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Abstract: Mushrooms have been long accomplished for their medicinal properties and bioactivity.
The ancients benefitted from it, even before they knew that there was more to mushrooms than just
the culinary aspect. This review addresses the benefits of mushrooms and specifically dwells on
the positive attributes of mushroom polysaccharides. Compared to mushroom research, mushroom
polysaccharide-based reports were observed to be significantly less frequent. This review highlights
the antioxidant properties and mechanisms as well as consolidates the various antioxidant appli-
cations of mushroom polysaccharides. The biological activities of mushroom polysaccharides are
also briefly discussed. The antiviral properties of mushrooms and their polysaccharides have been
reviewed and presented. The lacunae in implementation of the antiviral benefits into antiCOVID-
19 pursuits has been highlighted. The need for expansion and extrapolation of the knowns of
mushrooms to extend into the unknown is emphasized.
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1. Introduction

Mushrooms belong to the Basidiomycetes group of macrofungi. Mushrooms can grow
either above the soil (epigeous), or below the soil (hypogeous). Mushrooms are the choice
ingredients of gourmet cuisine globally, encompassing a unique flavor, that works culinary
wonders. A total of 2000 species of mushrooms exist, 25 of which are accepted as food and
few are commercialized. Mushrooms are also known for their nutritional, organoleptic
merits and medicinal properties [1,2]. Their therapeutic qualities, although known much
earlier, have recently been acknowledged and valued. The healing properties of mushrooms
were known in Chinese traditional medicine even as much as thousands of years before and
they are still being used today [3]. Mushrooms abound in essential amino acids, minerals,
proteins, and biologically active polysaccharides. They are predominantly consumed in
Asian countries, however, in recent years, Pleurotus ostreatus, Boletus edulis, Lentinula edodes
(Shiitake), Ganoderma lucidum (Reishi), Trametes versicolor, Grifola fronda (Maitake), Agaricus
bisporus and Agaricus subrufescens, have been widely popularized worldwide [4,5].

Mushrooms have the inherent ability to accumulate minerals and vitamins and various
other secondary metabolites, such as organic acids, alkaloids, phenols and terpenoids [6].
The production of mushrooms has been continuously on the increase, China being the
largest global producer [1,7,8]. Wild mushrooms also have their own popularity and
nutritional, sensory and pharmacological attributes [2]. Mushrooms are an alternative
source of new antimicrobial compounds, terpenes, steroids, anthraquinones, quinolones
and benzoic acid derivatives, as well as oxalic acid, peptides, and proteins (primary
metabolites. Edible mushrooms possess B1, B2, B12, C, D, and E tannins of nutritional
significance [9,10], becoming a rich reservoir of diverse nutraceuticals displaying the
synergistic effects of multiple bioactive compounds [11–15].
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The pharmaceutical potential of mushrooms has in the last few decades escalated, and
as of now mushrooms are realized and branded as mini-pharmaceutical factories [8,16].
The contents of biologically active substances may vary considerably, affected by variations
in strain, substrate, cultivation, developmental stage, age, storage conditions, processing,
and cooking practices [12,13,17]. However, whatever the case, there is no dearth for
bioactive substances in mushrooms. The exhaustive list of acids, terpenoids, sesquiterpenes,
polyphenols, lectins, alkaloids, lactones, sterols, metal chelating agents, nucleotide analogs,
vitamins, glycoproteins, ergosterols, volatile organic compounds and polysaccharides are
there as always.

The current review will focus on the briefly reviewing the biological activity of mush-
rooms followed by reviewing the antioxidant activity of mushrooms. The antiviral proper-
ties of mushrooms, specifically the antiCOVID-19 activity of mushrooms has been elabo-
rately dealt with. The need for improvising the gaps in the proper utilization of this natural
resource for positive outcomes has been discussed as a future outlook.

2. A Snapshot of the Biological Activities of Mushrooms

Mushrooms are responsible for over a hundred odd medicinal functions. Its key
medicinal applications include: antioxidant, anticholesterolemic, anticancer, antidiabetic,
antiallergic, immune modulating, cardiovascular protection, antiviral, antibacterial, antipar-
asitic, anti-inflammatory, antifungal, detox and hepatoprotective effects [18–23]. Various
mushroom extracts could mediate decreased activity of inflammatory mediators (nitric ox-
ide (NO), cytokines, and prostaglandins), reducing cell inflammations. Various mushroom
extracts have been successfully demonstrated for: immune modulator [24–27], antitu-
mor/anticancer [28–32], antibacterial and antiviral [33–35], antioxidant [36–39], and anti-
hypoglycaemic [40–42] applications and as antiatherosclerotic agents [43]. Shaffique et al.
have very recently reviewed the antioxidant attributes of medicinal mushrooms [44]. The
efficacy of the bioactive compounds can be largely influenced by the mushroom type, sub-
strate, cultivation conditions and fruiting conditions, stage of development, age, storage
conditions and processing and cooking methods [43].

The anticancer milestones of mushrooms have been elaborately reviewed by Ren et al. [45].
We will highlight a few major outlines. Agaricus silvaticus mushrooms, when supplemented
in food, reduced glycaemia levels in cancer patients [46] and proved beneficial in patients
with colorectal cancer (postsurgery) [43]. A polysaccharide from Grifola frondosa hyped
the immune system, when administered orally to breast cancer patients [47]. Japanese
researchers confirmed that oral administeration of Lentinula edodes mycelial extracts helped
Japanese chemotherapy patients [48–52] and β-glucan lentinan increased the lifetime of
advanced gastric cancer patients [53]. Agaricus silvaticus reduced nausea and abnormal
bowel symptoms in those subjected to chemotherapy for breastcancer [54]. A meta-analysis
suggested that mushroom intake reduced the incidence of breast cancer [55]. Consump-
tion of mushrooms prevented colitis-associated cancer by reducing cell proliferation and
mucosal inflammation [56]. Oral intake of powdered Agaricus bisporus by prostate cancer
patients influenced prostate-specific antigens (PSA) and altered the etiology of recurrent
prostate cancer through its immuno modulating activity [57–59].

Holmes [60] and Chang et al. [61] confirmed the antiobesity activity of Ganoderma
lucidum in mice by altering gut microbiota composition. In a clinical trial in 2009, John-
son et al. [62] confirmed that a daily oral dose of AndoSan (a mushroom extract mixture
containing A. blazei mycelium 82%, Hericium erinaceum 15%, Grifola frondosa 3%) when
administered to subjects for 12 days, led to significant in vivo reduction in interleukin-1
(IL-1). The genus Cordyceps includes C. sinensis and C. militaris which are the most
valued species in Traditional Chinese Medicine [63]. These have been established for
immunological regulation, free radical scavenging, anticancer, antimicrobial, analgesic,
antihyperlipidemic, antileukemic and lung improving attributes. The immunomodulatory
active substances from mushrooms stimulate immune effector T cells. Cytotoxic dendritic
cells (DCs), lymphocytes, T lymphocytes (CTL), macrophages and natural killer (NK)
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cells, resulting in cytokine expression and interleukins (ILs), tumor necrosis factor-alpha
(TNF)-α, and interferon-gamma (INF)-γ are stimulated by bioactive substances from vari-
ous mushrooms [64,65]. Other immunomodulators like lectins, proteins, polysaccharides
and terpenoids are also known [66]. Triterpenoids such as lanostane present in wood-
decaying mushrooms, Ganoderma sp, exhibiting immunomodulating and anti-infective
effects [67–69]. G. lucidum, Grifola frondosa, Flammulina velutipes, Agaricus bisporus, Agaricus
blazei, Coprinus cinereus, Cordyceps sinensis, Laetiporus sulphureus, Lentinus tigrinus, Trametes
versicolor, Amanita pantherina, Boletus satanas, Ischnoderma resinosum, Lactarius deterrimus and
Volvariella volvacea are reputed for their immunomodulatory activities [70–75]. Mushrooms
can act as adaptogens and immunostimulators, and their immunostimulatory property is pri-
marily prophylactic and non-invasively prevents infectious diseases and tumor metastases.

