His-MaAPX1 GST-MaMsrB2

Figure S1 SDS-PAGE of expressed recombinant His-APX1 protein and GSTMaMsrB2 from E. coli BL21. "Before" and "After" referred to before and after protein purification.

Figure S2 Expression of MaAPX1 and MaMsrB2 genes of banana fruit stored under air (control) or 60% oxygen at $25^{\circ} \mathrm{C}$. (A, C) control fruit. (B, D) fruit stored under 60% oxygen. The expression levels were expressed as a ratio relative to that of 0 d for control fruit, which was set as 1 . Each value represents the mean $\pm \mathrm{SE}$ of three biological replicates. Different letters indicated statistically significant differences between the samples (Student's t test; $\mathrm{P}<0.05$).

Figure S3 Multiple alignment of MaAPX1 with AtAPX1 (Arabidopsis thaliana, NP_001030991.2), SIAPX2 (Solanum lycopersicum, NP_001318094.1), OsAPX2 (Oryza sativa, XP_015646556.1), AcAPX (Ananas comosus, XP_020108209.1), ZaAPX (Zantedeschia aethiopica, AAC08576.1). \#: heme binding site; *: substrate
binding site; $\bullet: \mathrm{K}^{+}$binding site).

Figure S4 Phylogenetic alignment of MaMsrB1 and MaMsrB2 with MsrBs from Arabidopsis thaliana, Capsicum annuum, Carica papaya, Medicago truncatula, Oropetium thomaeum, Oryza sativa, Populus trichocarpa, Ricinus communis and Zea mays.

AtMsrB1	NASSTR. .LTIIQSSEVSAR. . . . TRINYVSKINHSGEACRSLSKPRNLSLSVYSMGSS	53
AtMsrB2	MAFNIITPGRVYSATSLTEVSTIKAAFVKPPIASPSRRNLLRESSSPLSE	50
RcMsrb		0
ZmMsrB	NAARCSIAASVVRTGSRDLSPSFSFIAAALPSARLRFVGAKVRGGGYTCRLRAVCAMGSA	60
NtmsrB2	MGSQILKISPFASSSIENATPFLRFC्रAKTVVTISKTQFRSNSIVSSSGEVPL	52
CaMsrB2	MIFHQCXAPET . .IIFSSTSLLRFHAKRNCG QFRHLGEVCSS .	39
MaMsrb1		0
MaMsrB2	MISRWK. . . . ILRISR. AVKFGSHRRRR. SSAFAMGSS	31
AtMsrB1	. SSSPKPD . . . NVQEAEKNEEASLSENEWKKRITEECYYITRCKGTERAFTGEYWNSKT	108
AtMsrB2	PSLRRGFHGGRIVAMGSSAPESUNKPEEEDFAIISEECFRILRCKGTEYPGIGEYNKVFD	110
RcMsrb	MAAA . GSIQKSEGEWRAILSEECFHILEEKGTERKFTGEYDKFFG	44
ZmMsrB	PSSSQSPSPHTPSGQTQGKADYKSLSEDEWKKRITEECYYVTEQKGTERAFTGEYWNTKT	120
NtmsrB2	SNNKRGLSGG.VVAMASATGGSVQKSEDEDRRAILSEECRRILRCKGTEYPGTGEYDKFYG	111
CaMsrb2	.KRRFRGG. IIANATP . .GSVHKSEDEWRAILSEECFRILEQKGMEYPGTGEYDKESG	93
MaMsrB1	NASS . . GFVQKSEEDWWCAILSEECRFILESKGTEYPGTGCYDKFEA	44
MaMsrB2	.SSSQRPD. . . .CQVQEFANVNFASLSDEERKKQITEECYYITEQKGTERAFIGEYWNTKT	86
AtMsrb1		168
AtMsrB2	DGIYCOAGCGTPIYKSTIKEDSGCGWEAFFDGLPGAITRTRDP. . DGREIEIITAACGG	167
Remsrb	EGIYNCAGOETPLYKSTTKEDSGCGWEAFFEGLPGAINRSEDP . . DGEETEITCVACGG	101
ZmMsrB	FGIYCQVCODTPLFCSSTKEDSGTGWESYYKPIGEENVKSKLDMSIIFMEETEVICATCDA	180
NtmsrB2	EGIYCOAGCGTPIYKSTTKENSGCGWEAFFEGLPGAINRTADP. . DGEEIEITCAACGG	168
CaMsrb2	YCOAGOGTPIYNSTTKENSCCGWEAFFEGLPGAINRTPDP . . . DGREISITTCAPCGG	150
MaMsrB1	DGIYEOAGCGTPIYKSTTKENSGCGWEAFFEGLPGAINRTPDP. . DGREISIITCAACGG	1
MaMsrib2	FGTYHCICODTPIFESNTKEDSGTGWESYYEPIGNNVKSKLDMSIIFMEETEVICAACDA	146
AtMsrB1	HLGEVEDDG . PRFTIGKEYCLNSAALKINALEKTRD	202
AtMsrb2	GLGEVEKGEGFPTPTDEEHCVNSISLKFTPENPTL	202
RcMsrb	ELGEVEKGEGHKTPIDESHCYNSVSIKSIGEINCXVREMAEN	142
ZmMsrB	GLGEVEDDG. . PEPTGKEYCINSASLKLKPQ	209
NtmsrB2	GLGEVEKGEGFPTPIDESHCVNSISLKEAFANS	201
CaMsrB2	ELGEVEKGEGFENPTNEEHCYNSISLKETEANS	183
MaMsrB1	ELGEVEKGEGENTPTDEER WNSISLKEVEASQS	134
MaMsrib2	GLGEVEDDG. .PEPTGKEYCHNSASLKLKPK	175

