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Abstract: Microarray technology allows monitoring of gene expression profiling at the
genome level. This is useful in order to search for genes involved in a disease. The
performances of the methods used to select interesting genes are most often judged after
other analyzes (qPCR validation, search in databases...), which are also subject to error.
A good evaluation of gene selection methods is possible with data whose characteristics
are known, that is to say, synthetic data. We propose a model to simulate microarray
data with similar characteristics to the data commonly produced by current platforms. The
parameters used in this model are described to allow the user to generate data with varying
characteristics. In order to show the flexibility of the proposed model, a commented example
is given and illustrated. An R package is available for immediate use.
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1. Introduction

Microarray is now a mature technology in the field of molecular biology for monitoring of gene
expression profiling at the genome level. Using two-color microarray technology, the biological activities
of two samples are compared on an array on which thousands of specific deoxyribonucleic (DNA)
sequences are printed or synthesized in situ. Two fluorescent dyes (generally red and green) are used
for labeling of the samples for hybridization. Then, after washing, scanning and quantification of
images corresponding to the red and green fluorescence of the array, numerical values, or intensities
are associated with each probe (gene). These values are normalized to correct for undesirable technical
variations [1,2]. Using one-color microarray technology, each sample is hybridized on one array. One
fluorescence color is used, and expression intensities are obtained for genes on the arrays used. These
values should also be normalized [3]. For a given gene, a ratio of values from two samples is used
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as a measurement of its expression change. Throughout this paper, we use logarithm two scale to
transform the values. Hence, we use log2 intensities and log2 ratios for sample intensities and their ratios.
In general, log2 ratios are used for two-color microarray data, while log2 intensities are used for one-color
microarray data.

In a screening study, the goal is to select genes with differential expression from data whose
characteristics are unknown. To study the performance of gene selection methods, we often use synthetic
data, which can also serve in developing new methods. To properly play their role, synthetic data must
resemble as closely as possible the real data they represent. This is achieved by simulating the physical
phenomena through a model. The parameters of this model are approximations of the physical laws that
govern the observed phenomenon, and a good knowledge of the physical laws is therefore required to
obtain a good model. A complex model that takes into account several components of a phenomenon
may become less flexible and may be difficult to modify in order to include new factors. In contrast,
a simple model can be effective and easy to modify to take into account an unexpected situation.

One way to generate synthetic data is to use real microarray values as seeds [4–7]. In [4], data were
generated using a normal distribution and a real microarray dataset. This dataset was used to estimate
some hyperparameters, and the percentage of the differentially expressed (DE) genes was fixed; see
details in [4]. The simulation data obtained in [4] may be useful for statistical methods, but they differ
from observed data, since the log2-intensities obtained vary between the unrealistic bounds 16 and 30.
In [5], two samples are selected from the control and the test samples. The measurements associated
with their genes are modified (exchange of values between the two samples. . . ) in order to obtain two
statistically undistinguishable samples. Finally, a given number of down- and up-regulated genes is used
in this dataset. This procedure necessitates a real microarray dataset, which cannot be available. The
procedure proposed in [6] is a modular system, including all steps of the microarray technology. This
includes slide layout, hybridization, scanning and image processing. Many models already available in
the literature are used with new ones in [6]. The system of [6] results in data as close as possible to
real biological data, but is quite complex, and the large number of its parameter settings may discourage
its use. In [7], two simulation methods are used. In the first, the number of DE genes and the number
of levels of changes for these genes are fixed. Then, for each gene, a mean and a standard deviation
are drawn from a uniform distribution. Finally, these data (mean and standard deviation) are used as
normal distribution parameters to get expression values for the genes. In the second simulation method,
the mean and standard deviation of test (µt, σt) and control (µc, σc) samples are estimated from observed
real data and are used as normal distribution parameters to get expression values for all genes. There is
no flexibility in the number of the DE genes of the method in [7]. A hierarchical model is used in [8,9],
where the variance of each gene is simulated using two parameter settings and the χ2 distribution. This
variance is then used to generate values from a normal distribution. DE genes are finally defined using
levels compared to a threshold. The procedure used in [8,9] allows one to generate data with parameters
derived from assumptions about real data. However, the percentage of the DE genes depends on a
parameter that is difficult to control a priori. For some of the above methods, there is no distinction
between the number of weakly expressed genes and those strongly expressed.