The genus Pleurotus has several species that produce mevinolin [76]. Oyster mush-
room produced lovastatin; when 5% of the dried oyster mushroom fruiting bodies was
added to a high-cholesterol diet, cholesterol was significantly reduced. Mushrooms are able
to redistribute cholesterol in favor of high-density lipids (HDL), reduced production of total
cholesterol (TC), very-low-density lipoprotein (VLDL), low-density lipoprotein (LDL), re-
duced cholesterol absorption and β-hydroxy β-methylglutaryl-CoA (HMG-CoA) reductase
activity in the liver [77]. Mushrooms are also well known for their antimicrobial activ-
ity, L edodes exhibits antimicrobial action against both Gram-positive and Gram-negative
bacteria [78] and various other mushroom species have been well established in terms of
this attribute.

3. Antioxidant Activity of Mushrooms

Researchers have established the fact that the antioxidant activity of mushroom is the
genesis of a plethora of bioactivities. Antioxidant compounds have been extracted from
fruiting bodies, mycelium and broth of various mushrooms [79]. Mushroom components
that are reputed for their strong antioxidant properties include: phenolics, flavonoids, glyco-
sides, polysaccharides, tocopherols, ergothioneine, carotenoids, and ascorbic acid [80–158].
These antioxidant compounds from mushrooms have been identified and quantified using
high performance liquid chromatography (HPLC) and gas chromatography (GC), nuclear
magnetic resonance (NMR), Fourier transform infrared (FT-IR), UV-VIS spectroscopy and
various spectrophotometric assays [12,82–157]. The antioxidant potential of mushrooms is
a well-accepted fact. The antioxidant activity of mushroom extracts is measured using meth-
ods based on the transfer of electrons and hydrogen atoms, the ability to chelate ferrous
(Fe2+) and cupric (Cu2+) ions, the electron spin resonance (ESR) method, erythrocyte hemol-
ysis, and the monitoring of the activity of superoxide dismutase (SOD), catalase (CAT)
and glutathione peroxidases (GPx) [155–157]. Rufoolivacin, rufoolivacin C, rufoolivacin D
and leucorufoolivacin have been demonstrated for their ability to scavenge DPPH radi-
cals [157,158]. Ramaria flava phenolics aid in scavenging of 2,2-diphenyl-1-picrylhydrazyl
(DPPH) and hydroxyl (OH) radicals [159,160]. Ferreira et al. have published an excellent
review on the antioxidants in wild mushrooms [13]. This review chooses to highlight the
biological impacts of mushroom polysaccharides and their antioxidant activity.

3.1. Bioactivity of Mushroom Extracts and Their Polysaccharides

Pleurotus spp. have a vast diversity of polysaccharides, particularly heteropolysaccha-
rides and glucans [161]. These polysaccharides from the genus Pleurotus spp. are known to
carry special biological activities. Ruthes et al. (2016), in their review article, have reported
that mushrooms are abundant in heteropolysaccharides [4]. Heteropolysaccharides possess
anti-tumor, antioxidant, anti-inflammatory, and immunomodulatory activity. Barbosa et al.
(2020b) employed a special supercritical binary hot water and CO2 system to extract
polysaccharide-rich fractions from Pleurotus ostreatus [162] and their antioxidant potential
has been demonstrated in cell models. Phallus atrovovatus is known to possess abundant
polysaccharides, predominantly fractions of β-glucan and α-glucan. These polysaccharides
exhibited immune system modulating activity and high anti-inflammatory activity [163].
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Mingyi et al. (2019) showed that mushroom polysaccharides are high functionality
biomolecules [164]. The review consolidates the use of polysaccharides in foods, as medicines
and in cosmetics and its future as a functional food. Polysaccharides have now fully rec-
ognized as the major bioactive components of mushrooms [165,166], which are bound to
the mushroom cell wall by covalent (ester) linkages [84]. As already specified, the most
widely reported activity of mushroom polysaccharides is antioxidative [82,83,85,87–113].
Briefly, we now review and present a consolidated account of the various reports on the
antioxidant activity of mushroom polysaccharides published thus far. It is believed that
purified mushroom polysaccharides exhibit lower antioxidant activities than their original
crude extracts [95], while others reported high antioxidant activity in pure polysaccharide
fractions. A. brasiliensis polysaccharides (consisting mainly of (1→6)-β-D-glucans) obtained
by pronase deproteinization exhibited high antioxidative activity against •OH and O2

•−

radicals [109]. β-glycans are the predominant antioxidative components in mushrooms and
are responsible for activating systemic responses [167,168]. Thus, they are the jackpots of
mushroom polysacchrides in terms of their bioactive potential. Mushroom polysaccharides
and glycoconjugates are now becoming ideal candidates for creating new nature-based
medications, for dietary supplements and for treatment of oxidative stress-mediated disor-
ders. Polysaccharides also help prevent lipid peroxidation and the pathogenesis of various
gastro intestinal (GI) diseases, such as peptic ulcers, GI cancers and inflammatory bowel
disease which stem from oxidative stress [169,170].

Mushroom polysaccharides also display antimicrobial properties against pathogenic
bacteria and viruses. Data on mushroom polysaccharides for different basidiomycetes
indicated the presence of rhamnose, xylose, fucose, arabinose, fructose, glucose, mannose,
mannitol, sucrose, maltose and trehalose as the predominant mushroom-based polysaccha-
ride fractions [171]. Klaus et al. [86] encapsulated polysaccharide extracts from G. frondosa
in alginate gel beads to protect them from external influences and extend their applications.
Mushroom polysaccharides have been extracted from: A. blazei [172], A. brasiliensis [173], A.
ponderosa [174], oyster mushroom [175], A. polytricha [176], B. edulis [177], C. tricholoma [178],
C. militaris [179], Entolomalivido album [180], Gleoestereum incarnatum [181], G. lucidum [182],
Grifola frondosa [183,184], Hohenbuehelia serotina [185], Hypsizygus marmoreus [186], Iliodiction
cibarium [41,45], Lactarius deliciosus [187], L. edodes [188], Macrolepiota dolichaula [189], Phelli-
nus igniarius [190], Phellinus linteus [191], Phellinu spini [192], Pholiota adiposa [193], Pholiota
nameko [194], Pleurotus eryngii [195], P. ostreatus [196], Termitomyces heimii [197], Tricholoma
matsutake [198–201], Tricholoma mongolicum [202].

