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Abstract: This review compiles information regarding the use of alginate, and in particular 

alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and 

functionality are shown to be important parameters in design of alginate-based matrices for 

cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of 

alginate used, its concentration, the choice of gelation technique (ionic or covalent), and 

divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can 

control cell–matrix interactions. Gelation of alginate with concomitant immobilization of 

cells can take various forms. Droplets or beads have been utilized since the 1980s for 

immobilizing cells. Newer matrices such as macroporous scaffolds are now entering 

the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems 

show utility in the translation of in vitro cell culture to in vivo tissue engineering 

applications. Alginate has a history and a future in 3D cell culture. Historically, cells were 

encapsulated in alginate droplets cross-linked with calcium for the development of 

artificial organs. Now, several commercial products based on alginate are being used as 3D 

cell culture systems that also demonstrate the possibility of replacing or regenerating tissue. 

Keywords: alginate; hydrogel; 3D; drug development; tissue regeneration; drug discovery; 

AlgiMatrix®; NovaMatrix®-3D; beads; bioprinting 
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1. Introduction 

The world around us, including the human body, is constructed in three dimensions. Since the 1940s, 

cells have been cultured, often attached to glass or plastic surfaces, essentially in two dimensions. 

Today, there is a need for more realistic and controllable culture systems that support cell growth, 

organization and differentiation essentially as found in tissues and organs. Growing cells in 3D adds a 

variety of aspects more physiologically significant than would be possible in 2D. A few of these are: 

cell culture and tumor formation of malignant cells; more relevant drug development and testing; 

in vitro culture of multi-cellular tissue for later implantation. 

Despite the major differences compared to the naturally occurring 3D cell environments found in 

tissue, most cell culture studies in vitro are performed using cells cultured as monolayers (2D) on hard 

plastic or glass surfaces because of the ease, convenience and high cell viability associated with this 

culture method. However, forcing cells to adapt to an artificial flat and a rigid surface can alter cell 

metabolism and change or reduce functionality, thereby providing results that may not be similar to 

expected behavior in vivo [1,2]. A powerful and reliable tool for evaluation of cell behavior is gene 

expression data. Significant changes comparing cells cultured in 2D compared to 3D can be found 

associated with key biological processes such as immune system activation, defense response, cell 

adhesion and tissue development [3,4]. There is no doubt that 3D systems are biologically more 

relevant and 3D cell culture is therefore expected to also provide cellular responses that will be of 

higher biological relevance. 

The significance and potential of in vitro cell culture studies are great considering the need for more 

cost efficient development of new drugs, time efficient treatment of cancer patients, and an 

understanding of developmental biology and mechanisms of stem cell differentiation. One example 

relates to drug development where, currently, only 12% of drugs that enter clinical trials are eventually 

approved for use in humans [5]. Most drugs fail due to efficacy, which likely could have been revealed 

at an earlier time point with more reliable cell culture models. Consequently, appropriate cell models 

would also reduce the need for animal trials, especially for toxicity assays [6]. Reducing the number of 

animal trials would also be in alignment with the principles of the 3Rs [7] (Replacement, Reduction, 

Refinement) which are considered an ethical framework for conducting scientific experiments using 

animals humanely. To better predict the clinical outcome of medical treatments such as chemotherapy, 

the selection of drugs can be optimized based on the response from isolated cancer cells from 

the patient.  

There are several formats and materials available that enable 3D cell culture. We will focus on the 

“physical” differently shaped hydrogel formats like beads, moldable gels, injectable gels and 

macroporous structures. However, other technologies such as hanging drop, low-binding plastic, 

pyramid plates, etc., are also available for culturing cells in 3D. Some macroporous scaffolds such as 

meshes, fibrous patches or foams, enable cell seeding throughout the thickness of the matrix and cells 

may be spatially organized. Such systems are, however, considered semi-3D or 2.5D [1,8] as the initial 

cell–matrix interaction will be more similar to what is found in 2D with cells spreading on the surface 

of fibers or pore walls. This is especially true for polystyrene-based 3D cell culture materials.  

Nearly all cells that make up tissue reside in an extracellular matrix (ECM). The ECM consists of a 

complex three-dimensional (3D) fibrous meshwork of collagen and elastic fibers embedded in a highly 
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hydrated gel-like material of glycosaminoglycans, proteoglycans and glycoproteins [1]. All together 

they provide complex biochemical and physical signals to the cells. A wide range of biomaterials have 

demonstrated applicability as matrices providing a biologically more relevant environment for cells 

mimicking several characteristics of the ECM such as physical, mechanical and biological properties. 

3D cell culture can be defined as when cells are embedded in a scaffold or matrix and signals from the 

scaffold and surrounding cells can be received from all directions [1,8]. Cell to cell communication can 

occur in three dimensions as well. This requires that cells are first suspended in a hydrogel precursor 

solution and next entrapped by a gel initiation reaction forming covalently or non-covalently linked 

molecules [9,10]. Polymer hydrogels are considered well suited for 3D cell culture as they have 

similarities to natural extracellular matrix. Examples of synthetic materials with the capability of 

forming hydrogels are polyethylene glycol (PEG), poly(hydroxyethyl methacrylate) (polyHEMA), 

polyvinyl alcohol (PVA) and polycaprolactone (PCL). Natural polymers (and proteins) able to form 

hydrogels are alginate, chitosan, hyaluronan, dextran, collagen and fibrin where alginate hyaluronan 

(as a product of bacterial fermentation) and dextran represent non-animal derived materials. 

Despite the homogeneous nature of synthetic polymers, their use as cell-entrapping materials has to 

some extent been avoided due to harsh polymerization conditions [1]. However, some initiator systems 

for photopolymerization of, for example, PEG-diacrylates are suitable for cell based hydrogel 

formation considering cytotoxicity, crosslinking efficiency and crosslinking kinetics [11]. Components 

of animal tissue are naturally recognized by cells due to the presence of cell binding ligands [12] and 

have been considered as good materials for scaffolds. However, these materials are less attractive 

because of a reduced degree of experimental control due to batch-to-batch variations as a result of their 

inherent diversity in material composition. Animal-derived materials may also have limited 

availability, and for use in the clinic, there are potential risks of immunogenicity and pathogen 

transmission; hence, obtaining regulatory approval for such applications may be challenging [8]. 