The model proposed in [10] provides synthetic data fairly close to the characteristics of true data.
In this model, the level of expression of a gene is obtained by the superposition of several components.
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These components allow one to define the DE genes and the overall level of variability in the data.
However, it lacks flexibility in choosing the number of DE genes and the number of genes over- and
under-regulated. In this paper, we are interested in generating synthetic microarray data associated with
two biological conditions. These conditions correspond to comparison of wild-type samples versus
knock-out ones, treated samples versus non-treated ones, etc. For these situations, we use the generic
terms of control versus test samples. Two condition biological data can be obtained using either one-color
or two-color microarray technology leading to log2 intensities or log2 ratios, respectively. We assume
that the same reference sample was used for log2 ratio data.

This paper is organized as follows. In the next section, we present the model used and describe its
parameter settings. In Section 3, we present commented results obtained using our model. Conclusions
are drawn in Section 4.

2. Methods

We propose here a model that does not require knowledge of the physical laws governing gene
expression to produce data with similar characteristics to the data commonly produced by current
platforms. The user provides a subset of parameters that control the behavior of the data generated.
We assume the following characteristics for microarray data:

1. There are usually more genes with low intensities than genes with high intensities. One possible
explanation for this observation is a non-response of all genes to given biological conditions.

2. The log2-intensities of microarray data usually vary between zero and 20. Expression values are
the results of 16- or 20-bit float per pixel images, representing probes on arrays.

3. Under similar biological conditions, the expression level of a gene varies around an average value.
Exceptionally different values will be due to technical problems.

4. The total number of DE genes depends on the biological conditions used. The number of
over-regulated and under-regulated genes may be different.

5. The variability observed for weakly expressed genes is larger than that observed for highly
expressed genes. This is mitigated with today’s scanners and tools. However, genes which are
not really expressed still have non-zero values, and strongly expressed genes (saturated) receive a
single value corresponding to the maximum level of quantification.

In the model described below, the expression levels are log2 intensities. Ratios are derived from
these values.

2.1. Model Used

Given n genes, m1 and m2 control and test samples, respectively, we used the following model:

xi = ai + si + ni + ti (1)

where xi is a vector of values generated for gene, i, (i = 1, . . . , n). These values come from four sources.
The values of vector ai = {aij, j = 1, . . . , m1,m1 +1, . . . , m1 +m2}, are expression levels for samples.
The values of vector si allows one to define DE genes. These values are zero for control samples and
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for genes that are not DE, while for DE genes, non-zero values are associated with test samples. The
additive noise vector, ni, has values independent of gene expression levels. Values associated with
technical problems are cast in vector ti, which has only a few non-zero components (samples) for some
genes. The current implementation of our model does not include any technical problem terms, ti, but
we intend to take into account this component in the future.

To generate data using model (1) that satisfies the issues given above, we proceed as follows. The
beta distribution is used to obtain n values varying between zero and one. Shape parameters (shape1

and shape2) of this distribution were chosen to produce more small values than higher ones (issue 1).
The n values obtained are scaled to fit real data (issue 2), which vary between a lower bound (lb) and
an upper bound (ub). The scaled values represent average expression levels for the n genes (issue 3).
Optionally, real data can be used as seed at this step. We assume that intensities for each gene are
uniformly distributed around its average level. The range of variation of values from this distribution is
assumed to be dependent on the gene average level and is expressed as a percentage through a parameter,
α = λ1e

−λ1z̄i , where λ1 is a parameter setting and z̄i is the average level of gene, i (issue 5). This leads
to vector ai. Two parameters are used for generating vector si, the percentage of DE genes (pde) and
a setting determining the number of up- and down-regulated genes (sym). The first m1 values (control
samples) of si are set to zero. For gene i, an integer is randomly drawn from the set {1, . . . , 100} and
is compared to 100pde to decide whether the corresponding gene is DE. If the answer is yes, a second
integer is drawn from the set {1, . . . , 100} and is compared to 100sym to decide up and down assignment.
m2 normally distributed values are generated using a mean (µde) and a standard deviation (σde). These
values (or their opposite) form the second part (test samples) of vector si for the up- (down-) regulated
DE genes. Independent noise vector ni values are obtained using a normal distribution with zero mean
and parameter (σn) for standard deviation. The details of this algorithm are given in Algorithm 1 and
described in the following sections.