Likewise, mushroom polysaccharides are becoming increasingly well suited against
obesity. Combination cancer therapy using a Grifola frondosa β-glucan fraction and an
oligodeoxynucleotide is reported [203]. Pan et al. [204] showed that Amauroderma rude
polysacchrides inhibit tumor in mice. Encapsulation of Antrodia camphorata polysaccha-
rides in chitosan–silica/silica nanoparticles increased the anti-tumor activity of HepG2
liver cancer cells [205]. Polysaccharide-contents of Hericium erinaceus extracts inhibited
migration of cancer from colon tumors to lungs in murine models [206]. Lentinula edodes
enhanced immunity in healthy young people and oral intake of soluble β-glucans in el-
derly healthy adults increases the number of circulating β-cells [207]. Meng et al. [208]
and Yan et al. [209] have elaborately discussed the link between structural characteristics
of mushroom polysaccharides and their other relational antitumor aspects. Schwartz and
Hadar [56] have reviewed the possible mode of action of mushroom β-glucans against
cancer associated with inflammatory bowel disease in humans. Mushroom polysaccharides
seem to orchestrate antitumor properties via activation of the host immune response. Thus,
it is inferred that mushroom polysaccharides do not directly destroy tumor cells; instead,
they indirectly make an impact by preventing stress on the body, leading to a 50% reduc-
tion in the size of the tumor, thereby prolonging the survival time of the tumor-bearing
mice [51,177].

Supplementation with β-glucan from Pleurotus ostreatus is reported to protect athletes
from respiratory tract infections [210]. Silver nanoparticles were synthesized using glucan
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from Pleurotus florida. This could inhibit Klebsiella pneumoniae synergistically (along with
four medicinal antibiotics) [211]. Pleurotus nebrodensis polysaccharide enhanced immu-
nity and inflammatory responses by activating macrophages [37]. An exopolysaccharide
from Clitocybe maxima increased the immunological response and inhibited tumor cells in
mice [64,212]. Manna et al. [198] synthesized nanoparticles using a Lentinus squarrosulus het-
ero polysaccharide and successfully demonstrated it against E. coli and other bacteria. The
nanoparticles were better than normal particles in inhibiting bacteria and viruses. Mush-
room polysaccharides shielded mice against Salmonella lipopolysaccharide-induced septic
shock [213]. The same polysaccharide combined with Hericium erinaceus extracts protected
mice against Salmonella typhimurium by stimulating the immune system [214]. Lentinus edo-
des extracts were demonstrated against oral pathogens [215], while Auricularia auricula-judae
crude polysaccharides were active against Escherichia coli and Staphylococcus aureus [216]. A
sulphated polysaccharide from oyster mushrooms showed antibacterial activity against
foodborne E. coli and Staphylococcus aureus [217]. Polysaccharides from Hericium erinaceus
have been of considerable interest due to their antioxidant activities [218]. Polysaccharides
from eight Hericium species exhibited significantly high antioxidant activity and inhibited
proliferation of tumor cells [219]. In another report, bismuth–polysaccharide complexes
could inhibit Helicobcter pylori, which cause human ulcers and eventual cancers [220].

Huang et al. [221,222] showed that Pleurotus tuber-regium polysaccharides exhibited
antihyperglycemic properties and lowered oxidative stress in diabetic rats. Agaricus blazei
polysaccharide extracts impacted proinflammatory cytokine production in human mono-
cytes and endothelial cells [223] and other bioactive fractions as well (IL-6, prostaglandin
D(2), leukotriene C(4)). L. edodes active fucomannogalactan fractions of (1→6)-linked main
chains have shown anti-inflammatory activities in male Swiss mice [202]. The polar fraction
the β-glucan-rich mushroom preparation AndoSan™ showed antitumor activity in RAW
264.7 macrophage cells. β-glucans show anti-asthma and antitumor properties, as well
as anti-inflammatory effects in inflammatory bowel disease [224]. With all these added
assets, nevertheless a study where AndoSan™ was administered to 40 patients with multi-
ple myeloma due for chemotherapy, no significant responses were observed [225]. This
indicates that there is a long way to go for all these to be worked out in order to practically
demonstrate statistically significant responses in real time.

Agaricus blazei extract increased immune response against foot-and-mouth disease [226]
and H. erinaceus extracts shielded the mice against Salmonella typhimurium [227] and L.
edodes mycelial polysaccharids defended mice against Salmonella-induced endotoxemia
and salmonellosis [216]. Another study by Kim et al. confirmed the protective effect of
C. sinensis extracts on the lipopolysaccharide induced lung injury in mice. The extracts
reduced TNF-α, IL-6, IL-1β expression, as well as the binding ability of NF-κB p65 DNA
and inhibitied the mRNA expression of cyclooxygenase (COX)-2 and inducible nitric oxide
synthase (iNOS) in lung tissue [228]. C. sinensis, was proposed by the same authors as
for treatment of acute lung injury. Yang et al. [229] reported the use of C. sinensis towards
the inhibition of bleomycin-induced fibrosis in mice, to prevent and treat lung fibrosis.
Mueller et al. [230] and Jiang et al. [231] have confirmed that C. sinensis inhibits lung fibro-
sis. These results are supported by Lee et al. [232], who showed that cordycepin from C.
militaris downregulates iNOS, COX-2 expression and TNF-α gene expression. Additionally,
Ohta et al. [233] showed that cordycepin reduced Th2 associated cytokines, including IL-4,
IL-5 and IL-13, in Ova-induced asthma mice.

A total of 14 species of Basidiomycetes mushroom cultures were studied. All these
species showed 20% more antioxidant potential. [234]. Other authors quantified the an-
tioxidant potential of Ganoderma lucidum, Ganoderma tsugae, Coriolus versicolor, G. tsugae
and G. lucidum methanolic extracts. Their antioxidant activity is driven by their pheno-
lic contents. [235]. In 2008, Kim et al. investigated the antioxidant potential of edible
medicinal mushrooms, Agaricus bisporus showed the highest activity. They reported a 78%
positive correlation between phenolics and antioxidant potentials [236]. The antioxidant
potentials of methanolic extracts of shiitake and oyster mushrooms using the 1,3-diethyl-2-
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thiobarbituric acid method were reported to be due to their phenolic contents [237]. The
antioxidant potentials of five methanolic extracts of ear mushrooms, including red, black,
jin, snow, and silver ear mushrooms were determined. The methanolic extracts contained
bioactive tocopherol, polyphenols and ascorbic acid and the snow ear variety possessed
maximum antioxidant potential [105].

The antioxidant potential of ethanolic extracts of Laetiporus sulphureus was studied. A
positive correlation between polyphenol contents and antioxidant potential was observed.
The antioxidant potential of various Morchella sps and Meripilus giganteus, Armillaria mellea,
Paxillus involutus, Pleurotus eryngii, and Pleurotus ostreatus, via the DPPH method was
measured. Among these, M. elata possessed the maximum antioxidant potential toward free
radicals [238]. Methanolic extracts of Inonotus obliquus also possessed strong antioxidant
potentials owing to their polyphenols, such as inonoblins A–C and phelligridins D, E, and
G. [239]. The antioxidant and hepatoprotective pattern of Lentinus edodes was validated in
an independent study, using mice models [240].

