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Abstract

:

Bipolar disorder is a complex psychiatric disorder with high heritability, but its genetic determinants are still largely unknown. Copy number variation (CNV) is one of the sources to explain part of the heritability. However, it is a challenge to estimate discrete values of the copy numbers using continuous signals calling from a set of markers, and to simultaneously perform association testing between CNVs and phenotypic outcomes. The goal of the present study is to perform a series of data filtering and analysis procedures using a DNA pooling strategy to identify potential CNV regions that are related to bipolar disorder. A total of 200 normal controls and 200 clinically diagnosed bipolar patients were recruited in this study, and were randomly divided into eight control and eight case pools. Genome-wide genotyping was employed using Illumina Human Omni1-Quad array with approximately one million markers for CNV calling. We aimed at setting a series of criteria to filter out the signal noise of marker data and to reduce the chance of false-positive findings for CNV regions. We first defined CNV regions for each pool. Potential CNV regions were reported based on the different patterns of CNV status between cases and controls. Genes that were mapped into the potential CNV regions were examined with association testing, Gene Ontology enrichment analysis, and checked with existing literature for their associations with bipolar disorder. We reported several CNV regions that are related to bipolar disorder. Two CNV regions on chromosome 11 and 22 showed significant signal differences between cases and controls (p < 0.05). Another five CNV regions on chromosome 6, 9, and 19 were overlapped with results in previous CNV studies. Experimental validation of two CNV regions lent some support to our reported findings. Further experimental and replication studies could be designed for these selected regions.
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1. Introduction


Bipolar disorder (BPD) is a common mental disorder, which is characterized by the recurrence of manic and depressive episodes. The prevalence of BPD is around 1%–2%, and it accounts for a significant proportion of disease burden worldwide [1]. The estimated heritability of BPD is approximately 60%–85% [2]; however, the genetic determinants and its underlying pathogenesis are still not clear. In recent years, structural variations on DNA segments, in particular copy number variations (CNVs), have gained increasing attention in relation to complex traits. Array-based technologies enable high speed scanning of large numbers of CNVs. The identification of disease associated CNVs may help to explain some missing heritability that could not be explained by common SNPs (single nucleotide polymorphisms) [3]. Previously, a number of CNVs have been reported to be associated with different psychiatric disorders, such as schizophrenia, autism, and BPD [4,5,6,7].



One of the major challenges in conducting CNV studies at the genome-wide level comes from applying statistical approaches to detect associations. Although several statistical strategies are developed for the estimation of copy numbers from experimental data, there is no consensus for CNV calling [8]. The difficulties reside in estimating discrete values of the copy numbers using continuous signals calling from a set of markers, and simultaneously performing association testing between CNVs and phenotypic outcomes. In addition, different individuals might have varied breakpoints of defined CNV regions. Previously, a hidden Markov model (HMM) has often been applied to analyze CNV data [9,10]. HMM-based algorithms could simultaneously identify copy number status and the breakpoint of CNV regions for each individual. However, HMM-based methods are reported to have relatively high error rates in short CNV regions [8,11]. In addition, most of the diseases associated CNVs have only been found in a small number of subjects in previous CNV studies, and the reported CNV regions are usually with moderate effect size [12,13]. Due to relatively rare events and high genotyping costs, scanning CNVs at a genome-wide level in large-scale samples individually may not be cost-effective in the discovery phase. It is also difficult to perform association testing between CNV regions and diseases, and design follow-up experiments when the events are rare.



Recently, DNA pooling strategy was adopted to save genotyping cost [14,15]. A pool consists of a set of individuals, which may introduce noise and high variation into signal estimation. Nevertheless, with appropriate quality control and validation using individual genotyping in the later stages, the pooling strategy has been utilized in human genetics research [16], and could provide a more cost effective way to identify novel loci or chromosomal regions for complex traits [14,17]. So far, it is still a challenge to use pooling data for CNV detection. Recently, a HMM-based method was developed to analyze copy number status in DNA pooling data using Affymetrix SNP arrays [18]. Following experimental validation, the authors suggest that applying DNA pooling could help to discover more common CNV regions. However, this algorithm deals only with Affymetrix array-data. For genome-wide CNV array-data from other platforms, there is a need to develop more general filtering procedures to reduce noise and perform data analysis whilst using a DNA pooling strategy. We believe that by minimizing potential errors in CNV calling, the chance for correctly evaluating the relationships between CNVs and the trait of interest would be substantially increased. To our best knowledge, there are no genome-wide CNV studies that are conducted for BPD in Asian populations yet. The goal of the present study is to develop a series of filtering and data analysis procedures to identify potential CNV regions for BPD in a Han Chinese population using a DNA pooling strategy.




2. Methods


2.1. Subjects, DNA Pooling Construction and Genotyping


We conducted a family study of mood disorders in Taiwan from 2008–2012. Recruitment and clinical characteristics of the participants are described in more detail elsewhere [19,20]. In brief, patients aged between 18 and 70 years and diagnosed with major depression disorder (MDD), bipolar I disorder (BPD-I), or bipolar II disorder (BPD-II) according to the DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, fourth edition), were consecutively referred by psychiatrists in Taiwan. Independent healthy controls were recruited by methods of sending leaflets or “word of mouth” in the community. All of the controls were screened for mood disturbances and other major psychotic disorders. For every participant, we asked questions about ethnicity; only participants whose parents and grandparents are all Han Chinese were enrolled. The study and data collection procedures were approved by the Institutional Review Broad of all participating institutes and hospitals. All participants provided written informed consent after details of the study were fully illustrated.



