

ISSN 2076-3921 www.mdpi.com/journal/antioxidants

Supplementary Information

The Effect of *Lactobacillus plantarum* ATCC 8014 and *Lactobacillus acidophilus* NCFM Fermentation on Antioxidant Properties of Selected *in Vitro* Sprout Culture of *Orthosiphon aristatus* (Java Tea) as a Model Study

Dase Hunaefi ^{1,2,*}, Divine N. Akumo ³, Heidi Riedel ¹ and Iryna Smetanska ^{1,4}

- ¹ Department Method in Food Biotechnology, Institute of Food Technology and Food Chemistry, Berlin University of Technology, Königin-Luise Str. 22, 14195 Berlin, Germany; E-Mails: heidiriedel80@yahoo.de (H.R.); smetanska@mailbox.tu-berlin.de (I.S.)
- ² Department of Food Science and Technology, Bogor Agricultural University, Bogor, Indonesia
- ³ Institute of Biotechnology, Laboratory of Bioprocess Engineering, Berlin University of Technology Ackerstr. 71-76, 13355 Berlin, Germany; E-Mail: akumo2@yahoo.com
- ⁴ Department of Plant Food Processing, University of Applied Science Weihenstephan-Triesdorf, Steingruber Str. 2, 91746 Weidenbach, Germany
- * Author to whom correspondence should be addressed; E-Mail: dase.hunaefi@mailbox.tu-berlin.de; Tel.: +49-30-314-712-63; Fax: + +49-30-832-766-3.

Plant	Condition of fermentation	Results				
		Phe	FD	FL	AA	
White cabbage	L. plantarum CECT 748,	NA	NA	NA	Oxygen radical	
(Brassica oleracea var.	Leuconostoc mesenteroides				absorbance capacity	
capitata cv. Megaton)	CECT 219 or a mixed				(ORAC) values	
[1].	culture of both strains.				(up to 2-fold) and NO	
					production inhibitory	
					potency (up to 2.6-fold).	
Oats (Avena sativa L.)	SSF with A. oryzae var.	Increased significantly	Increased siginificantly	NA	Increased siginificantly	
[2]	effuses, A oryzae, and	(p < 0.05); e.g.	(p < 0.05); e.g. Oats ethyl		(p < 0.05); e.g. Oats	
	A niger on four subfractions	oats water sub fraction	acetate sub fraction from		ethyl acetate sub fraction	
	of oats: n-hexane,	from 1,580.1 ±62.6 mg	3,714.8 ±94.3 mg of rutin		747.5 \pm 14.6 micromoles	
	ethyl acetate, n-butanol,	GAE/100 g DW	equivalents/100 g DW		of Trolox per gram of	
	and water with ethanol as	(un-fer.) to	(un-fer.) to		DW (un-fer.) to	
	solvent extractions.	3,632.7 ±73.1 mg	7,893.1 ±397.3 mg of rutin		$1,687.9 \pm 40.7$ (fer. with	
		GAE/100 g DW	equivalents/100 g DW		A. oryzae).	
		(fer. with A. oryzae).	(fer. with A. oryzae).			

Tabel S1. Recent investigations on plant fermentation and its effect on antioxidant properties.

Tabel S1. Cont.

Plant	Condition of fermentation	Results					
		Phe	FD	FL	AA		
Soybean [3]	The steamed soybeans were	253 (0 h) increased	Increased from	Total flavonols	The level of		
	let stand for 1 h at 37 °C to	to 9,414 mg/kg at	53.43mg/kg (0 h) to	increased	DPPH radical		
	cool down. After, the	the end of	67.76 mg/kg (12 h)-	(data divided into	scavenging		
	cooked soybeans was	fermentation (60 h).	73.39 mg/kg (24 h) -	different type	activity increased		
	inoculated with 5% (w/w)		94.32 mg/kg (36 h) -	flavonols) although	from 53.6 to		
	strain Bacillus subtilis CS90		105.30 mg/kg (48 h) –	flavanol gallates	93.9% by 60 h.		
	$(1.43 \times 10^7 \text{ cfu/mL})$ and		111.98 mg/kg (60 h).	contents decreased			
	fermented for 60 h at 37 °C						
	in incubator and sampled at						
	0, 12, 24, 36, 48, and 60 h.						
Anoectochilus	5×10 ⁶ cfu/mL <i>L. acidophilus</i>	Increased; e.g. leaf	NA	NA	It is clearly		
formosanus Hayata [4]	BCRC 17002,	(un-fer.) 6.07±1.0			shown an increase		
	Bifidobacterium longum	and fermented			in the detected		
	BCRC 14602, L. casei	14.05±1.0 mg/g.			antioxidant		
	subsp. Casei BCRC 12248				property may owe		
	was inoculated into 100 mL				to the increase of		
	vegetable juice.				total phenolic		
					compounds.		
Spirulina	B.bifidum, L. casei,	The results of their	NA	NA	The greater		
(Arthrospira platensis)	B. infantis, B. longum,	study indicated that			quantity of total		
[5]	Lactococcus lactis and	LAB-fermented			phenols in		
	L.acidophilus.	Spirulina contained			fermented		
		more polyphenols.			samples indicates		
					it possesses		
					greater		
					antioxidant		
					activity.		
Graptopetalum	L. acidophilus BCRC	Increased: e.g.	Increased: e.g. water	NA	The level of		
paraguayense	10695, L. plantarum BCRC	water extract of	extract of immature		antioxidants was		
E. Walther [6]	10357 and L. paracasei	immature	G. paraguayense		significantly		
	BCRC 14023.	G. paraguayense	E. Walther fermentation		increased in		
		E. Walther	by L. plantarum BCRC		immature G.		
		fermentation by	10357 increased from		paraguayense		
		L. plantarum	17.2 to 22.9 µg/mg.		E. Walther		
		BCRC 10357			fermented by		
		increased from 92.2			L. acidophilus		
		to 111 μg/mg.			BCRC 10695,		
					L. plantarum		
					BCRC 10357 and		
					L. paracasei		
					BCRC 14023.		