An in vitro study conducted in Iran confirmed the antioxidant potential of Cantharel-
lus cibarius and Pleurotus porrigens methanolic and ethyl acetate extracts, via the DPPH
method [241]. Hot water extracts of Agaricus, Antrodia, Auricularia, Coprinus, Cordyceps,
Hericium, Grifola, Ganoderma, Lentinus, Phellinus, and Trametes were tested for their
antioxidant potential. Polyphenolic compounds and polysaccharides were responsible for
the high antioxidant potential of all these studied mushrooms. Among all, Ganoderma
was the most antioxidant mushroom [103]. The antioxidant activities of two cultivated
mushrooms—P. ostreatus and L. edodes—and five other wild mushrooms from Ethiopia
were compared. Results indicated that A. campestris exhibited significant antioxidant
potential due to its phenolic compounds [103]. The Polyporoid species of medicinal mush-
rooms native to Poland were studied. The results showed that it contains protocatechuic,
vanillic, and hydroxybenzoic acids and that phenolic compounds were behind their
antioxidant potentials.

The antioxidant potential of Pleurotus eryngii, due to its phenolic contents, revealed
that it has excellent antioxidant activity and was able to scavenge free radicals and pos-
sessed reducing power. It also contained ergothioneine, making it a successful functional
food [242]. G. lucidum was observed to possess high phenolic contents and significant
antioxidant activity and potential as a good functional food [243]. Ganoderma tsugae showed
high antioxidant levels owing to its phenols [244]. For the Leucopaxillus species, negative
linear regressions were seen between flavonoids, which increased with the antioxidant
activity [245]. Pleurotus ferulae, Clitocybe maxima, and Pleurotus ostreatus were selected
for antioxidant study and their antioxidant potentials measured. The results showed
that they contained phenolic compounds that helped them fight the oxidative stress
system [246]. Methanolic extracts of Pleurotus porrigens and Hygrocybe conica indicated
that Hygrocybe conica possessed higher chelating and antioxidant properties due to their
total phenolic components [247]. Other authors have reported the antioxidant and the
anti-inflammatory effects of Malaysian G. lucidum aqueous extracts; their study proved
that these extracts exhibited higher antioxidant and anti-radical effects [248,249]. We will
now elaborate on the reports on how mushroom polysacchrides antioxidants have been
used in various applications.

3.1.1. Antioxidant Mushroom Extracts and Polysaccharide Applications

Most mushrooms contain polysaccharides that include chitin, glucans and heterogly-
cans. These polysaccharides are instrumental in coordinating the growth and develop-
mental processes of the mushroom’s fructiferous body. Polysaccharides play an important
role in modulating the immunity of human cells [250]. Immunomodulating polysaccha-
rides such as β-glucans are non toxic and have no secondary effects while being used
against bacteria and viruses [45]. They also display antitumor and immunostimulating
properties [251]. The antioxidative and immunostimulating properties of Cordiceps mil-
itaris polysaccharides were able to suppress the in vivo growth of melanoma in mouse
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models [252]. Antioxidative properties of a crude polysaccharide from Inonotus oblique
(folk medicine in Russia)include rich medicinal and nutritional properties [253]. A polysac-
charide from Hericium erinaceus exhibited strong in vitro antioxidant activity and liver
damage protection [254]. Macrolepiota dolichaula fucogalactan [193] and β-glucan from
Russula albonigra [255] showed excellent antioxidant activity. H. erinaceus polysaccharide
exhibited antioxidant and neuroprotective effects [256]. A polysaccharide from Agaricus
brasiliensis induced immunostimulation and cell proliferation in vitro in mice [257,258].
Polysaccharides extracted from Tricholoma mongolicum displayed in vitro antioxidant ac-
tivity [201]. Ultrasonically extracted Ganoderma β-D-glucans were reported to possess
better in vitro antioxidant activity than conventionally extracted ones [191,259], owing to
the fact that the ultrasonic extraction preserved their molecular weights and degree of
branching. A water-soluble β-glucan, isolated from the fruit bodies of Entoloma lividoalbum,
stimulated the production of macrophages, splenocytes and thymocytes and exhibited
hydroxyl and superoxide radical scavenging activities and reducing properties [260]. A
fucogalactomannan from Tylopilus ballouii mushroom inhibited superoxide and hydroxyl
radicals and reduced edema [261].

In another study, polysaccharides from eight Chinese mushrooms were evaluated
for their total carbohydrate, polyphenolic and protein contents, and antioxidant and anti-
proliferation activities. The results suggested that all the polysaccharides had significant
antioxidant capacities. The acid extracts of Russula vinosa had the highest ABTS+ scavenging
activity, and Dictyophora indusiata and Hohenbuehelia serotina possessed the highest •OH
scavenging capacity and ability to inhibit lipid peroxidation [262].

M. Kozarski compared polysaccharides of A. bisporus, A. brasiliensis, Phellinus linteus,
and G. lucidum and their other bioactive components. A positive correlation between glucan
level and antioxidant activity was reported in case of G. lucidum. [84]. A study conducted
by The University of Calcutta revealed that Pleorotus squarrosulus, Fistulina hepatica, Austreus
hygrometricus, Polyporus grammocephalus, Phellinus linteus and Macrocybe gigantea, have high
antioxidant activity [263]. Methanolic extracts of the wild Ganoderma lucidum, native to
the Himalayas, showed significant antioxidant potential [264]. The antioxidant potentials
of Volvariella volvacea [265], Ganoderma tsugae, Morchella conica, [266], Ganoderma lucidum,
Hypsizygus marmoreus, P. ostreatus, P. nebrodensis, Lentinus edodes, Pleurotus eryngii, Flammulina
velutipes, and Hericium erinaceus are clearly documented [249,267]. Further study was also
conducted to assess the effectiveness of medicinal mushrooms on MCF-7 breast cancer cell
lines. The results showed that G. lucidum polysaccharides wroked well against MCF-7 cell
lines [221]. The antioxidant potential of Taiwanese Cordyceps taii is also reported [268].

3.1.2. Mechanism of Antioxidant Mushroom Polysaccharides

The antioxidant properties of mushrooms are related to the bioactive compounds
in mushrooms. Mushrooms are the primary source of ergothioneine, which protects the
mitochondrial components from oxidative damage. This is orchestrated by generation of
O2
•− through the escape of electrons from the mitochondrial electron transport system

(ETS) [269]. The antioxidative activity of mushroom polysaccharides is attributed to their RS
scavenging ability, reduction property and ability to chelate Fe2+, inhibit lipid peroxidation,
erythrocyte hemolysis and the increase in enzyme activities in eukaryotic and prokaryotic
cells and their roles in ongoing SOD, CAT and GPx antioxidative processes [270].

The potency of mushroom polysacchrides to scavenge free radicals is owing to the
presence of hydrogen in certain monosaccharide units and their binding in side branches
of the main chain [94,121]. The enhanced antioxidant activity is owing to the abstraction
of the anomeric hydrogen from one of the internal monosaccharide units rather than
from the reducing end [271]. Recently, Kishk and Al-Sayed [272] reported that the •OH
scavenging mechanism of polysaccharides is same as that of phenol compounds. The
mechanism is dictated by hydrogen atom transfer (HAT) reactions. These reactions mostly
occur in neutral polysaccharides, while the electron transfer (ET) mechanism usually
occurs in acidic polysaccharides. Mushroom antioxidants act in varying stages and via
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different mechanisms [13,273]. There are two main types of mushroom antioxidants,
namely, primary (chain breaking, free radical scavengers) and secondary or preventive [84,
97,103,125,136,152–154] antioxidants. Secondary antioxidants manifest from deactivation
of metals, inhibition or breakdown of lipid hydroperoxides, regeneration of primary
antioxidants, or singlet oxygen (1O2) quenching processes [80]. In certain other cases,
mushroom ROS scavengers act in oxidation–reduction reactions that are reversible, and as
antioxidants and pro-oxidants. The optimization of antioxidant dietary supplements from
mushrooms is far from accomplished [17,42,185]. Table 1 summarizes the list of mushroom
polysaccharides and their antioxidant activity.