Blood samples were taken to extract DNA for each individual. A total of 200 independent BPD-I patients and 200 healthy controls were selected with good quality DNA, and we randomly divided them into eight case and eight control groups (each with 25 subjects). DNA concentration and quality were twice checked using Quant-iT™ PicoGreen® dsDNA Reagent and Kits (Invitrogen, Carlsbad, CA, USA). Equivalent amounts of DNA from each subject were mixed together to create eight case pools and eight control pools. For details of the experimental procedures and DNA pooling strategies please see elsewhere [21]. Whole-genome pooling genotyping was performed using Illumina HumanOmni1-Quad array with approximately one million markers including SNP and CNV probes.




2.2. Quality Control and Filtering Procedures for CNV Analysis


Figure 1 shows the flow chart of our CNV analysis. A series of quality control procedures were implemented to improve data quality before running CNV analysis. We first removed markers with missing signals in any pool or on the sex chromosomes. Markers with a genetic control (GC) score equal to zero in more than three pools were excluded. We also removed markers with a median Log R ratio >1 or <−5 across 16 pools as those outside of this threshold are likely to be false or prone to genotyping errors. The Log R ratio represents the normalized intensity of probe signals. After employing these quality control procedures, 694,475 markers were retained. We used PennCNV [9] for CNV analysis. PennCNV is a HMM-based algorithm for CNV calling, which uses normalized intensity (Log R ratio) and allele frequency data (B allele frequency) of markers to simultaneously estimate CNV region and its copy number status [9]. It could analyze array signal data from both Affymetrix and Illumina platforms. We applied this algorithm to call CNV numbers for each pool. If the copy number is equal to two, the Log R ratio is approximately zero. If the copy number is greater (a gain CNV status) or less (a loss CNV status) than two, the corresponding Log R ratio is higher or lower than zero, respectively.
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Figure 1. The flow chart of the criteria for copy number variation (CNV) analysis. 
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The estimated CNV regions for each pool were then identified using PennCNV. We set a series of criteria to obtain informative CNV regions. First, regions with less than 20 markers were filtered out to avoid false-positive results in short regions with PennCNV analysis. A large number of gain CNV regions were predicted from 16 pools. To further reduce the likelihood of obtaining false positive findings in the gain CNV regions, we applied other criteria for the gain CNV regions by Log R ratio to increase data quality; (1) If the mean Log R ratio within the identified CNV region is less than 0.02, we filtered out this region as the intensity around zero indicating a high potential to be a normal CNV status (copy number = 2); (2) If the standard deviation of Log R ratio within the identified CNV region is greater than 0.2, we filtered out this region. The second procedure is also suggested by PennCNV for the quality control of individual samples [9].



Because PennCNV tends to split large CNV regions into multiple smaller regions, a merge procedure for adjacent CNV calls was applied in the next step [9]. We performed a gap cleaning procedure to merge neighboring CNVs where the ratio of the gap length and sum of the two neighboring CNV lengths is less than 0.2. At this step, we had obtained around three thousand estimated CNV regions with length ranging between 1.49 kb and 1021.08 kb in the 16 pools. To make comparisons of CNV results possible across pools, we took the union of each defined CNV region for all the pools. In total, there were 2243 unique CNV regions in case pools and 2426 unique CNV regions in control pools. In addition, different CNV calling algorithm could result in different calling results; therefore, we also used QuantiSNP [10] to analyze potential CNV regions identified by PennCNV.



For small sample size, several strategies were implemented to conduct association testing. In the present study, we first constructed the Han Chinese CNV map. We used the published CHB (Han Chinese in Beijing) CNV regions in HapMap and 2 CNV databases from Lin et al. [22] and Lou et al. [23]. We selected more informative CNVs according to the different CNV patterns between case and control pools. The informative CNVs were defined based on the following criteria.




	(1)

	
the CNV regions were only found in case pools but not in the Han Chinese CNV map; these CNVs were defined as important regions in cases;




	(2)

	
the CNV regions were only found in control pools and also reported in the Han Chinese CNV map; these CNVs were defined as important regions in controls;




	(3)

	
the CNV regions were shown in both case and control pools, but the frequency difference in the two groups is large (>3); these CNVs were defined as enriched in cases or controls;




	(4)

	
the CNV regions were found in both case and control pools, however the CNV status (gain/loss) was different in the two groups.









These selected CNV regions were potential targets for BPD and were included in the following analyses.




2.3. Association Testing for CNV Regions with BPD


We first conducted CNV burden analysis between case and control pools, which is employed in previous studies [24]. We conducted burden analyses stratified by CNV types (gain or loss) and size (length ≥100 kb or ≥500 kb). Secondly, using a data integration framework, we had previously built a candidate gene database for BPD, and obtained 164 prioritized susceptible loci, namely BPDgenes [25]. We mapped genes for the potential CNV regions and compared them to the BPDgenes. For the mapped genes in the CNV regions that overlapped with BPDgenes, we tested the signal differences between case and control pools. We calculated the median signal of the markers within the defined CNV regions. Both t-test and Wilcoxon test were used to evaluate signal associations between cases and controls. Thirdly, a functional enrichment analysis for the mapped genes in selected CNV regions was performed using WEB-based GEne SeT AnaLysis Toolkit (WebGestalt) [26]. We adopted multiple testing corrections using the Benjamini-Hochberg method for each analyzed pathway with the significance level p < 0.05. Finally, we searched the literature to identify previously reported CNV regions in BPD. For associated CNV regions that were found in more than one patient in previous studies, we compared them with our potential CNV regions. These results are summarized in Appendix Table A1.