2.2. Model Parameters

2.2.1. Data Size: n

This is the number of probes (genes) on the arrays. It is on the order of thousands, and the default
setting is n = 10, 000.

2.2.2. Number of Samples: m1 and m2

These parameters are the number of control and test samples, respectively. Typically, the minimum
number of samples per condition should be three to allow the use of statistical tests. The maximum value
of these parameters rarely exceeds 100 (samples per biological condition); the default setting is seven
for both.

2.2.3. Expression Level or Ratio: Ratio

This parameter option generates log2 intensities or log2 ratios data. With ratio = 0 (default setting),
log2 intensities data will be generated; otherwise, log2 ratios data are returned.
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Algorithm 1: Steps of the micorarray data generation model.
1. Generate n values from a beta distribution using shape1 = 2 and shape2 as shape parameters,

we obtain values z = {zi, i = 1, . . . , n}
2. Transform values of z, such that they vary between settings lb and ub: z̄ = lb + ub × z
3. For each value of z̄, generate m1 + m2 + 1 uniformly distributed values:

ai + si = {U((1 − α)z̄i, (1 + α)z̄i)}, where α = λ1e
−λ1z̄i and λ1 is a user setting.

Then, the first m1 + 1 values are used for a vector r1, and the last m2 values are used for a
vector r2.

(a) If gene i is differentially expressed (a sample ∈ {1, . . . , 100} < 100pde)

i. Set v1 = r1

ii. If probe i is up-regulated (a sample ∈ {1, . . . , 100} > 100sym)

• Generate m2 normally distributed values and add them to r2:
µde = µmin

de + {E(λ2)}
v2 = r2 + {N (µde, σ

2
de)}, where λ2, µmin

de and σ2
de are settings

iii. Else

• Generate m2 normally distributed values and subtract them from r2:
µde = µmin

de + {E(λ2)}
v2 = r2 − {N (µde, σ

2
de)}, where λ2, µmin

de and σ2
de are settings

iv. Set: yi = ai + si = (v1 v2)

(b) Else

i. Set: yi = ai + si = (r1 r2)

4. Now, we have a noise-free data matrix Y := {yi, i = 1, . . . , n}. Do we need noisy data?

(a) If the noise standard deviation parameter is positive (setting σn)
N := {ni = N (0, σn), i = 1, . . . , n}

• Add normally distributed values to data: Ȳ = Y + N},

(b) Else

• Do not use noise: Ȳ = Y

5. Depending on user settings, log2-intensities or log2-ratios are returned

(a) If ratios are required

• The first column of Ȳ is used as reference: X = Ȳ [, 2 : m1 + m2 + 1] − Ȳ [, 1]

(b) Else

• log2-intensities are returned: X = Ȳ [, 2 : m1 + m2 + 1]

2.2.4. Beta Distribution Shape Parameters: Shape1 and Shape2

To obtain more small values than high ones, we use a beta density distribution. Based on many
histogram plots using various shape parameter values, we propose to set parameter shape1 to two and



Microarrays 2013, 2 120

allow the user to choose a value for the parameter shape2 in the interval [4, 8]. The default setting for
shape2 is four.

2.2.5. Log2 Intensities Variation Range: lb and ub

These parameters specify the log2 intensities variation range. Quantification of microarray images is
usually performed with 16- to 20-bit base, leading to 216 to 220 levels of gray. We suggest using values for
parameters lb and ub from intervals [2, 6] and [8, 16], respectively. These values are typically observed
for actual Affymetrix GeneChip c⃝ array data for gene expression profiling. Default settings are lb = 4

and ub = 14. Observed minimum and maximum expression values will not exactly match the settings
because of the variations used and possible additive noise.

