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Abstract: Recent studies have highlighted the potential of utilizing carob kibbles as a bioactive-rich
food ingredient associated with substantial health benefits. Roasting is a key process in enhancing
the sensory characteristics of carob kibbles, also affecting the bioactive polyphenols and leading
to the formation of Maillard reaction products (MRPs), including the polymeric melanoidins that
are associated with a high antioxidant potential but remain unexplored in carob. In this work,
we employed for the first time attenuated total reflectance-Fourier Transform Infrared (ATR-FTIR)
spectroscopy to probe the dynamic chemical and structural changes upon the roasting of carob
kibbles, along with the investigation of the in vitro antioxidant activity through the 2,2-Diphenyl-1-
picrylhydrazyl (DPPH) radical scavenging activity and the determination of the total polyphenolic,
proanthocyanidin, gallic acid and cinnamic acid contents. Roasting significantly enhanced the
in vitro antioxidant activity of the polyphenolic carob extracts, with different rates at distinct roasting
temperatures. The ATR-FTIR analysis enabled the identification of the changes in the structural
features of polyphenolic compounds that were related to the improved antioxidant activity upon
roasting. Furthermore, the detection of characteristic signatures for the polymeric melanoidins in the
infrared (IR) fingerprint region provided the first evidence for the formation and structural properties
of these complex, diverse compounds in roasted carob kibbles.

Keywords: carobs; polyphenolic extracts; radical scavenging activity; Maillard reaction products;
melanoidins; ATR-FTIR spectroscopy

1. Introduction

Carob is the fruit of an evergreen tree (Ceratonia siliqua L.) cultivated mainly in the
Mediterranean area [1]. Although carob is a valuable source of dietary fibers, sugars,
minerals and a range of bioactive compounds, including polyphenols, its use in the food
industry has been largely limited to its seeds, until recently [2,3]. The seeds represent about
10% of the carob pod weight and are utilized for the production of the valuable locust
bean gum (LBG), which is a natural food additive functioning as a thickener, stabilizer
and flavorant [4]. The separation of the seeds from the carob pod leaves the pulp, com-
prising 90% of the pod, as a by-product known as carob kibbles. During the last years,
there has been a growing number of studies and reviews that highlight the potential of
utilizing carob kibbles as a bioactive-rich food ingredient for the production of new food
products, confectionaries and beverages [2,5–7]. The chemical composition of carob is
determined by several factors, including variety, climatic and agronomic conditions, the
ripening stage and can also be significantly influenced by processing procedures, such as
roasting [8,9]. The roasting of carob kibbles is implemented in order to improve sensory
characteristics, namely taste, color and aroma, especially in the production of carob powder,
a substitute and extender for cocoa [2]. In the conventional roasting of carob kibbles, a
temperature range of 120–180 ◦C is used for 10–60 min, followed by milling and, depending
on the roasting parameters, lightly, medium or dark roasted carob powder with cocoa-like
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sensory attributes is produced. Studies on the impact of roasting have been increasing
during the last years and are mainly focused on the sensory, physical and functional
attributes, the phenolic content and antioxidant activity or formation of contaminants
in carob powder [10–15]. However, a comprehensive picture of the changes involving
bioactive antioxidant compounds upon the roasting of carob kibbles, is still lacking.

One class of compounds that has been the focus of several studies regarding carob, is
polyphenols [16–20]. Polyphenols are phytochemicals that contribute to the improvement
of human health and prevention of numerous diseases, including cardiovascular diseases,
oxidative stress and cancer, and exhibit neuroprotective properties due to their antioxidant
and anti-inflammatory activities [21]. Carob polyphenolic extracts have been demonstrated
to display anti-proliferative and apoptotic activity against cancer cells, in addition to anti-
diabetic, anti-diarrheal and anti-hyperlipidemic effects [22–27]. The major polyphenols
present in carob include free, bound and conjugated forms of phenolic acids, flavonols,
flavan-3-oles, hydrolysable tannins and proanthocyanidins with significant biological activ-
ities [2,17,23,24,26]. The polyphenolic content of carob powder can be influenced through
competing pathways upon roasting, as the thermal degradation of phenolic compounds can
lead to decreased antioxidant activity, while higher extractability of phenolic compounds
from the complex food matrix upon heating has been suggested to increase availability and,
consequently, to induce the opposite effect on antioxidant activity [11,12,17]. Although the
antioxidant properties of carob powder are largely attributed to its polyphenolic content,
chemical reactions that impact antioxidant activity occur upon roasting, with the Maillard
reaction (the reaction between reducing sugars and amine groups of amino acids) being a
major contributor, as carob pulp has a high sugar content (40–55%) and appreciable amount
of protein (2–7%) [2]. The Maillard reaction products (MRPs) include a wide variety of
compounds, such as intermediate reactive α-dicarbonyls, heterocycles, reductones and the
high molecular weight polymeric nitrogen-containing melanoidins [28,29]. Even though
melanoidins are widely distributed in thermally processed foods, such as cocoa, bakery
products, coffee, cooked meat and potatoes, their chemical structure is complex, diverse
and, in the present time, actively being investigated. Their biological effects are generally
considered as positive and include antimicrobial and antioxidant activity associated with
their ability to chelate metals, scavenge radicals and decompose hydrogen peroxide [28,29].
Interestingly, the presence of bound phenolics in the high molecular weight melanoidins
has been described in roasted coffee and cocoa [30–32]. Melanoidins produced in carob
upon roasting have not yet been studied and their structural features remain elusive.