2.4. CNV Validation by RT-qPCR


Due to the genome-wide scale of the CNV identification, we were only able to conduct experimental validation for a few CNV regions for the proof of principle of our filtering procedures and data analysis results. Two CNV regions were selected for validation using real-time quantitative polymerase chain reaction (RT-qPCR). The first region was the 6q27 CNV (Results Section) that replicated results from two previous studies, the second was a CNV region on chromosome 3p14.2 (Results Section) showing signal differences between CNV carriers and non-carriers, including a BPD candidate gene PTPRG. We performed RT-qPCR using Taqman Copy number assays (Chr.3 Hs04761773_cn and Chr. 6 Hs03602538_cn) and Taqman Copy number reference assays (Applied Biosystems, Foster City, CA, USA). Individuals in the carrier case-pool and non-carrier control-pool (25 cases and 25 controls) were tested in each assay, and the RT-qPCR was carried out in triplicate. Sequence Detection Software (SDS) was used for exporting the threshold cycle (Ct) data and further analyzing differences in Ct values (ΔCt) between the test locus and the control locus. Copy number variation was analyzed with the CopyCaller software [27]. We used Student’s t-test to compare raw copy number signals calculated from ∆Ct values to determine the statistical significance of predicted copy-number differences in cases and controls. The significant threshold was defined by p < 0.05.





3. Results


Results of the CNV burden analysis for the potential CNV regions are displayed in Table 1. There was a relatively higher proportion of loss CNV regions (≥100 kb) in BPD patients than in controls, though the difference did not reach statistical significance (Wilcoxon p-value = 0.105). There was no significant difference in other types of the CNVs between BPD cases and controls.



Table 2 shows the results of gene mapping in the selected CNV regions. There were 882 CNV regions that were only found in case pools and not mapped to the Han Chinese CNV map (Important regions in cases). In contrast, 94 CNV regions were only found in control pools and were mapped to the Han Chinese CNV map (Important regions in controls). In addition, two CNV regions were enriched in cases for which the frequency of case pools having this CNV is three more than that in control pools, and 26 CNV regions were enriched in controls. Only one CNV region had a different CNV status, with loss status in cases and gain status in controls. In total, 1247 genes were mapped to these selected CNV regions, and 30 of them were overlapped with the prioritized genes in the BPDgenes [25]. We compared the CNV signal differences between cases and controls and focus on the regions that had affected genes mapped to the BPDgenes (i.e., 30 CNV regions). We presented the CNV regions that exhibited signal differences between cases and controls with p-value <0.2 using t-test or Wilcoxon test, with these CNVs regarded as the top priority regions for BPD in our samples (see Table 3). Two of the CNV regions showed a significant difference (at p < 0.05) using either a t-test or Wilcoxon test. This included CNV regions on chromosomes 11 and 22.



Functional enrichment analysis was performed for the 1247 CNV genes to explore their biological information. These mapped genes were significantly enriched (adjusted p-value less than 0.05) in 21 GO terms (see Table 4). In addition, the enrichment analysis was conducted using the database of disease associated genes in WebGestalt. Two disease categories (bipolar disorder and mood disorder) reached statistical significance (p < 0.05) (Appendix Table A2).
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Table 1. CNV burden analysis in BPD case pools and control pools.
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CNV size

	
CNV

	
Sample

	
No. of

	
Mean CNVs

	
Wilcoxon




	
type

	
Group

	
unique CNVs

	
per pool

	
p-value






	
≥100 kb

	
Both

	
Controls

	
1441

	
346.25

	
0.645




	
Patients

	
1446

	
307.25




	
≥100 kb

	
Gain

	
Controls

	
1438

	
345.5

	
0.645




	
Patients

	
1434

	
304.375




	
≥100 kb

	
Loss

	
Controls

	
3

	
0.75

	
0.105




	
Patients

	
12

	
2.875




	
≥500 kb

	
Both

	
Controls

	
43

	
16

	
0.798




	
Patients

	
44

	
15.5




	
≥500 kb

	
Gain

	
Controls

	
43

	
16

	
0.798




	
Patients

	
44

	
15.5




	
≥500 kb

	
Loss

	
Controls

	
0

	
0

	
NA




	
Patients

	
0

	
0








Abbreviation: CNV, copy number variation; BPD, Bipolar Disorder.







Lastly, we compared our CNV results to findings in the previous studies of BPD [7,24,28,29,30,31,32,33]. We found that five of the 1005 selected CNV regions (6q16.3, 6q27, 9q34.3, and two regions on 19p12) were also identified in previous studies (see Table 5). All of the overlapped regions were only found in cases. Four were gain CNV regions, and one region on 19p12 was loss CNV status. Priebe et al. found a CNV region at 6q27 that was overrepresented in bipolar patients with age at onset ≤21 [28]. This region was also reported to be enriched in affected members of a three-generation Amish pedigree of European descent [29]. Two CNV regions on chromosome 19 were both located at 19p12. Grozeva et al. found that these CNV regions were associated with BPD in Wellcome Trust Case Control Consortium samples [30]. In addition, Bergen et al. reported a duplication CNV region (9q34.3) in 14 patients with BPD, 17 patients with schizophrenia, and 11 normal controls [31]. Association testing of this region was significant when combining the two patient groups. Moreover, McQuillin et al. reported CNV regions at 6q16.3 in 2 BPD cases in British samples [32]. The rest of the 1000 CNV regions were not reported in more than one individual in previous studies.
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Table 2. Potential CNV regions related to bipolar disorder and the information of mapping genes.
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Potential CNV regions