Natural hydrogels of non-animal origin are of great interest because of their outstanding biocompatibility 

and mild gelation conditions, although limited control of gelation kinetics, inherent variations in 

material composition, and limited control over mechanical properties have been reported [1].  

Alginate hydrogels have demonstrated high applicability as a structure for cell immobilization. 

Different soft and elastic hydrogels with typically 98%–99% aqueous media can be formulated at 

physiological conditions with preservation of cell viability and function. Since alginate microbeads 

were used for the first time in humans as an artificial pancreas in the 1980s [13], the polymer has been 

used with different cell types both in vivo and in vitro. Alginate is recognized for properties and 

characteristics such as its ability to make hydrogels at physiological conditions, gentle dissolution of 

gels for cell retrieval, transparency for microscopic evaluation, gel pore network that allows diffusion 

of nutrients and waste materials in addition to its non-animal origin. Culture of cells in alginate beads 

is well known [14], and a standard guide describing cell encapsulation in alginate is available from 

ASTM International [15]. Well-characterized alginates with high purity should be used to prepare 

hydrogels with consistent mechanical properties for cell encapsulation.  

In this review, we will give an introduction to physicochemical and biological properties of 

alginates and the interaction of alginate hydrogels with cells. In addition, we will focus on 3D 

cell culture techniques and present aspects of immobilization of cells in alginate beads and new 

alginate-based 3D cell culture kits commercially available for use with standard cell culture well plates.  
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2. Alginate  

Commercially available alginates are extracted from harvested brown seaweeds. Significant 

amounts can also be produced by fermentation of bacteria, but this technology is not yet 

commercialized and will not be presented herein. The annual production of algal alginates is estimated 

to be approximately 38,000 tons worldwide and the largest volumes go to the food and pharmaceutical 

industry [16]. Alginates are also used as biomaterials in biomedical products for human use which are 

already on the market or in clinical trials. Such applications include wound healing, a bone graft 

substitute for spine fusion, cell therapy, and augmentation of the left ventricle wall for patients with 

dilated cardiomyopathy [17].  

2.1. Alginate Structure, Chemistry and Purity 

Alginates are polysaccharides which consist of linear (unbranched) 1,4 linked residues of  

β-D-mannuronic acid (M) and its C5-epimer α-L-guluronic acid (G) (Figure 1). The alginate molecular 

structure contains blocks of consecutive G or M monomers (-GGG- or -MMM-) or blocks of alternating 

monomers (-MGMG-). The G content of most algal alginates varies between 30% and 70%. The 

blocks vary considerably in length and distribution depending on from what species and part of the 

seaweed the alginate is extracted. The chemical composition and distribution of blocks in the alginate 

molecule play a major role in their capability of forming ionic gels.  

 

Figure 1. The structure of alginate shown as the segment of ..MMGG.. residues [18]. 

Epimerisation of the M residues changes the conformation of the sugar from 4C1 to 1C4 [19,20]. 

At neutral pH alginate has a polyanionic character due to the pKa values D-mannuronic and 

L-gulronic acid of 3.38 and 3.65, respectively [21]. Hence, acidification below pKa leads to insoluble 

alginic acid, whereas alginate molecules in solution have an extended random coil conformation due to 

intramolecular electrostatic repulsion between neighboring negative charges. This results in highly 

viscous solutions of alginate even at low concentrations where the viscosity is influenced by the ionic 

strength, temperature and molecular weight [21].  

Commodity alginates, while having similar physicochemical properties, may contain contaminants 

inducing adverse cell reactions or undesired and uncontrolled cell to matrix interactions. Cells do not 

have receptors that recognize alginates and regular commercially available alginates can be considered 
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as inert if they are of ultrapure quality. Impurities that should be considered and controlled in alginates 

for biomedical applications are presented in ASTM F 2067 and relate to the level of endotoxins, 

protein contaminants, elemental impurities and microbial bioburden [22]. The presence of residual 

endotoxins will, for example, interact with the liposolysaccharide (LPS) receptor CD14 [23]. CD14 is 

involved in different cell signaling pathways related to management of sepsis and can induce secretion 

of cytokines and upregulation of adhesion molecules. To ensure consistent cellular behavior in the 

presence of alginate biomaterials, the use of well-characterized and highly purified alginates is essential. 

2.2. Alginate Hydrogels  

2.2.1. Ionic Gelation 

Alginates have high affinity for alkaline earth metals and ionic hydrogels can be formed in the 

presence of divalent cations (except Mg2+) [21,24–27]. Chelation of the gel-forming ion occurs 

between two consecutive residues (Figure 2A) and an intermolecular gel network is formed as a result 

of a cooperative binding of consecutive residues in different alginate chains (Figure 2B). The G-blocks 

are the key structural elements in alginate hydrogels, but also alternating blocks may contribute to gel 

formation [27]. The different junction zones in an alginate gel are presented in Figure 2C. Alginates 

have different affinity for divalent cations in an increasing manner as Ca2+<Sr2+<Ba2+ [28]. The 

selection of type and amount of gel forming ion will influence the resulting properties of the hydrogels 

and can be utilized as an important tool to optimize elasticity, swelling and stability. Additionally, gel 

properties can be tuned by the selection of type and concentration of alginate. In general, gel elasticity, 

porosity and stability increases by increasing G-content, length of G-blocks and molecular weight [27,29]. 

The nanoscale porosity of an alginate gel network is tunable and in the range of 5–200 nm [29]. 

This will enable cellular access to nutrients and removal of waste products and synthesized products 

such as insulin, dopamine, endostatin and nerve growth factors [30,31].  

Ionically gelled alginate can be dissolved by treatment with chelating agents for divalent cations 

such as citrate and ethylenediaminetetraacetic acid (EDTA) or hexametaphosphate [14]. This enables 

gentle and fast release of cells entrapped in alginate hydrogels for further downstream processing such 

as flow cytometry.  