Considering the novel aspects of the utilization of carob kibbles, it is imperative to
understand the chemical changes taking place during roasting, in particular regarding
potential bioactive compounds, namely polyphenols and MRPs. In the present study, we
utilized attenuated total reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy,
a method that is sensitive to molecular structure, to probe the dynamic chemical and
structural changes in carob powder extracts upon the roasting of kibbles at different tem-
peratures and roasting times. Moreover, the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical
scavenging activity was employed to evaluate the antioxidant activity of the corresponding
extracts from raw and roasted carob kibbles, together with the determination of the total
polyphenolic content (TPC), proanthocyanidin, gallic acid and cinnamic acid contents, to
provide quantitative information on polyphenolic compounds.

2. Materials and Methods
2.1. Chemicals and Standards

Folin–Ciocalteu’s phenol reagent, gallic acid (>97.5%); sodium carbonate (>99.0%);
2,2 -diphenyl-1-picryl hydrazyl (DPPH); methanol (gradient grade for LC); 6-hydroxy-
2,5,7,8-tetramethylchroman-2-carboxylic acid (97%; trolox); ethanol (gradient grade for LC),
n-butanol, hydrochloric acid (37%); ammonium iron(III) sulfate dodecahydrate (>99%); (+)-
catechin hydrate (≥98%); (−)-epicatechin (≥90%); caffeic acid (≥98.0%); trans-ferulic acid
(99%); trans-cinnamic acid (≥99%); quercetin (≥95%); acetic acid (>99.5%) and acetonitrile
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(gradient grade for LC) were provided by Sigma-Aldrich (Milan, Italy). Pyrogallol (>99%),
trans-p-coumaric acid (>98%), myricetin (>97.0%) and kaempferol hydrate (>97.0%) were
supplied by TCI (Tokyo Chemical Industry, Tokyo, Japan). Cyanidin chloride was provided
by the European Pharmacopoeia Reference Standard (Strasbourg, France).

Ultrapure water was prepared in a Milli-Q filter system (Millipore, Milan, Italy).

2.2. Plant Material and Roasting

Carob pods were obtained from local producers in Paphos, Cyprus and stored at room
temperature. The pods were first washed with water and air dried. After removing the
seeds, the pods were kibbled at a thickness of 0.5 to 1.0 cm and roasted in a pre-heated oven
at different temperature/time conditions: at 125 ◦C (15, 30, 45 and 60 min); at 150 ◦C (15, 30,
45 and 60 min) and at 175 ◦C (15, 30 and 45 min). For the temperature of 175 ◦C, roasting
for 60 min resulted in partial carbonization and the formation of undesirable organoleptic
characteristics, thus, this sample was rejected. Roasting experiments were performed in
duplicate. After roasting, samples were ground in a Thermomix TM5 (Vorwerk, Berkshire,
UK) until powdered (carob powder).

2.3. Extraction Method

Polyphenolic extracts were obtained according to the method described by Ku-
mazawa et al., with modifications [16]. Carob powder was extracted with cold water
and allowed to stand for 12 h at 4 ◦C, followed by filtration to remove sugars. The residue
was then extracted with 50:50 ethanol:water for 10 min with reflux. The sample was allowed
to stand for 30 min at room temperature and filtered. The filtrate was then centrifuged for
10 min at 10,000 rpm at 4 ◦C using an Eppendorf 5804R centrifuge with a F-34-6-38 rotor
(Hamburg, Germany), concentrated at the R-215 rotary evaporator (Büchi Flawil, Switzer-
land) to remove ethanol and freeze dried at −55 ◦C, 0.1 mbar using a LyoDry Compact
Benchtop Freeze Dryer (Mechateck Systems, Bristol, UK). The lyophilized material was
stored at 4 ◦C for up to 4–5 days until analysis. Extraction experiments were performed
in duplicate.

2.4. Determination of Total Polyphenolic Content

The total polyphenolic content of the extracts was determined using the Folin–Ciocalteu
photometric method, as described by Uysal et al., with some modifications [33]. Gallic acid
was used as the standard for the calibration curve. Standard solutions at concentrations of
0.05–0.75 mg/mL were prepared. A total of 4.5 mL distilled water, 100 µL of the extract
(2 mg/mL concentration) or the standard solution and 100 µL Folin–Ciocalteu reagent
were added to a vial and the vial was shaken vigorously. After 3 min, 300 µL of Na2CO3
2% solution was added and the mixture was allowed to react for 2 h. The absorbance was
measured at 760 nm using a Shimadzu UV-1700 spectrometer (Tokyo, Japan). The total
polyphenolic content was expressed as mg gallic acid equivalents per gram of extract dry
weight (mg GAE/g dw).