	
No. of CNV (Gain/Loss)

	
Mean CNV length (kb)

	
No. of mapped Genes

in CNV regions a

	
Genes overlapped with the list in BPDgenes b






	
Important regions in cases

	
882 (859/23)

	
120.52

	
982

	
ANK3, ARNTL, ASTN2, CHST11, CSMD2, DACH, DLG2, DPP10, DSCAM, GRIK1, HTR6, KALRN, MCTP1, MYO3B, NALCN, NOS1, OPCML, OR6S1, PARK2, PDLIM5, PLCB1, PTPRG, SLC39A3, SYN3, TGFB2, UGT1A10, VAV3




	
Important regions in controls

	
94 (94/0)

	
91.36

	
164

	
DMGDH




	
Regions enriched in cases

	
2 (2/0)

	
447.74

	
0

	
None




	
Regions enriched in controls

	
26 (25/1)

	
244.49

	
86

	
CSMD2, OPCML




	
Different CNV status in cases and controls

	
(1 Gain CNV in 1 control

/1 Loss CNV in 1 case)

	
253.96

	
15

	
None








a Genes that are partial or fully included in the CNV regions; b 164 prioritized loci for BPD in the BPDgenes [25].
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Table 3. Signal differences between case and control pools for identified CNV regions.
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Chr

	
Position a

	
CNV type b

	
Length (kb)

	
Affected Genes c

	
p-value (t test)

	
p-value (Wilcoxon test)






	
1

	
34,268,681–34,936,979

	
Gain in 6 controls and 2 cases

	
668.30

	
CSMD2, C1orf94

	
0.192

	
0.169




	
3

	
61,681,785–61,928,141

	
Gain in 1 case

	
246.36

	
PTPRG

	
0.171

	
0.234




	
4

	
95,487,295–95,868,284

	
Gain in 3 case

	
380.99

	
PDLIM5, ENH, ENH1, LIM

	
0.646

	
0.161




	
9

	
118,292,450–118,450,577

	
Gain in 1 case

	
158.13

	
ASTN2, KIAA0634, bA67K19.1

	
0.157

	
0.169




	
11

	
13,224,130–13,256,233

	
Gain in 1 case

	
32.10

	
ARNTL, BMAL1, BMAL1c, JAP3, MGC47515, MOP3, PASD3, TIC, bHLHe5

	
0.007 *

	
0.010 *




	
12

	
103,611,282–103,669,104

	
Gain in 1 case

	
57.82

	
CHST11, C4ST, C4ST-1, C4ST1, DKFZp667A035, FLJ41682, HSA269537

	
0.113

	
0.065




	
22

	
31,480,536–31,564,931

	
Gain in 1 case

	
84.40

	
SYN3, TIMP3

	
0.029 *

	
0.021 *








Abbreviation: Chr, Chromosome; a Position were assembled by NCBI build 36 (UCSC hg 18); b Gain or loss CNV type in case or control pools; c The bold labels the affected Genes in the CNV regions that are mapped to BPDgenes [25]; * p-value is smaller than 0.05.







In experimental validation of CNV at chromosome 3p14.2, two BPD individuals and one control subject out of 25 cases and 25 controls were found to have gain CNV at PRPRG region. The signal intensity of copy number value in the gain CNV that compares with a CNV status of 2 was 2.52 ± 0.002 (mean ± SD) versus 1.98 ± 0.033 (mean ± SD). The difference reached statistical significance (p < 0.05) using t test. Thus, confirmatory RT-qPCR experiments lent further support for this CNV validation. For the chromosome 6q27 region, this region was overlapped with CNV findings reported in previous BPD studies but did not show signal difference between our cases and controls. Experimental results showed that no individual (out of 25 cases and 25 controls) was validated to have gain CNV. The signal intensity of copy number value in cases and controls was 1.99 ± 0.03 and 1.92 ± 0.05, respectively.
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Table 4. Gene Set Enrichment Analysis of genes mapped to potential CNV regions.
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Enriched GO category

	
Database ID

	
p-value a

	
Adjusted p-value b

	
O c

	
N d






	
Biological process

	

	

	

	

	




	
biological adhesion

	
GO:0022610

	
1.16 × 10−8

	
1.5 × 10−5

	
93

	
905




	
cell adhesion

	
GO:0007155

	
2.13 × 10−8

	
1.5 × 10−5

	
92

	
903




	
cell-cell adhesion

	
GO:0016337

	
4.03 × 10−5

	
0.0190

	
41

	
374




	
Cellular component

	

	

	

	