2.2.6. Percentage of DE Genes: Pde

This parameter controls the number of differentially expressed genes the user would like to have in
the data set. Its values are taken from the interval [0, 1]. A value pde = 0.02 (default setting) means that
2% of the n probes in the data set should be DE.

2.2.7. Number of Up- and Down-Regulated Genes: Sym

This parameter results in nearly the same number of up- and down-regulated probes when sym = 0.5
(default setting). If the value of this parameter is less (greater) than 0.5, we will have more up- (down-)
regulated probes in the data set.

2.2.8. Gene Average Level Variation Range: λ1 (Lambda1)

We assume that the values of each probe are uniformly distributed around an average value.
An exponential distribution is used, α = λ1e

−λ1z̄i , where λ1 is a user setting for decreasing rate. Then
parameter, α, controls the width of the uniform distribution and is expressed as a percentage of the
average level. λ1 allows a high variability in weakly expressed genes and, at the same time, a low
variability for strongly expressed genes. We use the default value, λ1 = 0.13, which allows an α ≈ 10%

for an average expression level equal to two and an α ≈ 3.54% for an average expression level equal
to 10. Increasing λ1 will lead to more variability for weakly expressed genes and a small variability for
strongly expressed genes. Small values for λ1 (≈0.01) will lead to the same variability for all genes
independently of their expression level.

2.2.9. Fold Change Variation Parameters: λ2, µmin
de and σde (Lambda2, Muminde and Sdde)

For a gene, the fold change is a shift of average expression levels between test and control samples.
Assuming that (control and test) sample values of a given gene are uniformly distributed around an
average level, the shift comes from a superposition of additional values to the test samples, see Figure 1.
We assume a normal distribution for the shift values N (µde, σde). However, the same mean µde is not
used for all DE genes. Hence, we use a minimum value (setting µmin

de ) and the exponential distribution
to get µde = µmin

de + {λ2e
−λ2}, where λ2 is another setting. Default settings for these parameters are:
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µmin
de = 1.0, λ2 = 2 and σde = 0.5. A higher λ2 value will lead to a small number of genes having a

shift greater than µmin
de ; a small λ2 value leads to the opposite situation. Parameters µmin

de and σde may
be chosen using a one sample Student t-test analysis. The statistic of the shift value is zs =

√
m2µmin

de

σde
.

The critical value for a significance level of 0.05 for zs is 1.96. Hence, parameters may be chosen using
the relation σde ≤

√
m2µmin

de

1.96
≈ 0.51

√
m2µ

min
de . The choice of additive noise standard deviation, σn (see

below), will modify this inequality.

Figure 1. Variation of expression levels of a DE gene. The first seven points are for control
samples, and the last seven points correspond to test samples. The average value of this gene
in the control is eight and 9.5 for the test sample (blue horizontal lines). The green points
correspond to noise free data, while the red are observed values for control and test samples.
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2.2.10. Additive Noise Standard Deviation: σn (Sdn)

This parameter represents a normal distribution standard deviation for additive noise. The default
value is σn = 0.4. A zero value for this parameter will lead to noise-free data. Too high σn values can
lead to a number of DE genes different to those specified in pde.

2.2.11. Computer Random Generator Seed: Rseed

This parameter is used for computer random number initialization. It will allow one to generate the
same data at different times. The default value is 50.

3. Results and Discussion

To evaluate the performance of the proposed model, we performed simulations, in which we studied
the influence of different parameter settings. Their default values are: n = 10, 000, m1 = m2 = 7,
lb = 4, ub = 14, λ1 = 0.13, λ2 = 2, µmin

de = 1.0, σde = 0.5, ratio = 0, sdn = 0.4, shape2 = 4,
pde = 0.02, sym = 0.5). We performed 100 independent simulations by changing the initialization of
the generator through parameter, rseed. For each simulation, we performed a Student t-test and selected
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genes with a p-value less than 0.006. Using the DE information, selected genes were split into two: true
and false DE genes. The p-value threshold, 0.006, leads to an expected error (false discovery rate) equal
to (0.006 × n)/(pde × n) = 30% for default settings. When studying one parameter, the others are set
to their default value.