2.5. Determination of Proanthocyanidin Content

The proanthocyanins content of the carob extracts was determined by the procedure
described by Quiroz-Reyes et al. [34]. In 1.5 mL of solution A (n-BuOH/HCl, 95:5, v/v),
250 µL of carob extract (1 mg/mL) and 50 µL of solution B (2% NH4Fe(SO4)2·12H2O in
2M HCl) were added and thoroughly mixed. The mixture was then heated for 1 h at 95 ◦C
in a water bath and cooled immediately in ice. The absorbance was measured at 550 nm
using a Shimadzu UV-1700 spectrometer (Tokyo, Japan). The blank value was prepared
in the same way as the samples and subtracted from all of them. The quantification was
performed using a calibration curve of cyanidin chloride (0.001–0.25 mg/mL) as a standard.
The results were expressed as cyanidin chloride equivalents per g extract dw (CyE/g dw).
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2.6. Determination of the Radical Scavenging Activity on DPPH

The effect of the extracts on DPPH radical was estimated, according to Sarikurkcu et al.,
with some modifications [35]. The radical scavenging ability of the extracts was measured
from the bleaching of the purple colored methanol solution of DPPH. A total of 1 mL
of various concentrations (0.001–1 mg/mL) of the carob extracts was added to 1 mL of
freshly made DPPH radical solution, 0.2 mM in methanol and shaken vigorously. A control
sample was prepared containing 1 mL of H2O instead of the extract solution. The mixture
was allowed to stand for 30 min in a dark at room temperature and the absorbance was
measured at 517 nm using a Shimadzu spectrophotometer UV-1700 (Tokyo, Japan). The
inhibition of free radical DPPH in percent (I%) was calculated in following way:

I% = 100 ×

(
Acontrol − Asample

)
Acontrol

where Acontrol is the absorbance of the control reaction using the control sample, and
Asample is the absorbance of the extract.

The antioxidant activity was measured by calculation of the EC50 value using Origin-
Pro 2021 software (OriginLab Corporation, Northampton, MA, USA) [36]. The EC50 value
represents the quantity of the antioxidant required to produce half of the response (DPPH
radical scavenging). Antiradical curves were plotted referring the logarithm of extracts
concentration on the x axis and their inhibition percentage calculated on the y axis, forming
a sigmoidal dose–response graph with a standard four-parameter formula expressed as:

y = A1 +
A2 − A1

1 + 10(logx0−x)p

where A1 is the bottom asymptote (baseline) and A2 the top asymptote, which represents
the maximum response; p is the hill slope of the curve and x0 is the concentration at the
center of the curve (inflection point), also recognized as the EC50 value. The antioxidant
activity was also expressed as the Trolox equivalent antioxidant capacity (TEAC), by
calculating the EC50 value of the Trolox standard (expressed in µg/mL) and dividing it
with the EC50 value of each sample (expressed in µg/mL) [37].

2.7. High Performance Liquid Chromatography (HPLC) Analysis

The HPLC analysis of polyphenolic extracts was carried out using a Thermo Scientific—
Dionex Ultimate 3000 UHPLC system equipped with a diode array detector (Thermo
Fisher Scientific, Walthman, MA, USA), based on the method reported previously by Bit-
tova et al. [38]. The separation was performed on an Acclaim 120 C18 column (4.6 × 150 mm,
5 µm particle size) (Thermo Fisher Scientific, Walthman, MA, USA) and a C18 guard col-
umn (4.6 × 10 mm, 5 µm particle size) (Thermo Fisher Scientific, Walthman, MA, USA)
thermostated at 25 ◦C. The mobile phases were eluent A, acetic acid/water (1/99, v/v), elu-
ent B, methanol and eluent C, acetonitrile. The flow rate was 0.7 mL/min and the gradient
was as follows: 0–10 min, 70% A, 25% B, 5% C; 10–15 min, 65% A, 25% B, 10% C; 15–50 min,
45% A, 40% B, 15% C and then the initial solvents were maintained for another 5 min
for column re-equilibration. The Ultraviolet-Visible (UV-VIS) absorbance spectra were
monitored between 190 and 400 nm. The sample injection volume was 10 µL. Prior to the
injection of the standard solutions and the samples to the HPLC system, they were filtered
through MCE syringe filters (0.20 µm pore size, JG Fenneran, Vineland, NJ, USA). The indi-
vidual phenolic compounds were identified by comparing the retention times and UV-VIS
absorbance spectra with their corresponding analyzed standards. The quantification of
gallic acid and cinnamic acid, identified as the two most abundant phenolic compounds
in our samples, was performed at 280 nm using the external standard calibration method.
Instrument control, data acquisition and evaluation were performed with the Chromeleon
7 Chromatography Data System software (Thermo Fisher Scientific, Walthman, MA, USA).
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Additional information on the HPLC method (Table S1) and chromatograms (Figure S1)
are available as Supplementary Materials S1.