Table 1. Bioactivity of Mushroom Polysaccharides.

Source Mushroom Bioactive Component Antioxidant Activity References

Agaricus brasiliensis Crude Se polysaccharide Scavenging of DPPH and hydroxyl radicals [272]

Phellinus xiaobaumii Homogenous water
soluble polysaccharide

Hydroxyl, superoxide and DPPH radical
scavenging [274]

Pleurotus abalonus Polysaccharide–peptide
complex LB-1b

Antioxidant activity in erythrocyte
haemolysis [275]

Cordyceps taii Polysaccharides DPPH, hydroxyl, and superoxide anion
radical scavenging [268]

Agaricus bisporus Polysaccharides
Free radical scavangers enhancement of
antioxidant enzymes in sera, liver, and heart
of mice

[276]

Ganoderma lucidum
Heteroglycan,
mannoglucan,
glycopeptide

Antioxidant [34]

Pleurotus ostreatus Glycoprotein Antitumor, hyperglycemia, antioxidant [34]

Cordiceps militaris Polysaccharides Antioxidant activity suppression of in vivo
growth of melanoma in mouse models [251,252]

Inonotus oblique Crude polysaccharide Used as an antioxidant in Russian folk
medicine [253]

Hericium erinaceus Unique polysaccharide
EP-1 Strong in vitro antioxidant activity in mice [254]

Macrolepiota dolichaula Fucogalactan Antioxidant and immunostimulating
properties in vitro [189]

Russula albonigra β-glucan Antioxidant and immunostimulating
properties in vitro [255]

Tricholoma mongolicum Folysaccharides In vitro antioxidant activities [202]

Ganoderma β-D-glucans In vitro antioxidant activity [259]

Entoloma lividoalbum Water soluble β-glucan High antioxidant activity [260]

Tylopilus ballouii Fucogalactomannan Inhibiting superoxide and hydroxyl radicals [261]

Ganoderma lucidum α- and β-glucans High antioxidant activity [262]

Fistulina hepatica, Pleorotus squarrosulus,
Polyporus grammocephalus, Phellinus
linteus, Austreus hygrometricus, and
Macrocybe gigantea

Polysaccharides Significant antioxidant potential [263]

Ganoderma tsugae Polysaccharides Best scavenging activity [268]

Ganoderma lucidum, Hypsizygus
marmoreus, Pleurotus ostreatus, Pleurotus
nebrodensis, Lentinus edodes, Pleurotus
eryngii, Flammulina velutipes, and
Hericium erinaceus

Polysaccharide activity
compared Significant antioxidant potential [249]
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Figure 1 enlists the known mechanisms of antioxidant activity of mushroom polysac-
charides elucidated to date.
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4. Antiviral Activity of Mushrooms/Mushroom Polysaccharides

The antiviral activity of mushrooms is another add-on to the exhaustive bioactivities of
mushrooms. Wild mushrooms from Russia, such as Daedaleopsis confragosa, Datronia mollis,
Ganoderma valesiacum, Irpex lacteus, Ischnoderma benzoinum, Laricifomes officinalis, Lenzites be-
tulina, Phellinus conchatus, Piptoporus betulinus, Trametes gibbosa, and Trametes versicolor have
been shown to have antiviral activity on A/chicken/kurgan/05/2005 (H5N1) bird virus
and the A/Aichi/2/68 (H3N2) human virus. The report confirmed that these mushrooms
produced antiviral substances that block the synthesis of viral enzymes and boost human
immunity [277]. Another study in Russia in 2020, by Ilyicheva et al., assessed the antiviral
effect of ethanol and water extracts of Pleurotus pulmonarius fructiferous body against the
A/California/07/09(H1N1pdm) virus, the results showing that the ethanol extracts had a
more powerful antiviral effect than the water extracts. This mushroom’s fructiferous body
is an important source of polysaccharides, which are responsible for the inhibitory activity
against infections caused by this flu virus [278]. The water extract of Pleurotus tuber-regium,
containing β-glucans, was demonstrated against herpes simplex virus type 1 (HSV-1),
herpes simplex virus type 2 (HSV-2), respiratory syncytial virus (RSV) and influenza A
virus (Flu A), which was tested by Zhang et al. in 2004 [279]. The tests confirmed powerful
antiviral effect against HSV1 and HSV-2. Water and methanolic extracts of Boletus edulis,
Lentinus edodes and Pleurotus ostreatus were tested against the herpes simplex type 1 (HSV-1)
viruses and water extracts were observed to show high antiviral activity. The highest
antiviral effect was found in Lentinus edodes extracts, followed by Boletus edulis and finally
by Pleurotus ostreatus [280].

Agaricus brasiliensis’ antiviral activity was proven by Faccin et al., where polysac-
charides from water and ethanol extracts were successfully demonstrated against type
1 poliovirus, which is one of the mushroom species that grows on tree stumps, having
been domesticated in order to be cultivated [281]. In 2007, Gu et al. [282] and in 2016
Zhao et al. [283] evaluated the antiviral activity of Grifola frondosa against enterovirus 71
and HSV-1. These reports confirmed the antiviral effects of polysaccharides and their
potent use as therapeutic antiviral agents. Inonotus obliquus is a parasite mushroom that
lives up to 20 years; in 2011, Shibnev et al. used water extracts of this mushroom against
hepatitis C virus [284]. The extracts inhibited the infectious viruses in the kidney cells of
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a pig embryo. Methanolic extracts from Pleurotus sp. and Lentinus sp. were used against
cytomegalovirus (HCMV) [285]. In another study, β-glucans of Pleurotus ostreatus were
used to control influenza viral infection of the respiratory tract in children [286].

Some HIV-1 protease inhibitors have been isolated from medicinal mushrooms. Vari-
ous components that possess anti HIV-1 protease activity have been isolated from Gano-
derma lucidum (ganolucidic acid A, 3 β-5α-dihydroxy-6β-methoxyergosta-7,22-diene, gan-
oderic acid A–C, ganoderic acid β, ganodermanondiol, ganodermanontriol and lucidumol
B) [287–289]. Six colossolactones, ganomycin I, and ganomycin B, isolated from G. colo-
sum, with anti-HIV-1 protease activity have been reported, as also in G. sinnesse [290,291].
Tiger milk mushroom (Lignosus rhinocerus) and Auricularia polytricha also exhibited HIV-1
protease activity [292].