Ionic cross-linking between multivalent cations and alginate takes place instantaneously. Gels are, 

therefore, not easily prepared by mixing these two components directly. Two main techniques have 

been developed to provide controlled introduction of gelling ions to alginates with a subsequent 

formation of a gel. The techniques are referred to as diffusion gelation and internal gelation.  

Diffusion gelation is characterized by allowing gelling ions to diffuse from a large outer reservoir 

into an alginate solution. This is commonly used for preparation of hydrogel beads which will be 

formed instantaneously when an alginate solution is dripped into a solution containing gelling ions 

(usually CaCl2) [32]. This technique is described in more detail in Section 3.1. 

Internal gelation is characterized by a controlled release of gelling ions from an inert source that is 

dissolved or suspended within the alginate solution. Examples of sources of gel forming ions include 

carbonate salts (SrCO3 or CaCO3), calcium EDTA, calcium citrate, calcium sulfate (CaSO4), calcium 

alginate (Ca-alginate) and calcium gluconate [27,33–36]. Release of gel forming ions can be induced 
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by a change in pH by, for example, incorporating the slowly hydrolyzing glucono--lactone (GDL), 

limited solubility of a calcium salt source (Ca-alginate, CaSO4) and/or presence of chelating 

agents [37]. Compared to the method of diffusion gelation, the gelling ions are here released in a 

controlled fashion and over a period of time from sources distributed throughout the alginate. A molar 

ratio between GDL and SrCO3/CaCO3 of 2:1 will provide neutral gels [38]. Examples where this 

technique is utilized are described in more detail in Sections 3.2 and 3.3.  

 

Figure 2. Four consecutive G-residues from two chain segments of one or two alginate 

molecules creating a binding site for divalent cations (A). Formation of an intermolecular 

network of alginate molecules formed in presence of gelling ions such as Ca2+ (B). Gelling 

ions organized in alternative junction zones (C) [18]. 

2.2.2. Covalent Gelation  

Covalently cross-linked hydrogels can be prepared from chemically modified alginates [39,40]. To 

better control the physical properties of alginate gels, covalent cross-linking has been broadly 

investigated [41]. A covalently cross-linked hydrogel is chemically stable and can provide different 

modes of stress relaxation. By covalently conjugating methacrylate groups onto the alginate backbone, 

covalently cross-linked hydrogels can be prepared in the presence of a photoinitiator and UV light. 

Cells will be evenly distributed throughout the hydrogel if the cells are suspended in the alginate 

solution prior to photocrosslinking [17,42]. Photocrosslinking has a number of different advantages. 
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By comparison with ionic gelation, photocrosslinking allows formation of more stable alginate 

hydrogels independent of the level of gel forming ions and non-gelling ions [42]. Mechanical 

properties and biodegradation rates of a hydrogel can be adjusted by varying the degree of alginate 

methacrylation [43].  

2.3. Alginate Derivatives  

Alginates can be chemically functionalized to alter physicochemical and biological characteristics 

and properties. One example is mentioned in Section 2.2.2 related to preparation of covalently gelled 

matrices. One approach for tuning degradation of alginate hydrogels includes the use of covalently 

cross-linked methacrylated alginates where the linkages are hydrolytically degradable [43,44], or 

inclusion of linkages that can be cleavable by matrix metalloproteinases (MMP) [45]. Another 

approach to enhance depolymerization is by partial periodate oxidation where some of the residues 

along the chain are made degradable by β-elimination [46–48]. Other tunable properties are solubility, 

hydrophobicity, bioactivity etc. Due to the free hydroxyl and carboxyl groups distributed along the 

backbone, alginate is a suitable candidate for chemical modification, and these are presented in 

reviews by Yang et al. [49] and Pawar and Edgar [50]. The most important modifications of alginate 

hydrogels for use in combination with cells are related to the ability to tailor and control the type and 

degree of cell interactions. This can be achieved by covalently conjugating alginate with heparin binding 

peptides (HBP) or peptide sequences found in ECM proteins. Cell matrix interactions can thereby be 

enabled via the non-integrin receptor syndecan for HBP or integrins for ECM peptides [51–54]. ECM 

peptide coupled alginates will be discussed in more detail below. 

2.3.1. Peptide-Coupled Alginates 

The ability to modify the chemical and physical properties of alginate is a highly compelling 

incentive for using alginates in tissue engineering and regenerative medicine applications [55]. Cell 

attachment peptides, especially the sequence RGD (arginine-glycine-aspartic acid), have been shown 

to improve cellular adaptability to matrices, and such is also the case with alginate. Using aqueous 

carbodiimide chemistry, alginate can be modified by covalently grafting peptide sequences to the 

alginate molecule [56]. The interaction of cells with biomaterials is often mediated through cellular 

receptors that recognize adhesion molecules at material surfaces. One common example of such an 

adhesion ligand is the RGD peptide sequence, and it has been shown that RGD-coupled alginates 

(Figure 3) have the ability to initiate biological interactions between alginate hydrogels and cells [56,57].  

 

Figure 3. Chemical structure of RGD-alginate (arginine-glycine-aspartic acid conjugated 

to sodium alginate) (prepared using ISIS Draw). 
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As cells do not have receptors that recognize alginate, proliferation and differentiation of some cells 

within an alginate hydrogel do require signaling molecules and matrix interaction. Studies using an 

alginate-based scaffold for 3D cell culture (NovaMatrix®-3D) have shown the importance of the 

presence of the RGD peptide sequence for cell proliferation. Table 1 lists various established cell lines 

grown in the NovaMatrix®-3D cell culture system and if RGD was required for cell proliferation. The 

commercial RGD-alginate NOVATACH MVG GRGDSP was used at a concentration of 120 µM RGD 

obtained by dilution with non-RGD alginate. (NOVATACH MVG GRGDSP contains 0.02–0.04 µmole 

RGD/mg alginate, and the exact value is reported on the certificate of analysis.). For example, the 

non-tumorigenic cell lines C2C12 (mouse myoblast) and MDCK (canine kidney) did not proliferate in 

the alginate hydrogel during the first few weeks of culture. However, if RGD was available through 

incorporation of RGD-alginate, then cells displayed rapid proliferation. The data [58] on cell 

proliferation of C2C12 myoblast cells corroborated the importance of RGD peptide on cell 

proliferation found by Rowley and Mooney [59]. Moreover, after several weeks of culture, the C2C12 

cells started to proliferate and fuse into multinucleated myofibrils as seen in Figure 4A. Figure 4 shows 

confocal images of the spatial organization of different cell types that were vital stained with Calcein 

AM (Molecular Probes) while inside the gel [60].  