2.8. ATR-FTIR Spectroscopy

The ATR-FTIR spectra were obtained with a Vertex 70 FTIR spectrometer (Bruker
Optics, Ettlingen, Germany), equipped with a single-reflection ZnSe ATR accessory (Pike
Technologies, Madison WI, USA) and a DTGS detector (Bruker Optics, Ettlingen, Germany).
Approximately 10 µL of 10 mg/mL extract solution was deposited on the crystal and
allowed to dry for ~50 min until a film layer was formed prior to the measurement.
A background spectrum against air was recorded before each sample spectrum. The
background and sample spectra were acquired at 4 cm−1 resolution with 40 scans from
4000 to 400 cm−1. Each spectrum is the average of spectra from at least three different
samples. The ATR-FTIR spectra were normalized employing vector normalization. The
Opus 7.0 software (Bruker Optics, Ettlingen, Germany) was used for spectra collection
and analysis.

2.9. Statistical Analysis

The results are presented as the mean ± standard deviation of quadruplicates. The
error bars in all figures correspond to the standard deviations. Statistical tests were per-
formed using the OriginPro 2021 software (OriginLab Corporation, Northampton, MA,
USA). The experimental data were tested for the normal distribution and homogeneity of
variances (Levene’s test) and then subjected to the analysis of variance (ANOVA). One-way
ANOVA was applied to the experimental data to determine the significance of the effects
(roasting temperature and time) on TPC, proanthocyanidin content, gallic acid content,
cinnamic acid content and antioxidant activity (EC50) of carob extracts. The significant
differences among the means were estimated through Tukey’s honestly significant differ-
ence (HSD) test. Pearson correlations were performed to assess the relationships among
the different parameters studied. For all statistical analysis, p < 0.05 was considered as
statistical significance.

3. Results and Discussion
3.1. Polyphenolic Content and Antioxidant Activity

The two-step solid–liquid extraction procedure followed in this work, enabled the
production of polyphenol-rich carob powder extracts with total polyphenolic content (TPC)
of 85 mg GAE/g extract dw, which corresponded to 0.504 g GAE/100 g of raw (unroasted)
carob powder. This TPC value is within the range of those previously reported [11,12,15,17].
It is noted that all photospectrometric assays, chromatographic analyses and FTIR charac-
terization were performed on the extracts without further processing, and all results were
quoted per gram of extract dw.

The changes in the TPC of the carob powder extracts upon the roasting of the kibbles
at 125 ◦C (for 15, 30, 45 and 60 min), 150 ◦C (for 15, 30, 45, 60 min) and 175 ◦C (for 15, 30,
45 min) are shown in Figure 1 and summarized in Table 1. The lowest value for the TPC
was recorded for the extract from raw carob powder and from the samples roasted at 125 ◦C
and 150 ◦C for the shorter roasting time of 15 min. All other roasted samples displayed an
increase in the TPC. For the roasting temperature of 125 ◦C, the TPC increased gradually
with the increasing roasting time to reach a maximum value of 148 mg GAE/g dw at 60 min.
For the roasting temperatures of 150 ◦C and 175 ◦C, a similar maximum plateau value
exceeding 150 mg GAE/g dw was reached at 45 min and 30 min, respectively, and remained
largely the same for the longer roasting times. The maximum TPC value in roasted samples
reached a 1.9-fold increase relative to the unroasted sample. The increase in the TPC upon
roasting can partially be attributed to the improved solubility of polyphenols, due to the
breakdown of cellular structures and their release from decomposing polymeric structures,
processes that are promoted during roasting. However, since the Folin–Ciocalteu reagent is
reactive towards other reducing compounds besides phenols, MRPs also contribute to the
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observed increase in TPC [11,12]. Previous studies have also reported an increase in the
TPC of roasted carob powder versus the raw samples, although there are deviations in the
effects of time and roasting temperature. Sahin et al. [11] reported that the heat-induced
changes in carob powder, including the increase in TPC, particularly accelerate between
20 and 60 min of roasting at all tested temperatures (135 ◦C, 150 ◦C and 165 ◦C), while
Cepo et al. [12] stated that the majority of processes occurred during the first 15 min of
roasting at similar tested temperatures (130 ◦C, 150 ◦C and 165 ◦C). Our data demonstrated
that both the roasting temperature and time affected the TPC, leading to a similar maximum
plateau value at the temperatures examined in this work (125 ◦C, 150 ◦C and 175 ◦C), albeit
at different roasting times. The rates of the processes leading to the increase in TPC varied
depending on the roasting temperature.
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(unroasted) and after the roasting of kibbles at 125 ◦C (for 15, 30, 45 and 60 min), 150 ◦C (for 15, 30,
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differences according to Tukey’s honestly significant difference (HSD) test at p < 0.05.