	




	
neuron projection

	
GO:0043005

	
1.03 × 10−7

	
2.2 × 10−5

	
69

	
628




	
synapse

	
GO:0045202

	
1.13 × 10−5

	
0.0008

	
51

	
478




	
cell projection

	
GO:0042995

	
9.19 × 10−6

	
0.0008

	
102

	
1173




	
axon

	
GO:0030424

	
1.85 × 10−5

	
0.0010

	
34

	
276




	
dendrite

	
GO:0030425

	
2.61 × 10−5

	
0.0011

	
39

	
341




	
cell projection part

	
GO:0044463

	
4.52 × 10−5

	
0.0016

	
59

	
610




	
synaptic membrane

	
GO:0097060

	
0.0001

	
0.0031

	
26

	
208




	
synapse part

	
GO:0044456

	
0.0002

	
0.0053

	
38

	
361




	
neuron spine

	
GO:0044309

	
0.0004

	
0.0086

	
20

	
153




	
dendritic spine

	
GO:0043197

	
0.0004

	
0.0086

	
20

	
153




	
cell periphery

	
GO:0071944

	
0.0010

	
0.0195

	
267

	
3989




	
keratin filament

	
GO:0045095

	
0.0013

	
0.0227

	
10

	
57




	
plasma membrane

	
GO:0005886

	
0.0017

	
0.0227

	
260

	
3905




	
postsynaptic density

	
GO:0014069

	
0.0016

	
0.0227

	
15

	
111




	
cytoskeleton

	
GO:0005856

	
0.0017

	
0.0227

	
119

	
1613




	
dendritic spine head

	
GO:0044327

	
0.0016

	
0.0227

	
15

	
111




	
postsynaptic membrane

	
GO:0045211

	
0.0028

	
0.0333

	
20

	
178




	
presynaptic membrane

	
GO:0042734

	
0.0028

	
0.0333

	
9

	
53








a p-value was derived from Fisher’s exact test; b p-value was adjusted by Benjamini-Hochberg method; c O: number of genes in the gene set and also in the GO category; d N: number of reference genes in the pathway category.
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Table 5. Comparison of our CNV results of bipolar disorder with findings in previous studies.
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Present Study

	
Previous Studies




	
Location

	
Position a

	
CNV type

	
Length (kb)

	
Affected Genes

	
No. of cases/controls

	
Position a

	
CNV type

	
Length (kb)

	
References






	
6q16.3

	
101966969:102040222

	
Gain

	
73.250

	
GRIK2

	
1/0

	
101953625:102624651

	
Unknown

	
671.027

	
[32]




	
6q27

	
168320777:168376820

	
Gain

	
56.044

	
KIF25, FERM,

	
1/0

	
168090000:168330000

	
Gain

	
240.000

	
[28,29]




	
MILT4, DACT2




	
9q34.3

	
138149942:138217164

	
Gain

	
67.233

	
None

	
2/0

	
136600001:140273252

	
Gain

	
3673.252

	
[31]




	
19p12

	
20091264:2029165

	
Gain

	
200.402

	
ZNF682, ZNF90,

	
1/0

	
20001614:20177979

	
Gain/Loss

	
176.365

	
[30]




	
ZNF486




	
19p12

	
24193894:24282139

	
Loss

	
88.246

	
ZNF254

	
2/0

	
24013968-24295825

	
Gain

	
281.857

	
[30]








a Position were assembled by NCBI build 36 (UCSC hg 18).








4. Discussion


The current study applied a series of filtering and data analysis procedures to identify CNV regions that are related to bipolar disorder using a DNA pooling strategy. Several filtering methods have previously been developed for array data to increase detection power, in particular for microarray gene expression data. A screening threshold is usually set based on the variance of expression signals, where probes with low variance are excluded as non-informative markers [34,35]. The filtering procedures become even more important while adopting a DNA pooling strategy. In a genome-wide association study using pooled DNA, SNP quality control filters are set based on the indicators calculated from pooled intensity [36]. Similar concepts are adopted in our filtering scheme for pooling CNV data. The criteria we set for a CNV analysis with small sample size could assist for CNV identification by reducing the potential impact of experimental noise to explore the relationships between CNVs and the trait of interest. A number of potential CNV regions are reported for BPD in our Han Chinese samples that may warrant further investigation.



Higher CNV burden is often observed in patients with psychiatric disorders when compared with healthy controls [37]. However, the reported specific CNV regions, even in large-scale Caucasian samples, are rarely replicated [24,28,30,32]. In the present study, we found that the burden of loss status CNVs in BPD cases is higher than in controls, though the comparisons did not reach statistical significance. Similar findings are reported in Zhang et al., which conducted a genome-wide CNV study of BPD in European Americans. They found that the number of singleton deletion CNVs in BPD cases is significantly higher than those in controls (p = 0.007) [38]. Other studies reported fewer CNVs with loss status in BPD cases than controls. For instance, in a young adult British sample, McQuillin et al. found that BPD subjects have significantly fewer deletion CNVs, with the size ranging from 200–500 kb compared to controls (p = 0.039), while fewer singleton duplication CNVs with the size over 100 kb are also found in BPD cases (p = 0.03) [32]. In addition, large (≥500 kb) inherited duplication CNVs are also found to be enriched in familial BPD cases (p = 0.03) [24]. The distinct findings of excessive deletion or duplication CNVs among BPD patients in the previous studies may result from the differences in sample populations, clinical characteristics of BPD cases, the CNV detection platforms, and CNV analysis criteria. Some studies advocate to subgroup BPD patients to obtain genetically more homogeneous groups. Age at onset is an often considered feature. Two CNV studies divided BPD cases into early or late onset subgroups by the age of onset (AO) of BPD diagnosis [24,28]. Comparing with healthy controls, one study reported that the rate of de novo CNVs is significantly higher in the patients group with AO ≤ 18 [24], whilst the other reported a higher frequency of microduplication CNVs in patients with AO ≤ 21 [28]. Two regions with duplication CNVs—the 6q27 and 10q11 CNV regions—are especially noted for early onset BPD [28]. To stratify BPD patients into subgroups based on relevant clinical characteristics could be considered in future CNV studies to reduce heterogeneity among patients.