Adenosine and iso-sinensetin isolated from Cordycep militaris and 4.5 kDa protein
isolated from Russula paludosa have been demonstrated to have anti-HIV-1 protease ac-
tivity [293]. C. sinensis and C.militaris are known to exhibit antiviral effect on several
viruses. In 1991, Mueller et al. [230] reported the in vitro antiviral effect of cordycepin on
HIV-1. Therefore, Jiang et al. [231] reported the HIV-1 protease inhibitory on adenosine
from C. militaris. Lee et al. [232] recorded the antiviral effect of C. militaris on DBA/2
mice infected with H1N1; the mice showed significant survival improvement following
C. militaris treatment and marked decrease in TNF-α Kaymakci and Güler. C. militaris’
anti-influenza effect was confirmed by Ohta et al. [233]; they reported significant decrease
in virus titers in both lung tissue and the bronchoalveolar fluid of mice, when treated with
an acidic polysaccharide (APS) isolated from C. militaris intranasally. The anti-influenza
effect of the APS is probably due to its immunomodulatory effects [232]. In addition to
anti-HIV and anti-influenza activities, C. militaris also exhibits an anti-HCV effect [294].
They also reported that cordycepin was probably instrumental in pulling through this
activity by inhibiting RNA-dependent RNA-polymerase (NS5B) in HCV [295]. C. sinensis
and C. militaris can modulate immune responses as well as anti-inflammatory, antiviral,
antioxidant, and antifibrotic properties. It may be suitable for the pathologies that occur in
COVID-19 [296–298].

Another species of mushroom that has shown promising antiviral effects is Grifola
frondosa, which has been used in herbal medicine. The major biologically active component
here is β-glucan. Grifola β-glucan has shown great anticancer potential and has been
approved as a therapeutic drug for cancer in China [299] and in vitro replication of HSV
type 1 (HSV-1) [300]. Gu et al. (2007) confirmed that topical administration of the protein
extract to the cornea of mice caused a significant decrease in virus [282]. Additionally,
D-fraction from Grifola frondosa (GF-D), together with human IFN α-2b (IFN), was used
against hepatitis b virus (HBV). Following analysis of HBV DNA and viral antigens, the
results obtained showed that GF-D or IFN could control the HBV DNA in cells. Combined
use of GFD and IFN synergistically inhibited HBV replication [301].

Significant increase in pro-inflammatory mediators, COX-2, pro-inflammatory cy-
tokines TNF-α, IL-1β and IL-6 in LPS-stimulated human U937 macrophage cells is reported.
The hot water extracts of P. A+ strain mushroom significantly inhibited the LPS-induced
COX-2 while the other extracts lowered the levels non-significantly [302]. The study also
revealed that the four hot water mushroom extracts of Pan cyanescens, P. natalensis, P.
cubensis and P. A+ strain significantly the two key pro-inflammatory cytokines TNF-α,
IL-1β inhibited in a dose-dependent manner. Suppression of the induced IL-1β and the
lowering of COX-2 following exposure to mushroom extracts indicated their potential in
inflammation-related diseases. P. natalensis and P. cubensis inhibited LPS-induced IL-6 in
human U937 macrophage cells. The extracts also marginally increased the concentrations
of the anti-inflammatory cytokine IL-10 in the treated human macrophage cells [303–305].
Well-known anti-inflammatory and antioxidant compounds have been identified in P.
natalensis [306]; other studies confirmed significant inhibition of ROS displayed by Pan
cyanescens and P. cubensis in a pathological hypertrophy condition [307]. Excessive amounts
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of ROS stimulate the release of cytokines and subsequent activation of COX and LOXs
signaling, playing a role in inflammatory reactions.

The three mushrooms Pleurotus columbinus, Pleurotus sajor-caju, and Agaricus bisporus
contain a myriad of bioactive compounds. Aqueous extracts of these mushrooms were
tested against Ad7 and HSV2 viruses. The extracts show potent antioxidant effects. Pleu-
rotus columbinus, Pleurotus sajor-caju and Agaricus bisporus mushrooms offer significant
medicinal potential for the prohibition and treatment of a variety of ailments [308]. Figure 2
gives an overview of the comprehensive list of viruses and the mushroom polysaccharides
that have been reported to engage in antiviral activity.
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AntiCOVID-19 Activity of Mushroom Polysaccharides

The world has been suffering from the effects of the 2019 COVID-19 pandemic. As
of now, limited provisions are available with respect to control, treatment and spread of
COVID-19 [309–311]. As of now, there are few treatments available for COVID-19. The U.S.
Food and Drug Administration (FDA) has approved remdesivir (Veklury) for the treatment
of COVID-19. Monoclonal antibodies are laboratory-made molecules that act as substitute
antibodies, by equipping the immune system to recognize and respond effectively to
the virus, slowing down viral reproduction and virulence. The FDA has issued EUAs
for several monoclonal antibody treatments for COVID-19 for the treatment of mild or
moderate COVID-19 in adults and pediatric patients. Approved therapies using small
molecules and monoclonal antibodies that have been demonstrated to be effective against
COVID-19 and the proven efficacy of vaccination are also affirmed. The first pill designed
to treat symptomatic COVID-19 has been approved by the UK medicines regulator as
of November 2021. Molnupiravir, developed by the US drug companies Merck, Sharp
and Dohme (MSD) and Ridgeback Biotherapeutics, is the first antiviral medication for
COVID-19 which can be taken as a pill. Although to date there are some options, there still
exists a pressing urgent need to discover novel natural antivirals that are cost-effective and
exhibit enhanced anti-COVID-19 efficacy. Using an artificial intelligence (AI) programme,
researchers identified components that can interfere with clathrin-mediated endocytosis
and thus inhibit viral infection. These can be deployed as potential therapeutics against
COVID-19 [312]. However, the problem with commercial medications is the increased risk
of drug resistance development. Natural substances, such as mushrooms that have been
previously discussed in the above section, clearly displayed antiviral and anti-inflammatory
activity. With this as the launching pad, there is definitely scope to believe that mushrooms
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may hold natural remedies against COVID-19 [313]. We present the available reports in
this direction.

Vilcek and Lee, in 2018 [314], elucidated the structural characterization of lentinan
from Lentinus edodes mycelia (shiitake) and their associated anti hematopoietic necrosis
virus (IHNV) potential. The novel lentinan (LNT-1) confirmed prominent antiviral activity
against INHV. The antiviral mechanisms of LNT-1 were reported to be due to direct inacti-
vation as well as inhibition of viral replication and downregulation of pro-inflammatory
cytokines that are known to induce antiviral, anti-proliferative and immunomodulatory
effects [315]. In case of COVID-19, the innate immune response is a critical factor for dis-
ease severity and disease outcome. COVID-19 patients exhibit high titers of inflammatory
cytokines and so the effects of LNT-1 could clearly impact and lead to anti-COVID-19 acitiv-
ity [316]. Moreover, oxidative stress and inflammation are two factors that are consistently
linked to the pathogenesis of COVID-19; both these factors are well within the bioactivity
of mushroom based components [317].

Inonotus obliquus (IO) is expected to be a valuable asset against SARS-CoV-2 virus [318].
IO is well accomplished in traditional medicine, for facilitating breathing, because this
mushroom has been known reduce nasopharyngeal inflammation [88,284,319]. A study
demonstrating the effect of I. obliquus polysacharides in cats has shown to be promising,
where inhibition of RNA viruses and DNA viruses was observed [320]. This mushroom
inhibited viral-induced membrane fusion, and could act against the early stages of HSV
viral infection. The aqueous extracts of I. obliquus could prevent HSV-1 entry by directly
acting on viral glycoproteins, which in turn prevent membrane fusion [321]. With a host of
accomplishments against various reputed viruses, IO does stand a chance against COVID,
yet has a long way to go.