3.1. Parameter Pde

We used four different values (1%, 2%, 5% and 10%). For these values, the theoretical numbers of
DE genes are, respectively, 100, 200, 500 and 1, 000. The boxplots in Figure 2 show the results obtained.
The median numbers of true down- (up-) regulated genes are 39.5 (40), 75.5 (76.5), 194 (190) and 382

(386.5) for the above values of parameter pde, respectively. In comparison with the expected number of
DE genes, the recovery powers of the Student t-test are 79.5%, 76%, 76.8% and 76.8%. Better power
results can be obtained for this test by using smaller value for parameter σn. Panel C of Figure 2 shows
the number of false DE genes obtained using the four values for parameter pde. The median numbers of
the false DE genes are 49, 49, 48.5 and 45.5 for the above values of parameter pde, respectively.

Figure 2. Boxplots of the number of down- and up-regulated genes (true DE, false DE) with
four values of the parameter pde. 100 simulations were used for these results.
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3.2. Parameter Sym

We used the following three values: 0.3, 0.5 and 0.7. For these values, the expected numbers for pairs
of down- and up-regulated genes are, respectively, (60, 140), (100, 100) and (140, 60). Figure 3 shows
the boxplot of results obtained. The median numbers of true down- and up-regulated genes observed are
(46, 107), (75.5, 76.5) and (107, 46) for the above values of parameter sym, respectively. Hence, the
recovery powers of the Student t-test are 76.5%, 76% and 76.5%.

Figure 3. Boxplots of the number of down- and up-regulated genes (true DE) with three
values of the parameter sym. 100 simulations were used for these results.
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The median number of false DE genes is 49 for the three values of parameter sym.

3.3. Parameter σn

We used three values: 0.2, 0.4 and 0.6. Figure 4 shows the boxplots of the results obtained. The
median numbers of down- and up-regulated genes observed are (89, 89), (75.5, 76.5) and (57, 58),
leading to detection powers of 89%, 76% and 57.5%, respectively. The t-test detection power decreases
when σn increases.

Figure 4. Boxplots of the number of down- and up-regulated genes (true DE) with three
values of the parameter σn. 100 simulations were used for these results.
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The median numbers of false DE genes are 54, 49 and 49 for the 3 values of parameter σn, respectively.
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3.4. Parameters µmin
de , σde, λ1, λ2 and Shape2

We performed simulations to examine the influence of these parameters. For each parameter,
100 simulations were used, and the results obtained are summarized in Table 1. Increasing the parameter
µmin

de setting introduces more change for the DE genes, while its decrease leads to the opposite effect.
Parameter σde acts as noise. The effect of the modification of some parameters is investigated further in
the MA plot representations described in the following paragraph.

Table 1. Number of down- and up-regulated detected genes using the Student t-test and
various parameter settings.

Parameters (down, up) power

µmin
de = 2 (100, 100) 100%

µmin
de = 0.5 (41, 40) 40.5%

σde = 0.2 (90.5, 90) 90%

σde = 0.4 (82, 83) 82.5%

σde = 0.6 (69, 69.5) 69%

λ1 = 0.1, σn = 0.4 (76, 6) 76%

λ1 = 0.01, σn = 0.4 (81, 81) 81%

λ1 = 0.1, σn = 0.2 (89, 88) 88.5%

λ1 = 0.01, σn = 0.2 (92, 92) 92%

λ2 = 4, (66, 66) 66%

λ2 = 0.5 (92, 91) 91.5%

shape2 = 4 (75.5, 76.5) 76%

shape2 = 6 (75, 76) 76.5%

shape2 = 8 (76, 76.5) 76%

3.5. Volcano and MA Plots

Using default settings, we performed one simulation. Then we computed the Student t-test p-value
and fold change for all genes. These values were used in the volcano plot of Figure 5. Red circles
represent genes having a p-value less than 0.01 and a fold change greater than two or less than 0.5.
Intensity measurements of two samples can be used to create two new variables: M = Ix2 − Ix1 and
A = 0.5(Ix2 + Ix1), where Ix2 and Ix1 are log2 intensities of samples x2 and x1, respectively. A value,
one (−1) for M means that the corresponding gene is up- (down-) regulated two-fold. A plot of M

(log2 ratio) versus A (log2 intensities average) is denoted “MA plot” [11]. The MA plots in Figure 6 are
obtained using either two control samples (panel A) or one control and one test sample (panel B).