Through a series of data analysis procedures and a comprehensive literature search, we identified several CNV regions in relation to BPD. Some of the regions are reported in previous CNV studies, and some are novel regions. Novel CNV regions may be ethnic group specific and provide additional clues for exploring the pathogenesis of BPD in Han Chinese population. At the first stage of data screening, we found approximately 1000 novel CNV regions. Using a gene prioritization framework, we had previously built a gene database for BPD. The top list in the BPDgenes has a higher combined score, and thus higher confidence to be associated with bipolar illness. There are 30 genes in our identified CNV regions that are mapped to the BPDgenes (see Table 2), and the CNV regions that encompass these genes are considered high priority for further association testing. We reported signal differences between cases and controls for CNV regions on several chromosomes (see Table 3). These CNV regions have a higher potential to be related with BPD, and genes mapped to these regions are candidate genes for BPD. For instance, ARNTL is a circadian gene and has been found to be associated with BPD in Caucasian samples [39,40]. Gene PTPRG has previously been found to be associated with schizoaffective disorder [41]. We conducted RT-qPCR experimental validation for the PTPRG gene region, and the gain CNV status was validated, for which the signal intensity was higher in BPD cases than in controls. Research on the functional properties of these affected genes in potential CNV regions and how they link to the etiology of BPD may help point to a direction for the development of a new drug target.



In addition to novel regions, there are five CNV regions (located at 6q16.3, 6q27, 9q34.3, 19p12) overlapped with the results from previous studies (see Table 5). One CNV region, 6q16.3, is reported to be associated with BPD in both ours and the study conducted by McQuillin et al. [32]. Gene GRIK2 is mapped to this CNV region. This gene is essential for brain development [42]. Previously, polymorphisms in GRIK2 gene have been reported to exhibit associations with obsessive-compulsive disorder [43] and autism spectrum disorders [44]. A loss CNV was found in our cases in 19p12 while a gain CNV in the same region was reported in Grozeva et al. [30]. Olsen et al. conducted a meta-analysis for three CNV regions—6q27 and 19p12 (two CNVs)—that are overrepresented in patients with affective disorder in three case-control studies [45]. However, the association testing is not significant for the three CNVs. As very few individuals possess either of these CNVs, a reliable test is not easy to perform for testing CNV associations with disease outcomes. Further replicated studies with larger sample size are needed to verify the relationship between candidate CNVs and BPD.



The heterogeneity of genetic architecture across populations often leads to diverse genetic findings on the phenotypic outcomes of interest [46,47]. The diversity of CNVs in different ethnic groups has also been noted previously [48,49]. Among CNV studies in BPD, to our best knowledge, we are the first to conduct a genome-wide level of CNV analysis in an Asian population. For identified potential CNV regions for BPD, we also compared our results with findings from previous studies in different samples. The CNV regions that reported consistently in ours and previous studies may represent common risk regions across populations for BPD. If validated by experiments, novel CNV regions that were only reported in our study may indicate population specific genetic components for BPD, such as the CNV region on chromosome 3p14.2.



By conducting functional analysis using GO terms for our mapped CNV genes, we found that the top three enriched pathways were involved in biological adhesion, cell adhesion, and neuron projection (Table 4). Several other genetic association studies, but not CNV studies, have also performed pathway analysis for BPD related candidate genes. The top significant GO pathways reported in Chang et al., are amine binding, synapse transmission, and transmission of nerve impulse [50]. Another study applied pathway analysis while incorporating information of allele-specific gene methylation [51]. They reported enriched pathways for extracellular matrix in brain, gated ion channel, and neurotransmitter receptor related pathways. Their findings support the involvement of biological functions of cell adhesion and neuronal transmission underlying bipolar illness. Further studies to investigate the interaction and networks among identified molecules for BPD could be conducted to understand the pathophysiology of BPD.



There are several limitations in the present study. First, DNA pooling strategy is restricted to the original study design (i.e., for our study, bipolar disorder vs. control) and not flexible for conducting secondary data analysis. If there is a belief of true genetic heterogeneity in disease subtypes or the genetic factors are influenced by other covariates, it is not possible to adjust results for these concerns. Second, employing a series of data filtering steps may cause false-negative findings for certain CNV regions. In addition, because there is no consensus of a standard method for CNV calling, we used a second calling algorithm for our identified CNV regions. In the 12 reported CNV regions (listed Table 3 and Table 5), only the loss CNV region at chr19: 24193894:24282139 were consistently called by both calling algorithms. It is consistent with prior study showing that both algorithms have high reproducibility rates in loss CNV regions, but low rates in gain CNV regions [52]. In future study, applying multiple CNV calling algorithms and conducting experimental validation are desired. Third, due to having a small sample size we could only identify relatively common CNVs. Very rare or de novo CNVs are likely to be ignored. Nevertheless, we conducted power calculation [53] using median Log R ratio within a CNV region. We took one CNV at chr11: 13,224,130–13,256,233 as an example (see Table 3). The power for detection of signal difference between cases and controls can reach 0.87 in the current study. Follow-up individual studies with larger sample sizes should be designed to validate and test associations for identified CNV regions. Fourth, CNV regions that do not have any mapped genes (i.e., in gene desert regions) are not reported as the potential roles of these CNVs are not clear. Lastly, the experimental quality to detect CNV signals is a concern for pooling based design as there are no easy indicators to estimate the accuracy of CNV signal intensities. Other than two selected CNVs for experimental validation, we do not conduct a genome-wide level of validation and independent replication studies for our identified CNV regions. Further large-scale individual and replication studies are needed to investigate the roles of these CNVs and eventually provide clues for the underlying mechanisms of bipolar illness.