Spike protein and the main proteases of SARS-CoV-2 have been identified as potential
therapeutic targets and their inhibition may hold the key. Nothing specific is available to
treat SARS-CoV-2. Authors have established the therapeutic potential of cordycepin against
COVID-19 as a conventional therapeutic strategy. Using in silico studies, the molecular
interactions and potential binding affinity of cordycepin with SARS-CoV-2 target proteins
were studied. Cordycepin is under clinical trial (NCT00709215). Attempts are being made
to see if cordycepin can destabilize SARS-CoV-2 RNAs by inhibiting the polyadenylation
process. This can inhibit viral replication and eventual multiplication within the host [322].
It is reported that cordycepin showed strong binding affinity with SARS-CoV-2 spike
protein and main proteases that further corroborate therapeutic potential against COVID-
19. Cordycepin has both pre-clinical and clinical information about antiviral activities;
therefore, it is necessary that the global community tests its efficacy and safety against
COVID-19. C. sinensis and C. militaris possess antiviral, immunomodulatory, and lung
function protective effects, which can also be applicable for COVID-19 treatment. C. sinensis
increased tolerance to hypoxia in the lungs by increasing Nrf2 and HIF1α and decreasing
NFκB in vitro. It also increased the anti-inflammatory cytokine TGF-β [323]. C. militaris
has an immune-enhancing effect in healthy mice and an immune-inhibitory effect in H1N1
(A/Korea/01/2009 (K/09))-infected mice. People infected with COVID-19 have high
titers of inflammatory cytokines, which confirms that the lentinan polysaccharide from
L. edodes [324] and the acidic polysaccharide (APS) of C. militaris should be given more
attention in the fight against SARS-CoV-2. Figure 3 displays the anti-COVID-19 impacts
and prospects of mushroom polysaccharides.

Clinical studies confirm the fact that β-glucans can reduce a series of symptoms of
the respiratory apparatus caused by various infections, as well as the fact that they can
lower systolic and diastolic artery blood pressure. It is well-known that the symptoms
caused by the COVID-19 infection are severe, and studies have shown alleviation of
symptoms and considerable improvement of the patient’s state following administration
of β-glucans, particularly in most vulnerable cases within ICUs. This supports the fact
that oral administration of β-glucans could be an efficient and inexpensive way to support
the immune system of COVID-19-infected patients. However, this would require clinical
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confirmation G. lucidum to be well-known for its antitumoral, antiviral, anti-inflammatory
qualities. Ganoderma is one of the most widely used in studies on antiviral qualities; it
has been tested against the HIV 1 virus [287]. Table 2 consolidates the antiviral reports of
mushroom polysacchraides.
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Non-digestible carbohydrates with prebiotic effect, such as β-glucan polysaccharides
from medicinal mushrooms, stimulate growth of gut microbes that are favorable to the
host’s health and spur on the production of SCFA, which energizes anaerobic gut microbes
and suppresses pathogens (e.g., Salmonella sp.) and improves host immunity [325,326].
In this way, mushroom polysaccharides can indirectly help patients therapeutically in
the struggle against COVID-19 [327–329]. Additionally, with the fact that mushrooms
are accomplished for their antibacterial activity, mushrooms can surely aid in the control
of bacterial secondary infection (which in the second wave of COVID-19) led to high
mortality. There is definitely room for input from antibacterial mushroom extracts and
polysaccharides, from various angles, which needs to be incorporated positively.

Table 2. Antiviral activity of mushroom/mushroom polysaccharides,.

Mushroom Bioactive Component Antiviral Activity
against IC50/CC50 Values Reference

Lentinus edodes
Mannoglucan,
polysaccharide–protein
complex, glucan, lentinan

HSV-1; HNV IC50: 26.69 mg·mL−1

to 35.12 mg·mL−1 [295]

Grifola frondosa

Proteoglycan, glucan,
galatomannan,
heteroglycan, and
grifolan

Enterovirus 71, HSV-1 Unspecified [283]

Flammulina velutipes Glucan-protein complex,
glycoprotein

Antitumor,
anti-inflammatory,
antiviral,
immunomodulating

Unspecified [40]

Coriolus versicolor Polysaccharides PSK and
PSP

Antiviral effect on HIV
and cytomegalovirus
in vitro and anticancer

6.25–150 µg mL−1 [330]
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Table 2. Cont.

Mushroom Bioactive Component Antiviral Activity
against IC50/CC50 Values Reference

Daedaleopsis confragosa, Datronia
mollis, Ganoderma valesiacum, Irpex
lacteus, Ischnoderma benzoinum,
Laricifomes officinalis, Lenzites betulina,
Phellinus concha-tus, Piptoporus
betulinus, Trametes gibbosa, and
Trametes versicolor

Mushroom extracts

A/chicken/kurgan/05/2005
(H5N1) bird virus and
the A/Aichi/2/68
(H3N2)human virus

Unspecified [277]

Pleurotus pulmonarius Mushroom water extracts A/California/07/09
(H1N1pdm) CC50: 1.7–8 [278]

Pleurotus tuber-regium β-glucans

Herpes simplex virus
type 1 (HSV-1), herpes
simplex virus type 2
(HSV-2), respiratory
syncytial virus (RSV)
and influenza A virus
(Flu A)

IC50: 3.3–6.8 µg mL−1 [279]

Boletus edulis, Lentinus edodes and
Pleurotus ostreatus

Water and methanolic
mushroom extracts

Herpes simplex type 1
(HSV-1)

IC50: 26.69 mg mL−1

to 35.12 mg·mL−1 [280]

Agaricus brasiliensis Polysaccharide Type 1 poliovirus IC50: 97.2–922.9 µg
mL−1 [281]

Grifola frondosa Mushroom extracts Enterovirus 71 and
HSV-1 IC50: 4.1 µg/mL [282,283]

Inonotus obliquus Mushroom extracts Hepatitis C virus TCD50: 6.0 lg/mL [284]

Pleurotus sp. and Lentinus sp. Methanolic mushroom
extracts

Cytomegalovirus
(HCMV)

IC50: 180 µg/mL and
160 µg/mL [285]

Pleurotus ostreatus β-glucans Influenza virus IC50: 26.69 mg·mL−1

to 35.12 mg·mL−1 [280]

Ganoderma lucidum

Ganolucidic acid A,
3β-5α-Dihydroxy-6β-
Methoxyergosta-7,22-
Diene,ganoderic acid
A–C, Ganoderic acid β,
Ganodermanondiol,
Ganodermanontriol and
Lucidumol B

Inhibits HIV-1 protease
activity IC50: 0.17–0.23 mM [287–289]

Ganoderma colosum
Colossolactones,
ganomycin I, and
ganomycin B

Anti-HIV-1 protease
activity IC50: 5–39 µg/mL [290,291]

Ganoderma sinnense

Ganoderic acid GS-2,
20-hydroxylucidenic acid
N, 20(21)-
dehydrolucidenicacid N
and ganoderiol F

Anti-HIV-1 protease
activity IC50: 22–116 µM [290,291]

Lignosus rhinocerus Crude mushroom
extracts

Anti-HIV-1 protease
activity Unspecified [292]

Auricularia polytricha Ergosterol, linoleic acid
and two triacylglycerols

Anti-HIV-1 protease
activity

IC50: 0.80 ± 0.08
mg/mL [292]

Cordycep militaris Arabinogalactan (APS) Anti-HIV-1 protease
activity Unspecified [297]

Russula paludosa 4.5 kDa protein Anti-HIV-1 protease
activity IC50 = 0.25 mg/mL [293]
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Table 2. Cont.