 

Figure 4. Cellular organization within the alginate gel obtained by confocal microscopy of 

vital stained (Calcein AM) cells. Panels A–D and E–F show cells cultured without and 

with RGD-alginate, respectively. C2C12: murine myoblasts, HT-29: human colorectal 

adenocarcinoma cells, V79-379A: Chinese hamster lung fibroblasts, L1210: murine 

leukemia suspension cells, NIH:OVCAR-3: human ovarian adenocarcinoma cells, 

HCT 116: human colorectal carcinoma cells. Magnification ×100, scale bar 100 µm. 

Adapted from [60]. 
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Table 1. The importance of RGD (120 µM) as RGD-coupled alginate for cell proliferation in NovaMatrix-3D (reproduced from 

www.novamatrix-3D.com) [58].  

Cell type Cell line ID Source 
NOVATACH MVG GRGDSP 

required for proliferation1 

Cell lines—Non-tumorigenic origin 

Lung fibroblasts (Chinese hamster) V79-379A Former Flow Laboratories No2 

Myoblasts (epithelial, murine) C2C12 ATCC CRL-1772 Yes 

Fibroblasts (embryonic, murine) NIH:3T3 ATCC CRL-1658 No3 

Kidney epithelial cells (Madin Darby, canine) MDCK ATCC CCL-34 Yes 

Cell lines—Carcinoma/adenocarcinoma origin 

Cervix (human) NHIK 3025 Norwegian Radium Hospital No 

Ovarian (human) 
NIH:OVCAR-3 

SKOV-3 

ATCC HTB-161 

ATCC HTB-77 

Yes 

No3 

Colon (myofibroblasts, hTERT-immortalized, human) CT5.3 Proprietary No3 

Colorectal (human) 

LoVo 

SW620 

HT-29 

HCT 116 

ATCC CCL-229 

ATCC CCL-227 

ATCC HTB-38 

ATCC CCL-247 

No3 

No 

No3 

No 

Lung (human) A549 ATCC CCL-185 No3 

Prostate (human) DU145 ATCC HTB-81 No2,3 

Breast (human) 

MCF7 

ZR-75-1 

MDA-MB-231 

MDA-MB-361 

ATCC HTB-22 

ATCC CRL-1500 

ATCC HTB-26 

ATCC HTB-27 

No3 

Pancreas (human) 
PANC-1 

MIA PaCa-2 

ATCC CRL-1469 

ATCC CRL-1420 

No2,3 

No2,3 

Leukemia (suspension, murine) 
L1210 

P388-D1 

ATCC CCL-219 

ATCC CCL-46 

No3 

No 
1 Cell proliferation evaluated during three weeks of culture (NOVATACH is a tradename for RGD-alginate from FMC BioPolymer). 2 NOVATACH MVG GRGDSP 

influence on cell morphology. 3 Cell proliferation was accelerated in presence of NOVATACH MVG GRGDSP. 
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Increased cell proliferation has been seen by increasing density of RGD [59,61]. Variations in 

nanoscale organization of RGD was shown to influence adhesion, proliferation and differentiation of 

preosteoblasts [61], which can be obtained by diluting RGD-alginates with different RGD densities 

along the chain with regular alginate. The peptide densities in alginate hydrogels can be optimized 

dependent on the cell culture system, but they are mainly comparable to the RGD density of commonly 

used biological matrices. Fischbach et al. [62] presented the number of RGD molecules in tumors 

associated ECM to be 8.6 × 1016 per mL matrix, which equals 143 µM. In the literature, the reported 

densities of peptides are presented in different ways such as µg peptide/mg polymer, µmole 

peptide/mg polymer, fmole/cm2 (2D), degree of substitution based on monomer or molecule (chain).  

The presentation of the RGD peptide sequence has been shown to be an important cue regulating 

cellular behavior. This was demonstrated by, for example, Hsiong et al. [63] who compared the 

behavior of MC3T3-E1 preosteoblasts, human bone marrow stromal cells (hBMSCs) and D1 stem 

cells encapsulated in alginate hydrogels containing either linear G4RGDSP or cyclic G4CRGDSPC. 

The results showed that linear RGD densities promoted osteogenic differentiation of committed cells 

(MC3T3-E1 preosteoblasts), but not for the hBMSCs and the stem cells. However, osteoprogenitor 

differentiation of all cells was seen in the gels presenting the higher-affinity cyclic form of the 

adhesion ligand. As presented in a review of Perlin et al. [64], the affinity and selectivity for different 

types of integrin receptors varies among cell types and is dependent on the flanking amino acids of 

RGD, the conformation and the length of the peptide sequence. Some integrins are cell type specific, 

whereas others mediate different cellular behaviors such as adhesion and migration. Hence, the type of 

optimal RGD containing peptide sequence and RGD density will vary depending on the study, which 

must be seen in combination with the physical properties of the peptide-containing alginate. Other 

extracellular matrix peptide sequences in addition to RGD have been found to be of interest to couple 

to alginate such as REDV (found in fibronectin), YIGSR (found in laminin) and VAPG (found in 

elastin) [51,65]. 

3. 3D Cell Culture 

There are several approaches and adaptations of 3D cell culture for cell immobilization. One system 

will likely not fit all types of experiments or cell types, but as can be seen in this section, alginate 

provides a great toolbox for design and optimization. There is one major difference to be aware of 

when comparing different techniques for formation and evaluation of multicellular spheroids. This 

relates to whether the spheroids that are formed are monoclonal or polyclonal in origin. Spheroids of 

monoclonal origin are formed from a single proliferating cell as will be the situation for cells in most 

hydrogel systems. Spheroids of polyclonal origin arise from an aggregating cell population and will be 

the situation when using low attachment plates or hanging drop techniques.  