5. Conclusions


There are many difficulties faced in performing CNV studies as most of the disease associated CNVs are complex, rare and usually with marginal effect size. The heterogeneity of bipolar disorder brings another challenge in explaining the CNV results. Proper data filtering and analysis strategies are recommended in exploring the relationships between CNVs and the trait of interest. We conducted the first pilot study of CNV association with BPD in Han Chinese population and identified several potential CNV regions for BPD. It is important to design further validation experiments and perform basic research for these CNVs to reveal their biological roles and explain their involvement in bipolar illness.
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Appendix Table A1. Reported associated CNV regions in previous BPD studies.
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No.

	
Chromosome

	
Start Position

	
End Position

	
CNV type

	
Length (kb)

	
Gene

	
References






	
1 *

	
6q27

	
168,090,000

	
168,330,000

	
duplication

	
240

	
KIF25, FERM, MILT4, DACT2

	
[28,29]




	
2 *

	
6q16.3

	
101,953,625

	
102,624,651

	
unknown

	
671.027

	
GRIK2

	
[32]




	
3 *

	
9q34.3

	
136,600,001

	
14,0273,252

	
duplication

	
3,673.252

	
None

	
[31]




	
4 *

	
19p12

	
20,001,614

	
20,177,979

	
both

	
176.366

	
ZNF682, ZNF90, ZNF486

	
[30]




	
5 *

	
19p12

	
24,013,968

	
24,295,825

	
duplication

	
281.858

	
ZNF254

	
[30]




	
6

	
1

	
28,399,376

	
28,842,172

	
unknown

	
442.797

	
DNAJC8, ATPIF1, SESN2, MED18, SNHG3-RCC1, RCC1, TRSPAP1, RAB42, TAF12PHACTR4

	
[32]




	
7

	
1

	
47,415,160

	
47,600,013

	
duplication

	
184.854

	
PDZK1IP1; TAL1; STIL; CMPK1

	
[24]




	
8

	
1

	
144,439,082

	
144,791,590

	
unknown

	
352.509

	
PDZK1, GPR89A, GPR89C, NBPF11, LOC728912, FAM108A3

	
[32]




	
9

	
1q21.1

	
142,400,001

	
148,000,000

	
both

	
5,600

	
None

	
[31]




	
10

	
1q25.1

	
173,769,777

	
173,978,862

	
duplication

	
209.086

	
TNR

	
[30]




	
11

	
1

	
232,723,219

	
232,828,069

	
unknown

	
104.851

	
IRF2BP2

	
[31]




	
12

	
2

	
196,772,221

	
197,165,580

	
unknown

	
393.36

	
HECW2

	
[32]




	
13

	
3

	
8,896,559

	
8,980,146

	
unknown

	
83.588

	
RAD18

	
[32]




	
14

	
3p14

	
65,649,762

	
65,848,146

	
deletion

	
198.385

	
MAGI1

	
[33]




	
15

	
3p26

	
2,124,587

	
2,955,648

	
duplication

	
831.062

	
CNTN4

	
[24]




	
16

	
3q

	
120,920,000

	
121,100,000

	
deletion

	
180.001

	
GSK3beta

	
[7]




	
17

	
4q34.3

	
180,892,619

	
180,921,485

	
unknown

	
28.867

	
None

	
[31]




	
18

	
5

	
180,098,728

	
180,099,664

	
unknown

	
0.937

	
OR2Y1

	
[32]




	
19

	
6

	
56,430,743

	
56,816,422

	
unknown

	
385.68

	
DST

	
[32]




	
20

	
6

	
57,290,380

	
57,621,335

	
unknown

	
330.956

	
PRIM2

	
[32]




	
21

	
6

	
157,140,777

	
157,572,094

	
unknown

	
431.318

	
ARID1B

	
[32]




	
22

	
7

	
34,935,017

	
35,044,178

	
unknown

	
109.162

	
DPY19L1

	
[32]




	
23

	
7

	
75,975,221

	
76,052,734

	
unknown

	
77.514

	
UPK3B

	
[32]




	
24

	
7

	
88,226,688

	
89,777,622

	
unknown

	
1,550.94

	
ZNF804B, MGC26647, STEAP1, STEAP2, FLJ21062

	
[32]




	
25

	
7

	
132,588,362

	
133,401,053

	
unknown

	
812.692

	
EXOC4

	
[32]




	
26

	
8

	
13,236,908

	
13,304,907

	
unknown

	
68

	
DLC1

	
[31]




	
27

	
9

	
111,037

	
169,075

	
unknown

	
58.039

	
CBWD1

	
[32]




	
28

	
9

	
71,289,871

	
71,308,782

	
duplication

	
18.912

	
None

	
[29]




	
29

	
9

	
134,871,014

	
134,890,520

	
unknown

	
19.507

	
GTF3C5, GFI1B

	
[31]




	
30

	
9q31.1

	
104,826,097

	
104,885,068

	
both

	
58.972

	
None

	
[30]




	
31

	
10

	
8,108,359

	
8,192,845

	
duplication

	
84.487

	
GATA3

	
[24]