Tabel S1. Cont.

	Condition of fermentation		Results					
Plant			Phe	FD	FL	AA		
Codonopsis	Bifidobacterium longi	<i>um</i> B6 and <i>L</i> .	The fermentation	Unlike the total	NA	The lowest IC50 values		
lanceolata [7]			process significantly	phenols, fermentation		were 1.25 mg/mL for		
			increased the total	decreased the total		high pressure assisted		
			phenol content of	flavonoids. The lowest		extraction of B. longum		
			C. lanceolata when	flavonoid contents		fermented sample and		
			compared to the	were observed for high		1.18 mg/mL for		
			conventional	pressure assisted		L. rhamnosus fermented		
			extraction without	extraction of the		sample, indicating that		
			fermentation.	fermented		the fermented		
			The total phenol	C. lanceolata with		C. lanceolata extract had		
			content of	B. longum		the highest antioxidant		
			C. lanceolata was the	(0.44 mg RE/g) and		properties.		
			highest for high	L. rhamnosus				
			pressure assisted	(0.45 mg RE/g). The				
			extraction from	high pressure assisted				
			L. rhamnosus	extraction of				
			fermented	un-fermented samples				
			(8.45 mg GAE/g),	showed a maximum				
			followed by	flavonoid content of				
			B. longum fermented	1.30 mg RE/g,				
			samples	followed by				
			(8.25 mg GAE/g),	conventional				
			non-fermented	extraction of				
			(7.38 mg GAE/g),	un-fermented sample				
			and conventional	(0.78 mg RE/g).				
			extraction without					
			fermentation					
			(6.69 mg GAE/g).					
Peanuts [8]	Bifidobacterium	Gallic acid, caffeic			Regardl	ess of the starter organisms		
	longum B17,	acid, chlorogenic			used, la	ctic acid fermentation		
	Lactobacillus casei	acid and <i>p</i> -coumaric			could hi	ghly improve the DPPH		
	LC35 and	lactic acid			radical-	scavenging activity of PF		
	Lactobacillus	fermentation resulted			(Peanut	Flour). For example, at		
	acidophilus LA51	in a decrease in the			2 mg/m	L, the extract from FPF		
		content of these four			(Fermer	nted Peanut Flour) showed		
		phenolic acids.			54.1 to	85.6% scavenging activity		
					on DPP	H radicals.		

Phe = total phenolics; FD = total flavonoids; FL = total flavonols; and AA: antioxidant activity; SSF = solid state fermentations; and LSF = liquid state fermentations.

References

1. Martinez-Villaluenga, C.; Peñas, E.; Sidro, B.; Ullate, M.; Frias, J.; Vidal-Valverde, C. White cabbage fermentation improves ascorbigen content, antioxidant and nitric oxide production inhibitory activity in LPS-induced macrophages. *LWT-Food Sci. Technol.* **2012**, *46*, 77–83.

- Cai, S.; Wang, O.; Wu, W.; Zhu, S.; Zhou, F.; Ji, B.; Gao, F.; Zhang, D.; Liu, J.; Cheng, Q. Comparative study of the effects of solid-state fermentation with three filamentous fungi on the Total Phenolics Content (TPC), flavonoids, and antioxidant activities of subfractions from Oats (*Avena sativa* L.). J. Agr. Food Chem. 2011, 60, 507–513.
- 3. Cho, K.M.; Lee, J.H.; Yun, H.D.; Ahn, B.Y.; Kim, H.; Seo, W.T. Changes of phytochemical constituents (isoflavones, flavanols, and phenolic acids) during cheonggukjang soybeans fermentation using potential probiotics *Bacillus subtilis* CS90. *J. Food Compos. Anal.* **2011**, *24*, 402–410.
- 4. Ng, C.-C.; Wang, C.-Y.; Wang, Y.-P.; Tzeng, W.-S.; Shyu, Y.-T. Lactic acid bacterial fermentation on the production of functional antioxidant herbal *Anoectochilus formosanus* Hayata. *J. Biosci. Bioeng.* **2011**, *111*, 289–293.
- 5. Liu, J.-G.; Hou, C.-W.; Lee, S.-Y.; Chuang, Y.; Lin, C.-C. Antioxidant effects and UVB protective activity of Spirulina (*Arthrospira platensis*) products fermented with lactic acid bacteria. *Process Biochem.* **2011**, *46*, 1405–1410.
- 6. Wu, S.-C.; Su, Y.-S.; Cheng, H.-Y. Antioxidant properties of *Lactobacillus*-fermented and non-fermented *Graptopetalum paraguayense* E. Walther at different stages of maturity. *Food Chem.* **2011**, *129*, 804–809.
- He, X.; Zou, Y.; Yoon, W.-B.; Park, S.-J.; Park, D.-S.; Ahn, J. Effects of probiotic fermentation on the enhancement of biological and pharmacological activities of *Codonopsis lanceolata* extracted by high pressure treatment. *J. Biosci. Bioeng.* 2011, *112*, 188–193.
- 8. Wang, N.-F.; Yan, Z.; Li, C.-Y.; Jiang, N.; Liu, H.-J. Antioxidant activity of peanut flour fermented with Lactic Acid Bacteria. *J. Food Biochem.* **2011**, *35*, 1514–1521.

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).