each input modality. c-VEP average setup
durations are reported including and excluding the one-time calibration duration.

Next, is the average time each participant spent to complete the tasks with the same input modality.
Figure 7 shows the average time duration of the completed tasks performed with the same
input modality. The results show that the average time required to complete a task using c-VEP
input modality is less than eye tracking input modality except for participant P7. A paired t-test
between participant’s matching task durations reveals a p value of 4.9× 10−7 with mean values of
115.8 and 155.9 and standard deviations of 31.84 and 27.34 for c-VEP and eye tracking input modalities.
In this calculation, only the completed tasks were considered, four tasks for each participant, except
participant number 6 who had completed 3 out of 4 tasks using c-VEP and 2 out of 4 using eye tracking.
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Figure 7. Average task duration for different input modalities. Error bars indicate the minimum and
maximum duration for each participant.

Next factor is the accuracy of the decisions made by the two input modalities. Figure 8 shows
the average accuracy of the decisions made by the two different input modalities performing the four
tasks for each participant. The average accuracy for the c-VEP input modality for each participant
is consistently above about 80% and even most of the time above 90% Average accuracy among all
participants has a mean of 92.6% and 91.4% and standard deviation of 2.74% and 7.8% for c-VEP and
eye tracking input modalities respectively. For most users the accuracy of both input modalities is
close, however, there are some exceptions like participants P1, P5, P6 and P7 for whom the difference
is more. A paired t-test between participants’ accuracies on the same tasks reveals a p value of 0.57
with mean values of 90% and 88% and standard deviations of 9% and 18% for c-VEP and eye tracking
input modalities respectively. This test is highly affected by the poor performance of participant 6 as
indicated by the average accuracy for this participant. Excluding this participant results in a p value
of 0.83 and standard deviations of 7.7% and 11.7% for c-VEP and eye tracking respectively. The high
p value indicates the accuracies of the two input modalities are not significantly different, which in
turn is an indication of both input modalities being viable choices. The lower standard deviation of
the c-VEP input modality can be an indication of this input modality being more robust. Since all the
participants except participant 6 were able to finish all of the tasks, the variability in the accuracy does
not seem to limit the usability of either input modality. In cases similar to our 6th participant, changing
interface parameters such as decision rate might be effective.

Next, we would like to present the number of infeasible decisions made by the two input modalities.
An infeasible decision is defined as a command that is not executable, i.e., when the mice indicator
is facing a wall it is not possible to pass through the wall. In such situations, a command to move
the mice indicator through the wall is considered as an infeasible command. For the eye tracking
input modality, choosing a point out of the stimuli area is also considered as an infeasible command.
A point chosen outside of the stimuli area would mean the participant has spent most of the decision
time duration focusing outside of the stimuli area. Figure 9 shows the average number of infeasible
decisions made by each input modality.
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Figure 8. Average accuracy of the decisions made by the two input modalities. A paired t-test on
participant’s accuracy on the same tasks reveals (p value <0.57) no significant difference with regards
to the accuracy between c-VEP and eye tracking.
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Figure 9. Average number of infeasible decisions made by the two input modalities.

Between the two classification methods used for intent detection using the eye tracker, in this
study fixation method was only able to detect an intent a total of seven times and the rest of the
detected intents (>100 per participant) were done by the second eye tracker-based classification
method. Participants, in general, had a hard time fixating on the points and even with the relaxed
fixation parameters, such as drift speed and distance.
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8. Conclusions

It is hard to find a definite answer about the best input modality due to the dependencies on
many factors such as equipment and algorithms used. Here, we used the same system and the same
tasks with different input modalities as the variant to be able to make a just comparison between them.
Although a larger group of participants would be needed to make conclusions, our observation in
this limited study shows that even healthy individuals, who have complete control over their body
and more specifically eyes, might prefer c-VEP over eye tracking. This is considering the fact that
the participants were given the freedom of making slight adjustments to their position to match the
estimated gaze point with their actual gaze point during the eye tracking calibration routine. In this
study, we tried to keep the application and most of the settings the same to make the experiments
differ just in the input modality. While one might claim that there might exist better eye tracking
or EEG-based interfaces, here, we have tried to make use of a fast and reliable system to make the
comparison as fair as possible. Factors such as system reaction time, the irritation from the stimuli and
tiring effect of staying still were the top factors affecting participant preferences. Adjusting the eye
tracker for individuals wearing eyeglasses was especially very hard. Eye tracking equipment capable
of tracking head movements is expected to provide ease of use and more comfort. Eye trackers geared
towards being assistive devices such as Tobii-DaynaVox might provide a better performance.

Based on the observations in this study, setup and calibration durations for the c-VEP input
modality are considerably less than the eye tracking. The short setup time of the c-VEP input modality
partly comes from the fact that our system uses only a single EEG electrode. The Calibration was
more stable for the c-VEP input modality, while, the eye tracking was susceptible to even slight
head movements. Code-VEP input modality performed faster for most of the tasks, even though, the
flickering effect made some users feel it took longer than the eye tracking tasks. Although a larger
group of participants can shed more light on how the two input modalities would be compared,
our results show that at least, under same decision-making time constraints both input modalities
are viable choices and can be chosen based on the user preferences. Additionally, since nine out of
ten participants were able to finish all the tasks using both input modalities, it seems that an average
performance of 80% or higher would enable the effective use of either input modality.
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