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Abstract: DNA sequence variations include nucleotide substitution, deletion, insertion, 

translocation and inversion. Deletion or insertion of a large DNA segment in the genome, 

referred to as copy number variation (CNV), has caught the attention of many researchers 

recently. It is believed that CNVs contribute significantly to genome variability, and thus 

contribute to phenotypic variability. In chickens, genome-wide surveys with array 

comparative genome hybridization (aCGH), SNP chip detection or whole genome 

sequencing have revealed a large number of CNVs. A large portion of chicken CNVs 

involves protein coding or regulatory sequences. A few CNVs have been demonstrated to 

be the determinant factors for single gene traits, such as late-feathering, pea-comb and 

dermal hyperpigmentation. The phenotypic effects of the majority of chicken CNVs are to 

be delineated. 
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1. Introduction 

Genomes vary among different individuals of the same species, even among different cells within 

the same individual of multicellular organisms. Variations include differences at a single nucleotide 

position up to entire sets of chromosomes. Small scale variations, involving a single or a short stretch 

of nucleotide positions, are often discovered by sequencing. Various methods are available for 

detection of these small scale differences and are routinely studied for a long time. Large scale 
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variations are visible under microscope, thus are discovered and studied routinely with microscopy 

during karyotyping. Variations of DNA sequences of intermediate scale, from 1,000 bp (kb) to a few 

million base pairs (mb), now known as copy number variation (CNV) [1,2], were ignored by 

researchers for some time due to the unavailability of suitable research tools. New DNA technology, 

especially microarray and sequencing, has permitted the convenient detection of CNVs in various 

genomes in the last decade, leading to the booming of CNV studies on various species, especially 

humans. Ongoing research into CNV will likely change the landscape of SNP-centric genome-wide 

association studies (GWAS) since CNV regions (CNVRs) show more inclusions and complex genetic 

variants than SNP sites. 

Comparing among genomes of different cells within the same individual, or different individuals of 

the same or closely related species, DNA sequence differences can be considered as the result of 

nucleotide substitution, insertion, deletion, inversion, translocation, or combinations of these events. 

CNVs basically involve the insertion or deletion of DNA sequences, or the combination of both.  

An event of insertion leads to the gain of DNA segment, while an event of deletion leads to the loss of 

a segment. Although many CNVs involve the activity of transposable elements [3], the gain or loss of 

transposable elements is not considered in this category of genomic variability [4]. Because there is no 

convenient method to detect inversion and translocation of intermediate sizes, the scale of such 

structural changes is currently unknown. 

In the last several years, there has been an increasing interest in the study of CNVs in the chicken. 

The chicken is an important farm animal species. It has served as an important protein source by 

providing table eggs and meat for human nutrition since its domestication in Southeast Asia over  

8,000 years ago [5]. In some cultures, the chicken has also been used for ritualistic activities. Due to 

readily available and easy handling, the chicken has been used in fundamental biological studies, 

including embryonic development, genetics, immunology, oncology and virology studies. The chicken 

is an excellent example of the unique genome arrangement in avian species, where there are a few 

pairs of large chromosomes called macrochromosomes and a large number of tiny chromosomes called 

microchromosomes [6]. 

Studies of chicken CNV are driven by interests from not only the poultry science point of view,  

but also the basic biological perspective. Since the time when genomic tiling arrays became available 

for chickens [7] several years ago, a good number of studies on chicken CNV have been published. 

Here, we review various aspects of chicken CNVs, especially the genome-wide distribution, known 

phenotypic effects and areas for future research. 

2. CNV Distribution in the Chicken Genome 

The majority of chicken CNVs were detected with array comparative genome hybridization 

(aCGH), with which two DNA samples were labeled respectively with different fluorochromes, often 

cy3 and cy5, then equal amounts of labeled DNA were co-hybridized to a whole genome tiling  

array [8–10]. The hybridization signals were recorded from the tiling array using laser scanners, and 

the signal intensities for each probe from each DNA sample were compared [11]. The hybridization 

signals are supposed to have equal intensity from each of the two respectively labeled DNA samples. 

Sophisticated computational algorithms were then used to determine whether a region of the genome 
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has different signal intensities. Unequal signal intensities suggest gain or loss of DNA copies in the 

region of genome in question. The aCGH method has been applied in studies of human and many other 

species [12–15]. 