Technologies for formation of scaffolds as an alternative to cell culture on 2D plastics include 

beads, fibers, membranes, meshes, foams or hydrogels of different shapes and sizes [1,66]. Even 2D 

cell culture onto different types of scaffolds show benefits over monolayers on plastics, and valuable 

information about cellular responses to matrix stiffness and incorporated cell signaling factors has been 

obtained from such experiments [59,67–69]. Four technologies of alginate hydrogels are presented in 

this section and include beads, delayed gelation systems, macroporous scaffolds and 3D printed 
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scaffolds. Other technologies providing 3D cell culture in alginate scaffolds are honeycomb alginate 

scaffolds with an aligned pore structure for improved vascularization [70], scaffolds impregnated with 

magnetically responsive nanoparticles for stimulation of cells and induced organization of endothelial 

cells into capillary-like structures [71], and alginate scaffolds with controlled nucleation of hydroxyapatite 

generating a composite scaffold promising for bone tissue engineering [72,73]. 

Alginate scaffolds for 3D cell culture can be tuned and optimized for a wide range of applications 

and cell types. In addition to tuning the interaction of cells to their surrounding hydrogel via 

peptide-coupled alginates as described in Section 2.3.1, the elasticity of the gels can be controlled. By 

optimizing alginate concentration, type of alginate and selection of cross-linking technology (ionic or 

covalent) in addition to cross-linking density, alginate hydrogels can be made to match the elasticity of 

most types of tissue (Figure 5) and can be used to control stem cell differentiation [69,74–76]. The 

elasticity of alginate hydrogels can be made to match the elasticity of all types of soft tissue [28,74,77]. 

Huebsch et al. reported that bond formation between mammalian mesenchymal stem cells (mMSCs) 

and RGD peptide was regulated by both the density of available peptides (7.5–150 µM RGD 

concentration) and matrix rigidity (2.5–110 kPa) thereby demonstrating the importance of these two 

parameters [69].  

 

Figure 5. Elasticity scale of soft tissues. Adapted from reference [74]. Reprinted with 

permission from AAAS. 

3.1. Beads 

The technique to immobilize cells, particularly pancreatic islet cells, in calcium alginate matrices 

was developed by Lim and Sun at the end of the 1970s [13]. By coating the alginate gel bead with 

polycations like poly-L-lysine, poly-L-ornithine, or chitosan, the strength of the surface coating as well 

as the capsule porosity can be controlled (Figure 6) [78].  

 

Figure 6. Encapsulation of cells with alginate. (From FMC internal archive.) 
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One important characteristic of alginates is their very limited inherent cell adhesion and cellular 

interaction. This is an advantage for cell encapsulation applications, but can be a disadvantage for 

tissue engineering applications. However, alginate can be modified by the addition of cell attachment 

peptides or other biologically active molecules (see Section 2.3.1). 

Encapsulation in an alginate hydrogel has been shown to be a rapid, non-toxic, and versatile method 

for immobilization of macromolecules and cells. The creation of artificial organs by encapsulating 

cells or tissue is under study for treatment of a variety of diseases such as Parkinson’s disease, liver 

failure, hypocalcemia as well as chronic pain and, perhaps the most well-known example, an artificial 

pancreas for the treatment of diabetes (encapsulated pancreatic islets). 

Most methods for encapsulation of cells or tissue in alginate gels basically involve two main steps. 

The first step is the formation of an internal phase where the alginate solution containing biological 

materials is dispersed into small droplets. In the second step, droplets are solidified by gelling, or by 

forming a membrane at the droplet surface. 

Bead size is one of the most important parameters of alginate gel beads and capsules in biomedical 

applications. The appropriate size will often be a compromise. The bead itself must be large enough to 

contain the biological material. Larger beads are also easier to handle during washing or other 

treatments. In many applications involving cells, the cells should be homogeneously distributed within 

the internal capsular matrix. When generating beads the desired mean size and acceptable size 

distribution should be accounted for. The size of the beads is mainly controlled by regulating the 

formation of the droplet. 

Droplet size is dependent upon several factors: the size of the material to be immobilized or 

encapsulated (i.e., single cells or cell aggregates such as pancreatic islets), the technique used to 

generate droplets (i.e., pipette or syringe, coaxial air flow, electrostatic generator, jet-cutter, etc.), the 

viscosity of the alginate solution, and the rate of alginate flow. Generally, for biomedical applications, 

droplet size is regulated to give a gelled bead having a diameter of <200–1000 µm. Per unit volume, 

smaller beads yield a larger surface area to transplant volume, a ratio that results in enhanced survival 

of tissue due to better nutritional and oxygen supply. Various techniques can be used to form droplets, 

as described in more detail by Dulieu et al. [79]. These include:  

 Extrusion through a needle: Beads can be made by dripping an alginate solution from a syringe with 

appropriate diameter needle directly into a gelling bath. While this method does not require any 

instrumentation, the size and size distribution of the produced beads are difficult to control. 

 Coaxial air or liquid flow: The coaxial air jet system is a simple way of generating small beads 

(down to around 400 µm), although the size distribution will normally be larger as compared to an 

electrostatic system. In this system, a coaxial air stream is used to pull droplets from a needle tip 

into a gelling bath (Figure 7). 

 Electrostatic potential: An electrostatic potential can be used to pull droplets from a needle tip into a 

gelling bath. The primary effect on droplet formation by the electrostatic potential is to direct 

charged molecules to the surface of the droplet to counteract surface tension. Using this type of 

instrument, beads below 200 µm and with a small size distribution may be generated. The desired 

bead size is obtained simply by adjusting the voltage (electrostatic potential) of the instrument. The 

principle for making smaller beads by electrostatic potential bead generators is shown in Figure 7.  
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 Vibrating capillary jet breakage: A vibrating nozzle generates drops from a pressurized vessel. 

 Rotating capillary jet breakage: Bead generation is achieved by cutting a solid jet of fluid coming 

out of a nozzle by means of a rotating cutting device. The fluid is cut into cylindrical segments that 

then form beads due to surface tension while falling into a gelling bath. 

 

Figure 7. Principle of electrostatic (left) and coaxial air flow (right) bead generators [80]. 