Table 1. Total polyphenolic content (TPC), proanthocyanidin content, gallic acid content, cinnamic acid content, EC50 and
Trolox equivalent antioxidant capacity (TEAC) values of the extracts from unroasted and roasted carob powder samples at
the indicated roasting conditions.

Roasting Conditions TPC
(mg GAE/g dw)

Proanthocyanidins
(mg CyE/g dw)

Gallic Acid
(mg/g dw)

Cinnamic Acid
(µg/g dw)

EC50
(µg/mL) TEAC

Unroasted 84.9 ± 3.3 e 3.64 ± 0.55 h 2.53 ± 0.15 bcd 135.5 ± 5.0 abc 49.5 ± 2.2 a 0.23 ± 0.01

125 ◦C

15 min 86.6 ± 6.1 e 3.37 ± 0.93 h 2.83 ± 0.34 abc 138.3 ± 6.8 ab 48.1 ± 0.5 a 0.24 ± 0.00
30 min 98.4 ± 6.8 d 5.36 ± 0.67 fg 2.45 ± 0.47 bcd 128.2 ± 7.3 bc 26.5 ± 1.9 b 0.43 ± 0.03
45 min 116.5 ± 3.6 c 7.53 ± 0.95 e 2.41 ± 0.20 cd 126.8 ± 3.1 bcd 20.0 ± 1.2 cd 0.56 ± 0.03
60 min 148.0 ± 6.5 a 11.49 ± 1.29 c 2.53 ± 0.17 bcd 134.3 ± 6.4 abc 15.0 ± 0.5 ef 0.77 ± 0.03

150 ◦C

15 min 83.1 ± 3.5 e 3.90 ± 0.32 gh 2.19 ± 0.13 cd 115.8 ± 4.7 cd 49.6 ± 2.2 a 0.23 ± 0.01
30 min 131.3 ± 2.9 b 15.69 ± 0.21 b 2.10 ± 0.05 d 125.4 ± 4.8 bcd 18.8 ± 1.9 cde 0.55 ± 0.03
45 min 152.5 ± 2.3 a 19.05 ± 1.02 a 2.62 ± 0.32 bcd 127.3 ± 13.1 bc 13.9 ± 1.1 f 0.79 ± 0.03
60 min 157.1 ± 7.2 a 20.12 ± 0.42 a 3.02 ± 0.18 ab 133.1 ± 13.0 bc 15.5 ± 1.1 ef 0.72 ± 0.03

175 ◦C
15 min 132.5 ± 6.2 b 5.44 ± 0.49 f 2.13 ± 0.31 d 106.0 ± 4.8 d 21.4 ± 2.7 c 0.47 ± 0.04
30 min 157.7 ± 5.9 a 7.17 ± 0.65 e 2.27 ± 0.15 cd 116.4 ± 11.3 cd 14.7 ± 0.9 ef 0.75 ± 0.03
45 min 156.2 ± 3.9 a 9.42 ± 0.51 d 3.38 ± 0.30 a 155.9 ± 14.0 a 16.8 ± 0.7 def 0.66 ± 0.02