Additional MA plots in Figures 7–10 showing the effect of some parameter settings. A small value
for λ1 leads to a less dense cloud of points. A larger change is observed for higher values of λ2 than
for smaller ones. The same applies to parameter, σde. Increasing the parameter shape2 value leads to a
decrease of the dynamic range of the data.
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Figure 5. Volcano plot of data obtained.
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Figure 6. MA plot using (A) two control samples or (B) one control and one test sample data.
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Figure 7. MA plot with one control and one test sample, using (A) λ1 = 0.1, σn = 0.2 or
(B) λ1 = 0.01, σn = 0.2.
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Figure 8. MA plot with one control and one test sample, using (A) λ2 = 4 or (B) λ2 = 0.5.
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Figure 9. MA plot with one control and one test sample, using (A) µmin
de = 2 or

(B) µmin
de = 0.5.
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Figure 10. MA plot with one control and one test sample, using (A) shape2 = 4 or
(B) shape2 = 8.
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3.6. Discussion

The choice of some setting parameters for the proposed model is easy and can be dictated by the
experimental design. This applies to n, m1, m2 and ratio. Parameters lb and ub and sym and pde
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concern the dynamic range of variation of the data to generate and define the DE genes. The intervals
indicated for lb and ub are those observed for data from common platforms. Parameters, shape2, lb

and ub, have no effect if real microarray data are used as a seed. The number of DE genes (pde) and
the proportion of under- and over-regulated genes (sym) is at the discretion of the user. The parameter,
rseed, allows one to produce the same data at different times using the same computer. This parameter is
also useful for generating test data for different analysis algorithms. Settings, λ1, λ2, µmin

de , σde and σn,
control the global behavior of the data generated. More precisely, λ1 allows one to make gene changes
dependent on the average level of expression. λ2 introduces variation in the expression changes for
DE genes. These changes are defined by µmin

de and σde. Parameter, σde, also acts as noise. The parameter,
σn, allows one to perturb the data generated. The example of Figure 4 shows that the data obtained
can differ from those expected for large values of σn. The signal to noise ratio (defined as the ratio of
standard deviations) for default settings is 6.25. This rises to 4.16 for σn = 0.6.

An interesting microarray study was reported in [12]. In that study, the same RNA samples were
processed by many laboratories using three leading microarray platforms: Affymetrix (five labs),
two-color cDNA (three labs) and two-color oligonucleotides (two labs). The results presented show
a good agreement across-platforms in contrast to some results previously reported in the literature, see,
for instance, references cited in [12]. The microarray data generated for the study described in [12] are
available from the Gene Expression Omnibus [13] under accession number GSE2521. These data can be
used as seed for our model, which can then be integrated into user friendly data analysis software, such
as Partek Genomics Suite, GeneSpring GX, etc., for demonstration and/or teaching purposes.

3.7. R Code

For immediate use of the proposed model, we provide an R code function madsim.R (MicroArray
Data Simulation Model), which is deposed as a package on the Comprehensible R Archive Network
(CRAN) server for download [14]. The outputs of this function are the data generated (xdata) and the
indexes of DE genes (xid). Real data can be used as seed for each gene. An example of such data
is available in the data folder of the package. Further explanations are available from the package’s
help function.

4. Conclusions

We proposed in this paper a simulation model of microarray data. This model is very flexible and
allows one to generate data with similar characteristics to the data commonly produced by current
platforms. We showed a commented example of its possible use. We considered the case of data from two
biological conditions. This model can be extended to multiple biological conditions in different ways:
(a) modify to take into account additional biological conditions and several levels for the parameters, µde

and σde, and (b) use as is, then place data side by side.
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