Encapsulation of living cells, a form of cell immobilization, is one application for producing 

artificial organs and cell therapy constructs. Here, cells are mixed with alginate (osmolality is adjusted) 

and then the alginate + cell solution is dripped (or extruded) into a bath of calcium chloride (Figure 6). 

Since the ionic cross-linking reaction is instantaneous, living cells are entrapped inside an alginate 

hydrogel bead. The porosity of the alginate bead is such that oxygen and nutrients can diffuse into the 

gel while cell products, such as proteins, can diffuse out of the gel. The hydrogel is, however, porous 

barrier to antibodies and immune cells such as macrophages. Furthermore, it is possible to implant his 

alginate hydrogel ”biofactory” into an animal or man where the implant can act as a continuous 

production system for, for example, insulin. Implantation studies into animals and diabetic 

patients [81–83] have shown that long-term functionality.  

Some examples of encapsulated cells are shown in Figure 8. These photomicrographs are not of the 

same magnification. The panel on the left shows encapsulated genetically engineered murine 3T3 cells. 

Encapsulated Human Embryonal Kidney (HEK) 293 cells are shown in the center panel. Pancreatic 

islets encapsulated in alginate gel beads are shown in the right panel. Cells producing the 

anti-angiogenic protein endostatin have been encapsulated in ultrapure alginate and implanted into the 

brains of dogs being treated for spontaneous brain cancer [84–86]. Many other cell types have been 

immobilized in alginate such as adipose-derived stem cells [87,88], mesenchymal stem cells [89,90], 

and chondrocytes [91,92]. 
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Figure 8. Examples of encapsulated cells in alginate. (From FMC internal archive.) 

Clinical cell therapy applications of alginate immobilized cells such as the treatment of Parkinson’s 

disease as well as diabetes are available at the web sites of Living Cell Technologies [93,94]. 

3.2. Delayed Gelation Systems  

Delayed gelation systems where gels are formed inside the body (in situ) allow implantation with 

less invasive surgery which is easier to deliver since they will exactly fill tissue voids and defects. The 

mixture of gel forming ions suspended or dissolved in an alginate solution is, along with internal 

gelation principles, the basis of delayed gelation. Examples include mixing of an alginate solution with 

a suspension of calcium alginate particles [95], calcium carbonate and GDL [96] or calcium sulfate [97,98]. 

A promising approach for tissue engineering of hyaline cartilage is utilization of human 

mesenchymal stem cells (hMSCs). The most sufficient chondrogenic differentiation is obtained in 3D 

culture systems. A novel model 3.2.1 system for 3D chondrogenic differentiation of hMSCs has 

recently been described [95]. Here, cells were entrapped in an alginate hydrogel formed as calcium ions 

diffused from calcium alginate particles subsequent to mixture with a solution of sodium alginate (see 

principle in Figure 9). This technology, also known as “self-gelling” alginate, allows homogeneous 

distribution of the cells within a hydrogel of defined size and shape. The study demonstrated how 

hMSCs were differentiated resulting in up-regulation of a large number of genes associated with 

hyaline chondrogenesis which, for example, may be used to repair potential lesions of hyaline 

cartilage [95].  
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Figure 9. Principle of delayed gelling of a hydrogel made from alginate only [99]. By 

mixing a sodium alginate solution with a dispersion of insoluble calcium alginate, using for 

example connected syringes, a homogeneous hydrogel can be made. Upon mixing, gel 

forming ions rearrange between insoluble and soluble alginate molecules resulting in 

gel formation. 

3.3. Macroporous Scaffolds 

Macroporous scaffolds may allow larger constructs as the mass transfer of nutrients, oxygen and 

waste removal will be enhanced [100]. The structure does also have predefined dimensions and they 

can better withstand deformation compared to compact hydrogels [101]. Also, the pore size and 

porosity can be tuned and optimized for the specific application and cell type [102–104]. However, a 

major challenge with such scaffolds may be cell seeding efficiency and cell distribution, as the pores 

are often either too small to let cells in or too large to retain cells inside. A variety of approaches have 

been investigated to overcome this challenge utilizing, for example, cell seeding devices [105], 

bioreactors [106], centrifugal force [107] and vacuum [108,109].  

Two alginate based macroporous systems for cell culture are available, AlgiMatrix® and 

NovaMatrix®-3D from Thermo Fisher Scientific/Life Technologies (Carlsbad, CA, USA) and FMC 

BioPolymer/NovaMatrix (Sandvika, Norway), respectively. Both systems are based on ionically gelled 

and dried macroporous scaffolds and are available as sterile discs pre-filled in different formats of 

standard cell culture well plates [77,110]. Both scaffolds turn into hydrogels upon rehydration 

following cell seeding. Further, cells can be stained and microscopically evaluated while entrapped, 

the gels can be dissolved for easy retrieval of cells and multicellular structures and their gel elasticity is 

tunable. The main differences between these sponge-like matrices are the seeding technique and ability 

to control cell to matrix interactions. A concentrated suspension of cells in culture media is absorbed 

by the dry AlgiMatrix® scaffold as it is applied on the top surface and cells will be entrapped inside the 

porous structure. Centrifugation may be utilized to ensure a more homogeneous distribution of cells 

throughout the scaffold. For NovaMatrix®-3D, cells are applied on top of the scaffold suspended in an 

alginate solution dissolved in cell culture media. As shown in Figure 10, the foam structure is utilized 

as a scaffold and source of gel forming ions to induce gelation of the applied alginate solution. When 

the pores are filled with the alginate solution, a hydrogel is subsequently formed in situ. This technique 
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ensures a cell seeding efficiency of about 100% and an even distribution of cells throughout the 

thickness of the gel. NovaMatrix®-3D cell culture kits are also available with RGD-coupled alginate 

which is added to the dry sponge together with the cells. See Section 2.3.1 for examples of cellular 

responses with or without RGD-coupled alginate. 

 

Figure 10. Schematic presentation of the steps for in situ gelation in macroporous alginate 

scaffolds. (A) Am alginate solution with cells is applied on top of a dry scaffold containing 

calcium ions, (B) rehydration of the scaffold by the alginate solution filling its  

pores and diffusion of calcium ions from the foam lamellas to the absorbed alginate,  

and (C) formation of a calcium cross-linked alginate hydrogel inside the pores of the foam. 