Data are presented as the mean ± standard deviation of quadruplicates. The different letters show the statistically significant differences
between the roasting conditions according to Tukey’s HSD test at p < 0.05.
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To investigate the effect of roasting on different polyphenolic compounds, we also
photometrically determined the proanthocyanidin content of the extracts from raw and
roasted carob kibbles. Figure 2 shows the changes in the proanthocyanidin content of the
extracts from carob powder upon roasting at the indicated times and temperatures. Similar
to the TPC, the lowest content in proanthocyanidins was recorded for the extract from
the raw carob powder at the value of 3.6 mg CyE/g dw. The proanthocyanidin content
increased with the roasting time, reaching a maximum at 60 min and, specifically, a value
of 11.5 mg CyE/g dw at 125 ◦C (3.2-fold increase), 20.1 mg CyE/g dw at 150 ◦C (5.5-fold
increase) and 9.4 mg CyE/g dw at 175 ◦C (2.6-fold increase). Therefore, the data revealed
that varying maximum proanthocyanidin content can be obtained at different roasting
temperatures, with 150 ◦C being the optimum temperature for enhancing the content of
extracts. Overall, we suggest that roasting enhances the solubility and extractability of
proanthocyanidins, while the competing thermal degradation of proanthocyanidins can be
responsible for the lower values observed at 175 ◦C in comparison to 150 ◦C.
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Moreover, we monitored the gallic and cinnamic acid contents of the extracts from raw
and roasted carob kibbles (Figure 3 and Table 1), since they were the most abundant free
monomeric phenolic compounds identified by the employed HPLC method in our samples.
Gallic acid was the dominant compound, in agreement with previous studies [14,17,20].
Unlike the TPC and proanthocyanidin content, moderate variations were observed for the
gallic acid content between the raw and roasted samples, and the variations in cinnamic
acid content were even subtler. A motif of decrease and subsequent increase in the content
of the monomeric phenolic compounds with the increasing time of roasting was identified
at the intermediate and highest roasting temperatures used in this work (150 ◦C and
175 ◦C). This motif was attributed to the competing processes of thermal degradation,
leading to decreasing content, versus the release of the monomers from their bound and
conjugated forms, leading to increasing content. For gallic acid, the highest contents were
observed in the samples roasted at 150 ◦C for 60 min and 175 ◦C for 45 min, suggesting
that, under these roasting conditions, the rate of release of gallic acid from its bound and
conjugated forms becomes dominant over the thermally-induced degradation reactions.
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The radical scavenging activity of the carob powder extracts was evaluated by the
DPPH assay with the determination of the EC50 values (half maximal effective concen-
tration), representing the amount of extract required to produce half of the response
(scavenging of the DPPH radical). The EC50 values determined for the extracts from raw
and roasted carob kibbles, are presented in Figure 4 and Table 1. The highest EC50 value of
49.5 µg/mL was obtained for the extract from raw carob powder, while the lowest EC50
values and, thus, the highest antioxidant activity, were observed for the extracts from the
samples roasted for 60 min at 125 ◦C, for 45 and 60 min at 150 ◦C and for 30 and 45 at
175 ◦C (up to a 3.3-fold increase in antioxidant activity). Overall, the EC50 values deter-
mined for the extracts in this work were significantly lower compared to those reported
previously for the extracts from raw carob kibbles (33.26 g/L) and roasted carob products
(7.04–9.96 g/L) [17], suggesting that the extracts obtained, herein, were of a higher antioxi-
dant capacity. Moreover, the extracts from both the raw and roasted carob samples all had
EC50 values below 50 µg/mL, demonstrating an overall strong antioxidant capacity, as
also confirmed by the calculation of the TEAC values (included in Table 1). The Pearson
correlation matrix among the antioxidant activity (EC50), TPC, proanthocyanidin, gallic
and cinnamic acid contents (Table 2) revealed that the antioxidant activity was strongly
associated with the TPC, while the correlation with the proanthocyanidin content was
lower and no correlation existed with the phenolic monomers content. Since polyphenols
and MRPs contribute to the TPC, we suggest that both the release of bound phenolics
and formation of MRPs are important contributors to the enhancement of the antioxidant
activity upon roasting. A better understanding of the link between antioxidant activity
and the chemical/structural changes induced upon roasting requires a technique that is
sensitive to the molecular structure and, thus, we also employed FTIR spectroscopy in
this work.
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Figure 4. DPPH scavenging activity (expressed as EC50) of the carob powder extracts obtained prior
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differences according to Tukey’s HSD test at p < 0.05.

Table 2. Pearson correlation matrix among the total polyphenolic content (TPC), proanthocyanidin
content (PC), gallic acid content (GA), cinnamic acid content (CIA) and antioxidant activity expressed
as EC50 values.

TPC PC GA CIA EC50

TPC 1 0.71042 0.31998 0.09808 −0.91444
PC 1 0.21168 0.1464 −0.67768
GA 1 0.84864 −0.12447
CIA 1 0.00249
EC50 1

Correlations in bold are significant at p < 0.05.

3.2. ATR-FTIR Characterization

FTIR spectroscopy is a valuable tool in the identification of the molecular structure of
compounds as well as the chemical changes taking place upon the roasting of carob kibbles,
since FTIR spectra comprise of bands characteristic of chemical bonds [39]. In this work,
the ATR-FTIR approach was employed as a versatile sampling method requiring minimal
sample preparation prior to the spectral measurements. Figure 5 shows the ATR-FTIR
spectra of the polyphenolic extracts from raw (trace a in all panels) and roasted carob kibbles
(traces b–e in all panels). The ATR-FTIR spectra of the extracts obtained from unroasted
carob kibbles (trace a in all panels) displayed a major broad band at 3315 cm−1, attributed
primarily to the O–H stretching vibration of hydroxyl groups from phenolic compounds
and carbohydrates, with some possible contribution from the N–H stretch [39–41]. The
frequency and bandwidth of the 3315 cm−1 band indicated intermolecular hydrogen
bonding interactions for the hydroxyl groups [39]. The bands at 2930 cm−1 and 2890 cm−1

originated from the C–H stretching vibrations of sp3 C–H bonds. The band at 1705 cm−1

was assigned to the CO stretching mode demonstrating the presence of carbonyl groups.
The vibration at 1610 cm−1 with the shoulder at 1570 cm−1 resulted from overlapping
bands, including those arising from C=C–C aromatic ring bonds, C=N and C=C bonds,
while contributions from amide or carboxylate groups are also possible in this spectral