SNP arrays have also been used to detect CNVs. Although SNP arrays are primarily designed for 

SNP genotyping, detection of CNV with SNP arrays is possible because abnormal hybridization occurs 

when a SNP probe is located in a CNV locus. Various computer programs were developed to detect 

CNVs from SNP genotyping data [16,17]; thus, no additional wet laboratory work is needed. As such, 

the detection of CNVs from SNP data added value to genome-wide association study (GWAS) with 

SNP arrays. This approach has been especially widely used in human population studies [18–20].  

A few studies using SNP arrays have also been analyzed for CNV in farm animals [21,22], including 

chickens [23]. 

Reports for genome–wide detection of CNVs in chickens are accumulating (Table 1). The first 

study of chicken CNV with aCGH was reported by Griffin and coauthors [7] in an attempt to establish 

inter-species genomic rearrangement. They identified 12 CNVs between the domesticated chicken and 

red jungle fowl (the wild ancestor of domesticated chickens), and several other CNVs between red 

jungle fowl and turkey. Since this study examined only one broiler and one Leghorn chicken, the 

prevalence of the CNVs could not be inferred. Comparisons between the chicken and duck, and 

between the chicken and zebra finch revealed more inter-species CNVs along the chicken  

chromosome [7,24,25]. Such regions could potentially harbor CNV within the chicken because some 

inter-species CNVRs were also found as intra-specific CNVRs in the chicken. 

Table 1. Current reports on genome-wide analysis of copy number variation (CNV) in chickens. 

Author [ref] Method No. of Birds Breed or Line * No. of CNVRs 

Griffin et al. 2008 [7] aCGH 3 
Red jungle fowl (1),  

Leghorn (1), broiler (1) 
12 

Skinner et al. 2009 [24] aCGH 1 Red jungle fowl 32 

Volker et al. 2010 [25] aCGH 1 Red jungle fowl 32 

Wang et al. 2010 [26] aCGH 10 
Cornish rock (4),  

Rhode island red (4), Leghorn (2) 
96 

Jia et al. 2012 [23] SNP chip 746 White leghorn, dwarf 315 

Wang et al. 2012 [27] aCGH 18 
Broiler (6), Leghorn (6),  

Chinese local breed (6) 
327 

Luo et al. 2013 [28] aCGH 6 62 (2), 73 (2) and cross hybrid (2) 32 

Fan et al. 2013 [29] Sequencing 2 Silkie (1), local breed (1) 8,839 

Crooijmans et al. 2013 [30] aCGH 64 Leghorn, broiler (15 lines in total) 1,556 

* Values in parentheses are numbers of birds from the breed or line. 

We were the first to report intra-specific CNVRs in chickens [26]. Our study examined ten individual 

chickens and identified 96 CNVs corresponding to approximately 1.3% of the chicken genome, 27 of 

which were observed in more than one individual [26]. Since there are many well distinguished 

varieties of chickens, it would be of great interest if the genetic architecture that defines varieties could 

be elucidated. Several studies reported so far have paid attention to this issue [26,27,30]. However, 

each of these studies examined a small number of animals from each variety. Thus, it is uncertain 

regarding variety-variety specificity of particular CNVs. 
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Until now, Crooijmans et al. [30] have reported the largest number of CNVs in chickens. They 

identified a total of 3,154 CNVs, which were grouped into 1,556 CNVRs based on overlapping. Those 

CNVs were identified from 64 birds of 15 commercial and experimental lines. This study could 

confirm 50% of high confidence CNVRs and 23.9% of single observation CNVRs reported by  

Wang et al. [26], and 21% of the 238 CNVRs reported by Wang et al. [27]. Reports by others [23,28] 

showed additional CNVs among chickens of different variety/lines. Using whole genome sequencing 

approach, Fan and his colleagues reported 8,839 putative CNVs with size >2 kb, but those with size  

>5 kb were listed with chromosomal coordinates [29]. Taken together, currently reported chicken 

CNVs amount to 3,961, which aggregate to 1,876 CNVRs (see Supplement file). These CNVRs were 

found on GGA1-28, E64, W and Z (Table 2). The CNVRs reported on random chromosomal  

segments [28] in the galGal3 assembly were not counted in this statistic, due to the uncertainty about 

the order of probes within the random segment of the assembly. The chicken genome assembly 

galGal3 does not contain information on GGA29-31 and 33-38. Likely, probes on these chromosomes 

are represented in the unknown random chromosomal segments. 