From reference [77]. 

3.4. Alginate as a Bioink and 3D Bioprinting  

3D printing as a technology is available in industrial and home-use applications. The ability to 

construct customized three dimensional structures on demand using relatively simple materials is 

leading to a boon in manufacturing sectors. The application of 3D printing technology in the fields of 

tissue engineering and regenerative medicine has already begun [111]. Bioprinting uses biocompatible 

materials and cells to form a variety of 3D formats where cell function and viability are preserved 

within the printed construct. Various 3D bioprinting technologies can already form vascular-like 

tubes [112], artificial skin [113], cartilage [114], and a wide range of tissue constructs also including 

stem cells [115]. A public workshop was hosted by the U.S. Food and Drug Administration (U.S. 

FDA) in October of 2014 under the title “Additive manufacturing of medical devices: An interactive 

discussion on the technical considerations of 3D printing”. The workshop agenda, participants and 

presentations held at this workshop are available at the U.S. FDA web sites [116]. 

3D bioprinting techniques such as ink-jet and extrusion have the need for biocompatible “inks”. 

Alginate has shown particular relevance as a bioink due to its compatibility with cells, ease in forming 

cross-linked hydrogels, and the ability to control biodegradation. Khalil and Sun demonstrate 

bioprinting of 3D tissue constructs using alginate and endothelial cells [117] and alginate stabilized 

with gelatin was a suitable matrix for 3D bioprinting of bone-related SaOS-2 cells [118,119]. Common 

to these reports is a high (>80%) cell viability following bioprinting. These reports also show two 

different approaches in the design of alginate as a bioink. Khalil and Sun [117] use a multinozzle 
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system that prints alginate + cells and overlays with calcium chloride in order to induce gelation. The 

addition of a low-melting gelatin together with an alginate solution forms a gel when the solution 

printed at 37 °C cools. Moreover, addition of a calcium poly phosphate salt or bioglass to the 

cell-containing hydrogel led to enhanced biomineralization by SaOS-2 cells [118,119]. 

Using 3D printing technology and alginate as a bioink, Zhao et al. show the advantage of printing 

Hela cells to form an in vitro cervical tumor model in order to study disease pathogenesis and enable 

new anti-cancer drug discovery with a more relevant physiological disease model [120]. This report 

used gelatin together with alginate to initiate gelation prior to printing. The printed construct was 

further strengthened after printing by subsequent addition of a calcium salt solution. The authors 

included fibrinogen in the gelatin/alginate formulation to mimic ECM components. Printed HeLa cells 

formed spheroids which were shown to be more resistant to paclitaxel treatment than HeLa cells grown 

as a 2D cell culture.  

By oxidizing alginate, a known technique to “build in” biodegradability [121], Jia et al. demonstrate 

the interaction of alginate viscosity and density on printability while biodegradability of printed 

scaffolds containing human adipose-derived stem cells was also described [122]. 

Optimization of alginate for use in different printing technologies is, however, necessary. For inc-jet 

types of printing, droplet formation is impacted by alginate molecular weight, solution viscosity, 

monomer composition (if ionic cross-linking is to be used to form a gel), and purity which impacts on 

biocompatibility. Xu et al. studied the characteristics of the droplet formation process using alginate 

viscosity and shear rate [123]. Furthermore, Gasperini et al. present a bioprinting techniques based on 

electrohydrodynamic processes to jet droplets of alginate containing cells [124]. 

3.5. Cryopreservation 

Simple cell and tissue preservation techniques have disadvantages including limited shelf-life, high 

cost, risk of contamination or generic drift [125]. A more tangable option is cryopreservation where 

cells are preserved by cooling them to low temperatures typically in liquid nitrogen (−196 °C). At such 

low temperatures, biological activities of the cells are effectivly stopped. These includes the biochemical 

reactions that would lead to cell death under normal conditions and damage caused by the formation of 

ice crystals. Cryopreservation provides a valuable means for storing cells and tissues for future use. 

However, certain drawbacks exist, including damage that occurs to the cells during the freezing and/or 

thawing processes and the need to culture the cells after thawing to ensure that they have recovered 

properly. Such drawbacks limit the value of cryopreserved cells, particularly in situations where it is 

desirable to use the cryopreserved cells immediately or shortly after they have been thawed. There 

exist several methods to deal which such problems. One alternative is to suspend the cells in an 

alginate solution prior to cryopreservation. The cells can then be encapsulated (see Section 3.1) after 

thawing and used for their desired purpose without the need to culture the cryopreserved cells. 

Alternatively, cells are entrapped in hydrogels before they are cryopreserved [126,127]. This method is 

based on the discovery that cryopreserved cells that have been thawed, immediately suspended in 

alginate, and after encapsulation remain viable and are ready to be used [128]. To obtain off-the-shelf 

availability, distribution and storage of constructs, sterility testing and quality control, preservation of 

cells and tissues is vital [129].  
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4. Future 

Developing 3D cell culture technology will lead to more physiologically relevant and likely more 

predictive approaches to organogenesis, tissue morphology, the importance of hypoxia, drug 

discovery, cell-based assays, and reduced animal use. The ability of 3D cell culture systems to mimic 

tissue structures, either from single cells or co-cultures, is a great advance from 2D monolayer 

cultures. Cell–cell communication and differentiated cellular function are more relevant in 3D and the 

impact of 3D cultures on predicting efficacy of drug treatments to actual in vivo response is great. 

 

4.1. Drug Discovery 

Allowing cells to acquire a more natural phenotype when grown in 3D as opposed to 2D is a great 

advantage. This is especially true for the field of drug discovery where countless examples have been 

shown of the mismatch between in vitro drug effect and in vivo drug efficacy. 

4.1.1. Cancer 

Already in 1990 an alginate culture method was used to test the effects of vincristine and 

5-fluorouracil on HT-29 human colon carcinoma cells [130]. Creating a more clinically relevant model 

of tumor biology has been a prime impetus for developing 3D culture systems. Burdett et al. [131] 

described the superiority of 3D over 2D cell culture where mimicking tumor behavior and drug 

resistance often seen in vivo is important. AlgiMatrix® is a commercial alginate-based product for 3D 

cell culture. Godugu et al. [110] demonstrate the possibility of using this culture system as an in vitro 

tumor model for anticancer drug screening. They treated several human non-small cell lung cancer cell 

lines (A549, H460, and H1650) with several anticancer drugs used in the clinic. 