Mushroom Bioactive Component Antiviral Activity
against IC50/CC50 Values Reference

Cordycep sinensis and Cordycep
militaris cordycepin Anti-HIV-1 Unspecified [296,297]

Cordycep militaris cordycepin DBA/2 mice infected
with H1N1 Unspecified [232]

Cordycep militaris Acidic polysaccharides
(APS) Anti-influenza Unspecified [324]

Cordycep militaris Cordycepin Anti-Hepatitis C Virus Unspecified [294]

Grifola frondosa β-glucan
Inhibit in vitro
replication of HSV
type 1

4.1 µg/ml [306]

Grifola frondosa Protein extract Hepatitis B virus 0.59 mg/mL and 1399
IU/ml [306]

Pleurotus columbinus, Pleurotus
sajor-caju, and Agaricus bisporus Mushroom extracts Ad7 and HSV2 viruses Unspecified [307]

Grifola frondosa D-fraction from Grifola
frondosa (GF-D) Anti HIV 0.59 mg/mL and 1399

IU/ml [301]

Lentinus edodes Lentinan Hematopoietic necrosis
virus (IHNV) Unspecified [314]

Pan cyanescens, Pan natalensis, Pan
cubensis and Pan A+ strain

Hot water mushroom
extracts

Anti Cox sackievirus
(COX-2) Unspecified [303–306]

Inonotus obliquus Aqueous extract HSV 3.82 µg/mL [319]

Lentinus edodes Lentinan SARS-CoV-2 Unspecified [324]

Lentinus edodes Lentinan Anti-COVID-19 Unspecified [329]

Inonotus obliquus Polysaccharides SARS-CoV-2 virus Unspecified [324]

Cordycep militaris Cordycepin Anti
SARS/Anti-COVID-19 Unspecified [323,324]

Cordycep sinensis Cordycepin Anti
SARS/Anti-COVID-19 Unspecified [323,324]

5. What Is and What Is to Be

The role and explicit benefits from mushroom and mushroom polysaccharides were
exploited by the ancients and this has extended to this day. As reviewed, mushrooms
encompass bioactivities and unique properties and remedies that are sought after in the
medical realm. The natural origin of these bioproducts in mushrooms is an added advan-
tage. As overviewed in this paper, there is no question regarding the numerous versatile
benefits that mushrooms yield. Mushrooms have come a long way and have impacted
human health and wellbeing and have been there in our hearts and in our diets. Therefore,
we are far still from clinical validation of these important nutrient reservoirs. Despite all the
known fact files of the potentials of mushrooms, mushroom consumption is still localized
to specific geographical zones. Additionally, the popular medicinal mushroom varieties
are unavailable in most parts of the world. The local markets mostly are confined to button
mushrooms. While the production areas are confined to the UK, Germany, Hungary, Italy,
France, the consumption of varied varieties is confined to Japan, China, Korea, Taiwan,
Netherlands. There is definitely a need for the sensitization of the fact that medicinal
mushrooms need to be cultivated and promoted and consumed, in order to harness the
full potential of this valuable natural resource. This is something that this review would
like to emphasize. The mode of action/mechanism behind the bioactivity and antiviral
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activity of mushroom polysaccharides is far from elucidated. This review points out to the
need to improve in this aspect. Understanding the fundamental modulus operandi of a
bioactive material makes room for manipulation of the related aspects of components that
ideally hold a position to impact their biological activity.

Mushrooms and their anti-cancer, hepato properties, antibacterial properties, antiviral
properties are all known. Mushrooms applied to antiCOVID-19 research are very sparsely
reported; this is another area that this review points towards for more awareness and focus.
Mushroom polysaccharides are another crucial factor this review has brought up. The
antioxidant activities of mushroom polysaccharides, as well as their numerous biological
applications, including antibacterial and antiviral properties, have been highlighted. Mush-
room polysaccharides have been scarcely highlighted. With the known facts regarding
their versatility, this review calls for attention on the area of mushroom polysaccharide
research. Additionally, we project a concern, which needs to be looked into—how much of
these polysaccharides we are losing during our cleaning process, prior to cooking. This
is an aspect this review is critical about. With many water-soluble polysaccharides and
extracellular polysaccharides around, the compromises that the processing food industry
and domestic cooking processes are making, leading to the loss of this valuable com-
ponent, are worth probing. Biologically active polysaccharides are widespread among
higher basidiomycetous mushrooms, and most of them have unique structures in different
species. These polysaccharides have different compositions, most belonging to the group
of -d-glucans; these have -(1–3) linkages in the main chain of glucan and additional -(1–6)
branch points. High molecular weight glucans apparently seem to be more effective than
those of low molecular weight. Moreover, different strains can produce polysaccharides
with different properties. For example, the proteoglycan Krestin was developed in Japan
from the strain Trametes (Coriolus) versicolor CM-101, whereas a polysaccharide–peptide
(PSP) in China was developed in submerged culture from the Cov-1 strain of the same
species [330].

With the known importance of mushroom polysaccharides, amplifying the genes
that govern biosynthesis of mushroom polysaccharides using molecular engineering can
be a very resourceful direction [331]. Chai et al. [332] demonstrated overproduction of
β-glucans in Pleurotus ostreatus mushrooms by promoter engineering. The promoter for the
1,3-β-glucan synthase gene was replaced by the promoter of glyceraldehyde-3-phosphate
dehydrogenase gene of Aspergillus nidulans, leading to enhanced β-glucan yield compared
to the wild type. Ji et al. [333] improved polysaccharide production by bioengineering the
biosynthetic pathway in Ganoderma lucidum. Overexpression of the homologous UDP glu-
cose phosphoglucomutasegene leads to near doubling of the intracellular and extracellular
polysaccharides contrasted to wild type. Meng et al. [208] used the Viteoscilla hemoglobin
gene to increase extracellular and intracellular polysaccharides in G. lucidum [334]; amplifi-
cation of these genes might induce the formation of high-polysaccharide mushrooms [334].
Khan et al. [335] reported that irradiation with 50 k Gy doses induced bond cleavage,
enhanced antioxidant activity and increased functional properties. Except for these pi-
oneering reports on the potential of gene manipulation to enhance the production of
polysaccharides, successful implementation of antioxidants’ mushroom polysaccharide
still remains insufficiently explored. There is so much that is known and has been estab-
lished, yet we are so far from practical implementation. This is something that we highlight
as a future perspective in this area. Mushroom culturing needs expansion and awareness
regarding the right choice of mushrooms that need to be propagated. Most of the culturing
techniques are the age-old methods; the rightful improvisations with culture techniques
that may promote and accelerate polysaccharide production, are grey areas, which when
worked upon can extend the full exploitation of this resource.

6. Conclusions

The bioactivity of mushrooms with specificity to mushroom polysaccharides has been
reviewed. The antioxidant properties of mushroom polysaccharides and their antioxidant
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mechanisms have been discussed. The need to extrapolate the existing beneficial attributes
into the current pandemic scenario has been emphasized. Mushrooms as a natural remedy
for COVID-19 are still inadequately addressed. This review discusses the lacunae in this
area of research and highlights aspects that need attention. When the world is looking for
answers to the COVID-19 pandemic, we might have some valuable help just in the area of
mushrooms.
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