The current known chicken CNVRs encompassed 8.3% of the chicken genome, or 9.6% of the 

ordered assembly (Table 2). There are huge differences among chromosomes in terms of the fraction 

of DNA sequences involved CNVRs. On GGA1-15, CNVRs involve 5–14% of all DNA sequences. 

On the majority of other microchromosomes, figures are similar. Exceptions are GGA16, 25, E64, and 

W. GGA16 harbors the complex gene family histocompatibility proteins. Despite the fact that GGA16 

is physically similar to GGA15 and GGA17, its assembled sequence is less than 4%. 

In contrast to aCGH studies so far, where a small number of samples from each line/breed of 

chickens were analyzed, CNV identification from SNP genotyping data by Jia et al. [23] analyzed  

746 chickens, in which 417 birds were found to harbor CNVs. Some birds were found to have no  

CNV in the SNP data, which is in sharp contrast to aCGH analysis. The discrepancy is understandable 

because (1) the 60 K SNP arrays had much lower probe density [31], while aCGH arrays contained 

244,000 to 385,000 probes for the chicken genome; (2) detection of CNVs from aCGH data is based 

on competitive hybridization of two samples on the same array, while detection from SNP data would 

have to compare across different arrays. Another sharp contrast between aCGH and SNP data is the 

frequencies of CNVRs. Among the 315 distinct CNVs detected with SNP arrays, only five CNVs 

(CNVRs) had a frequency greater than 5% and none greater than 10% in the chicken population. While 

in aCGH studies, frequencies of 130 CNVs were greater than 10% (calculated from [30]). Such 

difference could result from the use of references and also probe densities. In the aCGH study by 

Crooijmans et al. [30], a red jungle fowl was used as the reference to which all other chickens were 

compared, while SNP chip study by Jia et al. [23], CNV calls ought be made in reference to the  

two experimental chicken lines. 

Regardless of analysis with aCGH or SNP genotyping arrays, boundaries of each CNV are 

uncertain due to the noise of DNA hybridization and the possibility of multiple breakpoints. 

Comparisons between different array platforms are hindered by differences in probe locations. Many 

CNVs within the same CNVR, detected by different array platforms, may actually be the same allele. 

Another issue with hybridization detection of CNVs is the uncertainty of zygosity state. Neither aCGH 

nor SNP genotyping may tell whether a test sample is homozygous or heterozygous. Whole genome 

sequencing, on the other hand, has the potential to accurately map the breakpoints [32,33], as has been 



Microarrays 2014, 3 28 

 

 

shown in the study by Fan et al. [29]. It is also possible that the whole genome sequencing approach 

can distinguish between homozygote and heterozygote. Currently, this approach faces challenges of 

high levels of false positive and high cost. 

Table 2. Distribution of CNV regions (CNVRs) on chicken chromosome. 