Antioxidants 2021, 10, 2025 10 of 14

region [32,39–41]. In the 1450–1300 cm−1 region, multiple bands were observed, which were
mainly due to CH and OH bending vibrations. The intensity at 1210 cm−1 was partially
attributed to the C–O (phenol) stretch and the prominent bands at the ~1150–990 cm−1

region were assigned to C–C and to C–O stretches from alkyl ester, ether, methoxy and
alcohol groups [32,39–41].
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Figure 5. ATR-FTIR spectra of carob powder extracts obtained prior to (trace a) and after the roasting of kibbles for 15 min
(trace b), 30 min (trace c), 45 min (trace d) and 60 min (trace e) at the indicated temperatures in each panel: (A) 125 ◦C,
(B) 150 ◦C and (C) 175 ◦C. The spectra in all panels have been translated along the vertical axis for clarity. The difference
FTIR spectrum of the extract from the longer roasting time minus the unroasted sample (trace e−a in panels (A,B) and trace
d−a in panel (C)) is included in all panels. The inset in panel (C) shows the FTIR difference spectra: b−a (red), c−a (blue)
and d−a (grey) in an overlay plot.

The analysis of the ATR-FTIR spectra of carob kibbles extracts revealed their complex
chemical nature, since the vibrations of various classes of compounds were detected,
with the phenolic compounds being indisputably identified. The antioxidant activity
of polyphenolic extracts is primarily exerted by the phenolic hydroxyl groups, which
displayed a strong contribution in the ~3300 cm−1 region in our spectra. In particular,
the antioxidant activity can be related to the number and position of phenolic hydroxyls,
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while the methoxy and alkyl ester groups are among the functional groups that frequently
appear in a wide range of phenolic compounds and affect the antioxidant activity [42]. The
contributions of such groups were identified in the ATR-FTIR spectra of the carob kibbles
extracts, in this study.

Figure 5 includes the ATR-FTIR spectra of the extracts, after the roasting of carob
kibbles at 125 ◦C (A), 150 ◦C (B) and 175 ◦C (C) for 15 min (trace b), 30 min (trace c), 45 min
(trace d) and 60 min (trace e). The thermal processing of the carob kibbles resulted in
frequency shifts and changes in the relative intensity of various bands in the ATR-FTIR
spectra of the extracts, which depended on the roasting temperature and duration. As
shown in Figure 5A, the changes in the ATR-FTIR spectra of the roasted samples were
subtle and mainly observed at the spectrum corresponding to 60 min roasting time (trace e).
The most readily observed change involved the upshift of the broad hydroxyl band from
3315 cm−1 to 3330 cm−1. The upshift of the O–H bond demonstrated weaker hydrogen
bonding interactions of the OH groups in the extracts from roasted samples relative to that
from unroasted kibbles. It is well established that the intermolecular hydrogen bonding
interactions of the hydroxyl groups weaken the O–H bond and lead to the downshift
of the O–H stretch [39]. To identify even more subtle changes in the ATR-FTIR spectra
upon roasting, we utilized the difference spectroscopy approach since, in the difference
spectra, a decrease in the intensity of a vibration will appear as a negative peak and an
increase as a positive one. Therefore, the difference ATR-FTIR spectrum of 60 min roasting
minus the unroasted sample (trace e–a) was calculated and is shown in Figure 5A. This
difference spectrum demonstrated a broad positive band at 3400 cm−1 attributed to the
presence of an increased number of phenolic hydroxyl groups with weak intermolecular
hydrogen interactions in the roasted samples. This observation was also consistent with
the enhanced release of polyphenolic compounds from the complex fruit matrix upon
roasting, and the observed increased TPC and proanthocyanidin content in the extracts
from roasted samples relative to that from unroasted kibbles. Moreover, other positive
bands appeared in the difference spectrum in the C=O region (1750–1600 cm−1), while
negative bands were observed in the C–O region (1100–990 cm−1). It is interesting to note
that the decrease in the intensity of C–O single bonds versus the increase in C=O double
bonds has been recently reported as a characteristic feature in the FTIR spectra observed
upon the formation of melanoidins in the Maillard reaction of different carbohydrates [41].
Common features were also identified in the comparison with the ATR-FTIR spectra of
high molecular weight cocoa melanoidins that were recently reported [32]. We suggest that
the formation of melanoidins was the source for the observations in the fingerprint region
in our spectra. The melanoidins produced in different food matrices have been reported to
positively correlate to antioxidant activity and to have the potential to scavenge reactive
α-dicarbonyls [28,29,34,43].

The ATR-FTIR spectra of the extracts from the carob kibbles roasted at 150 ◦C are
shown in Figure 5B. A slight upshift of the 3315 cm−1 hydroxyl band was already observed
at 30 min roasting time (trace c) and reached 3335 cm−1 at 45 min and 60 min, as depicted
in traces d and e, respectively. The difference spectrum of 60 min roasting minus the
unroasted sample (trace e–a) revealed the presence of a broad positive band at 3410 cm−1,
comparable to that observed for 125 ◦C with a slightly higher frequency. The positive
peaks in the C=O region (1750–1600 cm−1) and the negative bands in the C–O region
(1100–990 cm−1) were observed, similar to the corresponding difference spectrum of the
125 ◦C sample, with some intensity differences.