4.1.2. Safety and Toxicology 

HepG2 liver cells have been encapsulated in sterile alginate hydrogels and used to demonstrate 

their capability to metabolize a coumarin pro-drug in a manner similar to in vivo hepatic metabolic 

activity [132]. Another hepatic cell line, Huh-7, cultured in an alginate hydrogel showed cellular 

organization and hepatocyte architecture with respect to cell polarity, cell junctions and the appearance 

of bile canaliculi. The alginate-encapsulated Huh-7 cells also expressed specific hepatitis C virus 

receptors indicating that this 3D culture system may be useful in viral studied and liver tissue 

engineering [133]. Alginate encapsulation of hepatocytes provides protection from shear stress for 

hepatocyte aggregates in a 3D bioreactor cultures system [134]. In addition, the alginate hydrogel 

seems to provide the cells with a good support for extracellular matrix deposition. 

4.2. Tissue Engineering and Regenerative Medicine 

4.2.1. Skin 

Establishing normal physiology and function in a traditional 2D in vitro cell culture of skin is 

almost impossible. The advent of organotypic culture systems does allow approximation of skin 
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complexity. 3D culture of skin allows dermatological studies which would otherwise be unsafe for 

animals and humans such as validating the mechanisms of skin diseases and testing the therapeutic 

potential of experimental drugs [135]. Developing a 3D in vitro human skin co-culture model has 

shown promise for detecting skin irritants as an alternative to in vivo animal testing [136]. 

4.2.2. Cartilage 

Specific signature gene cluster regulation was seen during in vitro chondrogenic differentiation of 

human bone marrow-derived mesenchymal stem cells which were immobilized in a self-gelling 

alginate hydrogel. Upregulation of transcription factor genes as well as a signature cluster of 

extracellular matrix genes occurred during chondrogenesis while gene clusters involved in immune 

response, blood vessel development, and cell adhesion were downregulated [95]. Marker genes 

identified in this study show that stem cells can be directed to produce hyaline cartilage when 

immobilized in 3D alginate hydrogels. 

Immobilizing cells with chondrogenic potential in an alginate hydrogel has shown that neocartilage 

can be formed by mesenchymal stem cells [137]. Here, production of not only type II collagen but also 

assembled fibrils was dependent on cell seeding density. When cells were seeded at a high density, 

fibril assembly and procollagen processing occurred at a distance from the cell surface. 

4.2.3. Cardiac 

Cardiac tissue engineering may involve the regeneration of myocardial tissue by first immobilizing 

stem cells in a scaffold or matrix in vitro and then placing such a scaffold on, or within, the damaged 

cardiac tissue. Immobilizing myocardial stem cells within a scaffold ensures that they will remain 

within the cardiac tissue after implantation. Ceccaldi et al. [138] has studied the influence of alginate 

composition on mesenchymal stem cells in alginate scaffolds. Their conclusion was the G-rich alginate 

hydrogels provided the most appropriate milieu for MSCs intended for cardiac therapy. Levit et al. [139] 

have shown similar results where alginate-encapsulated human mesenchymal stem cells were placed 

onto a rat heart as a hydrogel patch. The alginate hydrogel retained the MSCs and led to an 

improvement of cardiac function following induced myocardial infarct. 

5. Conclusions  

Culturing cells in three dimensions will soon be the preferred way to investigate cell–cell 

interactions, growth into tissue, mechanisms of stem cell differentiation, and improved drug efficacy, 

to name a few areas. Various materials are available to enable 3D cell culture among which is the 

polysaccharide alginate. Immobilizing cells in alginate hydrogels is a mild process that occurs under 

physiological conditions. In addition, cells can be retrieved from alginate hydrogels by a simple 

de-gelling process that does not require disaggregation of multi-cellular structures. Alginate can be 

modified by the attachment of peptides that mimic extracellular matrix proteins, such as RGD, thereby 

allowing immobilized cells to seemingly interact with the alginate hydrogel. We have shown here that 

some cells actually require the presence of RGD in order to proliferate and form 3D structures. 
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Encapsulating cells in alginate hydrogel droplets was first described in the 1980s and various 

formulations are still under investigation for constructing artificial organs for, for example, treatment 

of Type I diabetes. Recently, two commercial alginate-based 3D cell culture systems have made their 

appearance. Cells are immobilized in an alginate foam-like scaffold and can then proceed to grow 

in three dimensions. Publications describing these 3D cell culture systems have begun to appear 

demonstrating their utility in several areas. Especially important for the use of alginate in 3D cell 

culture is the ability to change the physical characteristics of the hydrogel by changing the amount or 

type of gelling ions and/or alginate. One can now tailor-make an environment to which cells can adapt 

or differentiate. 

In fields as diverse as tissue engineering and drug discovery, alginate-based 3D cell culture systems 

show a significant advantage over classical 2D culture techniques. In addition, automation of 3D 

culture techniques, especially for high throughput screening will greatly increase the use of culturing 

cells in this manner. Although most in vitro cell-based assays were originally designed using 2D cell 

cultures, it will be important to validate assays using a 3D culture system. New or adjusted detection 

chemistries may need to be developed in order to optimize the 3D cell model. This should not be 

detrimental to the use of 3D culture systems but rather an opportunity to improve and customize assay 

systems for multi-cellular structures. 

The future promises ingenuity in adapting 3D culture systems into the fields of regenerative 

medicine. Supporting and improving cardiac function after infarct, correcting osteoarthritic cartilage 

degradation, and providing artificial skin for in vitro safety studies are among the fields 3D culture can 

bring new products and ideas. Finally, the adaptation of 3D bioprinting using an alginate-based bio-ink 

shows great promise. Patient-specific printed constructs can soon be made using alginate and a 

patient’s own cells. The availability of a commercial ultrapure, low endotoxin sodium alginate as well 

as peptide-coupled alginate allows discrete cell signaling to be applied during 3D cell growth. 
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