Chromosome No of CNVRs Total CNVR size (bp) 
Assembled chromosme 

size (bp) in galGal3 
% in CNVRs 

1 364 11,375,702 200,994,015 5.66 

2 311 8,125,223 154,873,767 5.25 

3 180 5,540,459 113,657,789 4.87 

4 159 4,609,754 94,230,402 4.89 

5 123 6,862,048 62,238,931 11.03 

6 93 2,262,075 37,400,442 6.05 

7 66 4,203,267 38,384,769 10.95 

8 51 2,875,956 30,671,729 9.38 

9 54 1,443,118 25,554,352 5.65 

10 43 1,412,549 22,556,432 6.26 

11 57 1,955,749 21,928,095 8.92 

12 34 2,906,682 20,536,687 14.15 

13 43 1,362,013 18,911,934 7.20 

14 41 1,136,391 15,819,469 7.18 

15 35 1,551,252 12,968,165 11.96 

16 1 432,778 432,983 99.95 

17 22 719,234 11,182,526 6.43 

18 16 1,743,280 10,925,261 15.96 

19 16 524,800 9,939,723 5.28 

20 31 1,596,835 13,986,235 11.42 

21 16 771,271 6,959,642 11.08 

22 5 267,594 3,936,574 6.80 

23 18 1,223,166 6,042,217 20.24 

24 12 635,342 6,400,109 9.93 

25 1 2,026,539 2,031,799 99.74 

26 10 998,206 5,102,438 19.56 

27 18 1,438,608 4,841,970 29.71 

28 11 491,924 4,512,026 10.90 

E64 1 44,645 49,846 89.57 

W 1 257,546 259,642 99.19 

Z 43 28,708,659 74,602,320 38.48 

Total 1,876 99,502,665 1,031,932,289 9.64 

3. CNV and Phenotypic Variation  

A CNV may affect phenotypic characteristics through various mechanisms. If a CNV is involved in 

protein coding, it may directly alter the protein function. If a CNV involves the regulatory region of a 

functional protein gene, it may alter when, where and how much of the gene is transcribed. The effect 

of CNV can even extend to half a megabase away [34]. It is also possible that a CNV imposes very 
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little effect on the phenotype. While genome-wide survey seeks to provide a comprehensive map of 

CNVs, functional analysis provides insight into the effect of various CNVs on phenotype. In humans, 

the phenotypic impact of many CNVs has been demonstrated (see review by Henrichsen et al. [35]). 

Known phenotypes associated with CNV in chickens include pea-comb [36], late-feathering on 

chromosome Z [37], dark brown plumage color [38] and dermal hyperpigmentation [39,40].  

The functional consequences of the overwhelming majority of the chicken CNVs are yet to be 

revealed. As have been observed in many species, individual chickens carrying most of the CNVs 

appear ―normal.‖ Because CNVs often involve large genomic regions (several kb to several mb), a 

large proportion of reported CNVs involve protein coding or functional RNA. Inter-species aCGH 

studies have shown that there are more CNVs that involve coding genes than CNVs involving solely 

noncoding sequences [7,24,25], regardless if the species in comparison are closely related (between 

turkey and chicken) or more distantly related (between chicken and duck or between chicken and zebra 

finch). Similarly, inter-species CNVs have similar partitions: more involve coding sequences than 

solely noncoding sequence. 

A popular method for analysis of gene content in CNVRs is to determine enrichment of specific 

gene ontology (GO) terms. The list of genes in CNVRs is compared against a background gene list in a 

database using computational tools [41,42]. In the chicken, a striking feature is the enrichment of 

cytoskeletal protein genes in CNVRs [27,30], especially the keratin super family. Crooijmans et al. [30] 

suggested that such enrichment may be related to the over-representation of keratin genes in aves when 

compared to mammals. Gene enrichment findings of avian species are in sharp contrast to those in 

mammals in which enriched genes include those that respond to stimulus, antigen processing and 

defense [12,43]. Likely, differences are due to species-specific biology. It is also necessary to improve 

the background dataset so that more accurate analysis can be done. 

It is common to many species that the majority of CNVs have low frequencies. Chickens are no 

exception. Most chicken CNVs were observed only once among the birds studied. For example, among 

the 96 CNVRs described by Wang et al. [26], 70 were detected in only one bird. Similarly, among  

the 3,154 CNVs reported by Crooijmans et al. [30], 2,210 CNVs (70%) were observed in only  

one bird. Some CNVs found in only one chicken in one study could be corroborated by other studies. 

The observed low frequencies are partly attributable to uncertainty about CNV boundaries, false 

negative and false positive CNV calls in aCGH. On the other hand, because some CNVs may have 

significant disadvantages over the individual’s phenotype, they could be under selective pressure for 

elimination. Thus, their frequency could not reach higher level. 

Pea-Comb Phenotype: The pea-comb phenotype exhibits reduced size of comb and wattles in the 

chicken [36]. It is one of the two epistatic genes interacting with each other in classic genetics 

textbooks. When a chicken carries the dominant pea comb (P) allele at one locus and dominant rose 

comb allele (R) at another locus simultaneously, it develops walnut comb. The pea-comb is 

advantageous in cold climate because it reduces heat loss and makes chickens less susceptible to frost 

lesions [36]. Through linkage analyses using dense genetic markers and segregating families, the pea 

comb gene has been found within the interval containing SOX5 on GGA1 [36,44]. The pea-comb 

phenotype results from a CNV: a massive amplification of a duplicated segment near evolutionary 

conserved non-coding sequences in intron 1 of the SOX5 transcription factor, signifying that the 

duplicated expansion interferes with SOX5 expression and the regulation of gene expression during 
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differentiation of cells crucial for the development of comb and wattles [36]. SOX5 encodes a member 

of the SRY-related HMG family of transcription factors and known to enrich for ECNS. It plays a  

role in cell fate and differentiation, skeletal development, chondrocyte development and extracellular 

matrix production. The interval harboring the code for pea-comb trait has been defined as  