Figure 5C includes the ATR-FTIR spectra obtained for the extracts from the carob kib-
bles roasted at 175 ◦C. At this temperature, the changes in the ATR-FTIR spectra appeared
at earlier roasting times as it was evident in the 15 min spectrum (trace b), in which the
hydroxyl band shifted at 3330 cm−1, while it shifted further to 3340 cm−1 and 3350 cm−1 in
the 30 min (trace c) and 45 min (trace d) spectra, respectively. The spectrum corresponding
to the 45 min roasting time (trace d) demonstrated the most extensive changes, including
significant intensity changes and the formation of new peaks. The difference spectrum of
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45 min roasting minus the unroasted sample (trace d–a), indeed, revealed diverse features
relative to the difference spectra of 125 ◦C and 150 ◦C. In the 3600–3000 cm−1 region, a peak
to through pattern was observed at 3450/3210 cm−1. Moreover, multiple intense positive
peaks were detected in the carbonyl region with a prominent newly formed vibration at
1665 cm−1. Because the changes in the ATR-FTIR spectra were readily observed, even at
short roasting times at 175 ◦C, we have included the difference spectra for all the roasting
times at this temperature as an inset, in Figure 5C. The difference spectra corresponding
to the samples roasted for 15 min (red trace) and 30 min (blue trace) at 175 ◦C, resembled
those obtained for 60 min roasting time at 125 ◦C and 150 ◦C. The formation of additional
carbonyl groups that was observed when roasting was performed at 175 ◦C for 45 min
was not associated with further changes in the antioxidant activity. Therefore, the prod-
ucts formed in this sample can include contaminant compounds that are more likely to
accumulate at higher temperatures, as shown in previous studies [14,15].

Overall, the upshift of the O–H stretch in the ATR-FTIR spectra of the roasted samples,
partially attributed to the phenolic hydroxyl, indicated a significant change in the inter-
molecular hydrogen bonding interactions of the phenolic hydroxyl groups at all roasting
temperatures, thereby providing a possible contribution for the increased antioxidant
activity upon roasting. Hydrogen bonding interactions are considered as important factors
of antioxidant performance. Intermolecular hydrogen bonding contributes to diminished
antioxidant activity, while intramolecular hydrogen bonding lowers the O–H bond dissoci-
ation enthalpy of polyphenols and, consequently, enhances antioxidant activity [42]. Our
ATR-FTIR data indicated the presence of an increasing number of hydroxyl groups with
weakened intermolecular hydrogen interactions in the roasted samples. Consequently,
both the increased quantity of polyphenols due to the improved extractability, as well as
the weakening of the intermolecular hydrogen bonding of the phenolic hydroxyls, are
suggested to be crucial for the enhancement of antioxidant activity upon roasting. Except
for the changes involving the polyphenolic compounds in the roasted extracts, the Maillard
reaction is also a contributor in the enhancement of antioxidant activity. Our ATR-FTIR
data indicated the formation of MRPs, and the spectral features of these products were
consistent with the characteristic IR signatures of melanoidins.

4. Conclusions

In summary, for the first time, the present study utilized ATR-FTIR spectroscopy to
explore the structure–antioxidant activity relations in roasted carob kibbles. The structural
changes involving the hydrogen bonding interactions of the phenolic hydroxyl groups
were detected and considered as contributors to the increased antioxidant activity of carob
powder extracts upon roasting, in addition to the enhanced extractability of phenolic com-
pounds from the fruit matrix. The competitive effects arising from the thermal degradation
of polyphenolic compounds at the highest roasting temperature of 175 ◦C used in this study
was evidenced, particularly for proanthocyanidins. The FTIR detection of melanoidins
signatures in the roasted samples, which displayed the highest antioxidant activities, laid
the basis for the further investigation of these bioactive compounds in carob. Experiments
for the separation of the low and high molecular weight fractions of roasted carob kib-
bles are underway in our laboratory, to allow for a comprehensive characterization of the
structure and antioxidant activity of the low molecular weight compounds and of the
polymeric melanoidins.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/antiox10122025/s1, Figure S1: (A) chromatogram of the standard phenolic compounds
recorded at 280 nm: gallic acid (1), pyrogallol (2), catechin (3), epicatechin (4), caffeic acid (5), p-
coumaric acid (6), ferulic acid (7), myricetin (8), cinnamic acid (9), quercetin (10) and kaempferol (11).
(B) Chromatogram of carob powder extract recorded at 280 nm, Table S1: retention times, regression
equations, coefficients of determination (R2), LODs, LOQs and % relative standard deviation (%RSD)
of the peak areas.

https://www.mdpi.com/article/10.3390/antiox10122025/s1
https://www.mdpi.com/article/10.3390/antiox10122025/s1
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