	
32

	
10q11

	
47,010,000

	
47,170,000

	
duplication

	
160

	
ANTXRL

	
[28]




	
33

	
10

	
50,334,496

	
50,490,772

	
unknown

	
156.277

	
ERCC6, PGBD3, CHAT, SLC18A3

	
[32]




	
34

	
10

	
51,497,689

	
52,053,743

	
unknown

	
556.055

	
FAM21A, FAM21B, ASAH2, SGMS1

	
[32]




	
35

	
12

	
7,884,583

	
8,017,012

	
duplication

	
132.43

	
SCL2A3M, SLC2A14

	
[29]




	
36

	
12p11.21

	
31,202,250

	
31,301,551

	
duplication

	
99.302

	
OVOS2

	
[30]




	
37

	
12

	
107,243,140

	
107,266,950

	
unknown

	
23.811

	
CMKLR1

	
[31]




	
38

	
13

	
49,932,650

	
49,982,221

	
deletion

	
49.572

	
AJ412031; AJ412041

	
[24]




	
39

	
13

	
90,848,887

	
92,317,488

	
unknown

	
1,468.60

	
GPC5

	
[32]




	
40

	
14

	
24,044,551

	
24,047,311

	
unknown

	
2.761

	
CMA1

	
[32]




	
41

	
15q.2

	
21,905,523

	
22,023,095

	
deletion

	
117.573

	
None

	
[29]




	
42

	
15q13.2

	
28,000,001

	
29,000,000

	
both

	
1,000

	
CHRFAM7A, MRMR15

	
[31]




	
43

	
16p13.11

	
14,700,001

	
16,700,000

	
duplication

	
2,000

	
None

	
[31]




	
44

	
16

	
15,435,825

	
15,889,948

	
unknown

	
454.124

	
C16orf45, KIAA0430, NDE1, MYH11, C16orf63

	
[32]




	
45

	
16

	
15,950,934

	
16,296,168

	
unknown

	
345.235

	
ABCC1, ABCC6, NOMO3,

	
[32]




	
46

	
16

	
16,333,234

	
16351940

	
unknown

	
18.707

	
LOC339047

	
[32]




	
47

	
16

	
68,705,029

	
69,071,678

	
unknown

	
366.65

	
PDPR, MGC34761, EXOSC6, AARS, DDX19B, DDX19A, ST3GAL2, FUK

	
[32]




	
48

	
17

	
36,465,156

	
36,477,177

	
deletion

	
12.022

	
KRTAP2-4; KRTAP2-4

	
[24]




	
49

	
17q25.1

	
68,400,001

	
72,200,000

	
duplication

	
3800

	
None

	
[31]




	
50

	
18p11.21-11.1

	
14,694,694

	
15,092,421

	
duplication

	
397.728

	
ANKRD30B

	
[30]




	
51

	
18

	
27,210,737

	
27,312,663

	
unknown

	
101.927

	
DSG4, DSG3

	
[32]




	
52

	
19

	
49,581,647

	
49,644,505

	
unknown

	
62.859

	
ZNF285A, ZNF229

	
[32]




	
53

	
19

	
58,644,961

	
58,689,358

	
unknown

	
44.398

	
ZNF761, ZNF813, ZNF765, ZNF331

	
[32]




	
54

	
21q11.2

	
13,200,001

	
15,300,000

	
both

	
2,100

	
ANKRD21, LOC441956, LIPI, RBM11

	
[31]




	
55

	
21

	
36,429,132

	
36,440,730

	
unknown

	
11.599

	
CBR3

	
[32]








* No. 1–5 CNV regions were overlapped with our findings.
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Appendix Table A2. Enriched gene set of the mapped genes in the potential CNV regions.







Appendix Table A2. Enriched gene set of the mapped genes in the potential CNV regions.







	
Functional Category

	
Genes on CNV

	
p-value c

	
Adjusted p-value d

	
O a

	
N b






	
Bipolar Disorder

(DB_ID:PA447199)

	
PCDH17, ANK3, GABRR3, GABRG2, NOS1, CNTNAP2, ADCYAP1, PTPRG, NRXN1, PCLO, TACR1, TCF4, JMJD8, ADCY3, CSMD1, DPP10, CNTN5, RELN, NALCN, HTR5A, AGAP1, DFNB31, HTR4, GPC6, ATP8A2, GABRA1, CNTN6, ASTN2, FAT1, ADCY8, ARNTL, RPL14, PPP3CC, NRG1, MAGI1, PDLIM5, MMP16, HTR2A, CHRM2

	
2.40 × 10 −5

	
0.0252

	
39

	
286




	
Mood Disorders

(DB_ID:PA447209)

	
ANK3, GABRR3, GABRG2, NOS1, SST, CNTNAP2, ADCYAP1, PTPRG, PCLO, GRM5, TACR1, TCF4, HTR6, DPP10, CNR2, CNTN5, GPM6A, NALCN, RELN, HTR5A, GRIK1, DFNB31, AGAP1, CNTN6, GABRA1, ASTN2, NXPH1, FAT1, ARNTL, NRG1, PDLIM5, HTR2A, CHRM2

	
5.53 × 10 −5

	
0.0290

	
33

	
235








a O: number of genes in the gene set and also in the category; b N: number of reference genes in the category; c p-value was derived from Fisher’s exact test; d adjusted-p-value was corrected by Benjamini-Hochberg correction.
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