67,831,796–68,456,921 bp on chromosome 1 [36]. Interestingly, the rose comb phenotype also results 

from a type of structural variation. It has been demonstrated to be caused by an inversion of about  

7 mb on GGA7, resulting in ectopic expression of homeodomain protein MNR2, another transcription 

factor [45]. 

Late Feathering: The late feathering phenotype has been widely used in commercial poultry 

operations for sexing of chicks at hatch. This trait is determined by a partially dominant K allele of a 

sex-linked locus on GGAZ. Early studies showed that the phenotype may involve an endogenous viral 

gene ev21. However, detailed mapping studies indicate that the K allele results from a partial 

duplication of the prolactin receptor gene (PRLR) and the sperm flagellar protein 2 gene (SPEF2) from 

the k+ allele [37,46]. This mutation causes reduced fertility and retarded development of fly feathers. 

Late-feathering birds not only have increased PRLR mRNA expression, but also altered mRNA levels 

of other genes during early development; many of them are keratin-related genes [47]. Nonetheless, 

transcripts of the partial duplicated dPRLR were found in a wide array of tissues. Its encoded protein,  

a truncated version of PRLR lacking a 149-aa C-terminal tail, can be potently activated by prolatin [48], 

suggesting the duplicated PRLR may be involved in a wide range of physiological activities. 

Dark Brown Plumage: A 2011 study by Gunnarsson and coauthors found that dark brown (DB) 

plumage color mutation in chickens reduces the expression of black eumelanin and enhances the 

expression of red pheomelanin in certain parts of the plumage [38]. They demonstrated that the causal 

mutation factor is an 8.3 kb deletion upstream of the SOX10 transcription start site. The SOX10 

transcription factor plays a role in melanocyte development essential for melanocyte migration and 

survival. Deletion in this locus is thought to reduce SOX10 expression, down-regulating expression  

of key enzymes in pigment synthesis like tyrosinase. Lower tyrosinase activity causes a more 

pheomelanistic or reddish plumage color, the characteristic feature of the DB phenotype. 

Dermal Hyperpigmentation: Silkie chickens originate in China. These birds have unique 

phenotypes, including elongated feathers on the head, fluffy plumage, dark blue skin, viscera, bones 

and ears, feathered legs and feet, and five toes on each foot. In some cultures, people believe that the 

dark colored bone and skin render the chicken meat to have special therapeutical capability. The dark 

color in all connective tissues results from unusual melanogenesis, a condition called dermal 

hyperpigmentation or fibromelanosis [49]. A dominant FM allele was shown to be responsible for 

extensive pigmentation of the dermal layer of skin and the internal connective tissue [39]. The causal 

FM is an inverted duplication and junction of two genomic regions separated by more than 400 kb in 

wild chickens. The duplicated regions contained endothelin 3 (EDN3) gene that promotes melanoblast 

proliferation [40]. EDN3 expression is thought to be increased in the developing Silkie embryos while 

melanoblasts are migrating. Elevated levels of expression are found in adult skin tissue. Comparison of 

four chicken breeds from Asia and Europe also displaying dermal hyperpigmentation revealed that  

the same structural variant regulated this phenotype across all chicken breeds. This genomic 

rearrangement causes a specific monogenic trait in chickens, illustrating how novel mutations with 

phenotypic effects have been reused during breed formation in domestic animals. 
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4. CNV and Complex Trait 

Most important traits are complex, often measured in quantitative terms. This is especially true for 

agricultural traits such as growth rate, disease resistance, feed conversion, egg production, etc.  

In humans, there are wide interests in evaluation of the relationship between copy number variants and 

complex traits. Studies have demonstrated that CNVs contribute to drug response [50,51]. There are 

also results suggesting that an association between candidate CNVs and complex traits may be 

disappointing [52,53]. 

Studies on the relationship between CNV and complex traits in farm animals are lagging behind.  

In cattle, studies have suggested that CNVs may be associated with parasite resistance [54,55] and 

residual feed intake [56]. In swine, an attempt has also been made to associate CNVs with quantitative 

traits [57]. 

In chickens, effort was made to delineate the relationship between CNVs and Marek’s disease [28]. 

Marek’s disease is caused by an alphaherpesvirus belonging to the Mardivirus genus and is a 

worldwide problem in the poultry industry [58], creating substantial losses in revenue each year.  

Luo et al. [28] examined CNVs in two lines of chickens and their cross progeny that have divergent 

Marek’s disease susceptibility. They suggested that CNVs unique in the Marek’s disease-resistant line 

could be candidate conferring resistance, especially those also residing in the relevant QTL interval. 

They claimed that a loss CNV spanning 50 kb on GGA19 is a high confidence candidate for Marek’s 

disease-resistance, and that another loss CNV on uncharacterized chromosome region spanning 83.5 kb 

involving a general transcription factor IIi (GTF2I) is a high confidence Marek’s disease-susceptible 

candidate. 

5. Prospects and Conclusions 

Studies on CNVs are most advanced in humans and rodents. Genome-wide surveys have shown that 

a large proportion (up to 20%) of the human genome is copy number variable [2,59]. To date, the 

chicken genome has been found to have 8.3% regions being copy number variable. Although there is 

postulation that avian genomes have fewer CNVRs, currently, it is unlikely that we have catalogued 

near completion chicken CNVRs. 

Many human CNVs are being studied in much broader prospects, especially regarding their 

involvement in human diseases. For example, the relationship between CNV and autism has been 

studied by many groups [60–62]. The involvement of CNVs in cancer is also intensively studied 

through genome wide analysis [63–65], or specifically targeted candidate analysis [66,67]. There is 

also significant attention to the role of rare CNVs in genetic disorders. Studies of CNV are probably  

at similar intensity among most farm animal species, including cattle [15,68–72], swine [73–76],  

goat [77,78], and sheep [21,79], but studies in the cattle appear more intensive. 

CNV studies in chicken were not too far behind compared to those in cattle. As has been discussed 

above, the majority of chicken CNV studies were focused on genome-wide survey of CNVs in various 

breeds with aCGH or SNP arrays. Several mapping studies identified CNVs as the causal mutation for 

several Mendelian traits. Despite these progresses, much remains to be learned regarding chicken 

CNVs. First, further studies are needed to construct a more comprehensive CNV map. Current reports 
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on chicken CNVs are limited to a small number of individuals and a limited number of breeds. Many 

reports indicated that most CNVs have low frequencies (<1%). It is likely that the present known 

CNVs are only a small portion of what exist in the chicken. Second, it is highly desirable to evaluate 

the phenotypic effects of chicken CNVs, especially those that may have significant outcomes.  

The effects of the majority of chicken CNVs are currently unknown. How these CNVs affect 

production, immunity growth or other important traits requires the effort of academia and the poultry 

industry. Since each CNV involves far greater number of DNA bases than SNPs, and many CNVs 

involve coding sequences, it is reasonable to believe that CNVs may contribute more importantly than 

SNPs to phenotypic variations. Third, heritability of chicken CNVs needs be determined. To date, no 

study has specifically addressed this question. Although there are sufficient reasons to believe that the 

majority of CNVs are transmitted in Mendelian fashion, CNV generation de novo does play a role [80–82]. 

This point is of special interest in poultry industry, because one of the questions in poultry breeding is 

how much mutations contribute to the continued improvement of breeding. 

The availability of new technologies, including high density tilling array and SNP chips [83], 

especially massive parallel sequencing, has heralded the new era of CNV detection, fine mapping of 

CNV breakpoints, and perhaps zygosity status. As has been clearly demonstrated, CNVs play an 

essential role in certain qualitative traits. It is firmly believed that CNVs also play a role in quantitative 

traits. Likely, some CNVs could be the main causal factor for variations in certain quantitative traits. 

Studies of CNVs are in its infancy for farm animals. Development of robust and convenient CNV 

assays for genotyping could facilitate unveiling of genetic secrets. It could also facilitate molecular 

guided breeding of poultry and other farm animals. 
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