Figure S5 Multiple alignment of MaMsrB1 and MaMsrB2 with AtMsrB1, AtMsrB2, RcMsrB, ZmMsrB, NtMsrB2 and CaMsrB2. The conserved recycling motifs (B), conserved catalytic domain (D) and the zinc fixation motifs (A and C) are indicated by black lines.

Table S1 Summary of primers used in this study.

Gene	Forward(5'-3')	Reverse($\mathbf{5}^{\prime}-3^{\prime}$)
For full length cloning		
MaAPX1	ATGGCGAAGTCGTATCCGACGG	TTAAGCCTCAGCAAATCCGAGTT
	TGAGTG	CTGA
MaMsrB2	ATGATCAGTCGATGGAAAATCC	CTACTTCGGCTTCAGCTTTAGGG
	TCCGC	ATGC
For qRT-PCR in banana		
MaAPX1	GGGCTCAACATCGCTGTCAGGC	GGCACCTTCCCAGTGTGTGTCCA
	TCTT	CCA
MaMsrB2	TCTTTGTGCTGCCTGCGAT	CAGATGTCCGATAGATTTTGTC
MaActin	TGGTATGGAAGCCGCTGGTA	TCTGCTGGAATGTGCTGAGG
For qRT-PCR in Arabidopsis		
MaAPXI	TCTTGTGGAGAAATATGCTGCC	TTGGGACAACTCCAGTGAAA
$A t U B Q$	GATCTTTGCCGGAAAACAATTG	CGACTTGTCATTAGAAAGAAAG
	GAGGATGG	AGATAACA
For overexpression in Arabidopsis		
MaAPX1-	GGACTCTTGACCATGGTAATGG	GTCAGATCTACCATGGTAGCCTC
1302	CGAAGTCGTATCCGACGGTGA	AGCAAATCCGAGTTCT
For subcellular localization		
MaAPX1-	GGACTCTTGACCATGGTAATGG	GTCAGATCTACCATGGTAGCCTC
GFP	CGAAGTCGTATCCGACGGTGA	AGCAAATCCGAGTTCT
MaMsrB2-	GGACTCTTGACCATGGTAATGA	GTCAGATCTACCATGGTCTACTT
GFP	TCAGTCGATGGAAAATCCTCCG	CGGCTTCAGCTTTAGGGATGC
	C	
For site-directed mutagenesis of Met residues to glutamine and valine		
MaAPXIM	AACTGTGCCCCGTTGCAGCTCC	GAGCCGGAGCTGCAACGGGGCA
$36 Q$	GGCTC	CAGTT

MaAPXIM	AACTGTGCCCCGTTGGTGCTCC	GAGCCGGAGCACCAACGGGGCA
36 V	GGCTC	CAGTT
For BiFC		
MaAPXI-	CGCGCCACTAGTGGATCCATGG	GGGAGCGGTACCCTCGAGAGCC
YC	CGAAGTCGTATCCGACGGTGAG	TCAGCAAATCCGAGTTCTGA
	TG	
MaAPXI-	CGCGCCACTAGTGGATCCATGG	GGGAGCGGTACCCTCGAGAGCC
$Y N$	CGAAGTGGACTTGAAGAAGTCG	TCAGCAAATCCGAGTTCTGA
	TG	
MaMsrB2-	CGCGCCACTAGTGGATCCATGA	GGGAGCGGTACCCTCGAGCTTC
YC	TCAGTCGATGGAAAATCCTCCG	GGCTTCAGCTTTAGGGATGC
	C	
For Y2H		
MaAPX1-	GAGGAGGACCTGCATATGGCGA	ACGGATCCCCGGGAATTCTTAA
$B D$	AGTCGTATCCGACGGTGAGTG	GCCTCAGCAAATCCGAGTTCT
MaAPXI-	CCAGATTACGCTCATATGGCGA	CCCACCCGGGTGGAATTCTTAA
$A D$	AGTCGTATCCGACGGTGAGTG	GCCTCAGCAAATCCGAGTTCT
MaMsrB2-	CCAGATTACGCTCATATGATGA	CCCACCCGGGTGGAATTCCTACT
$A D$	TCAGTCGATGGAAAATCCTCCG	TCGGCTTCAGCTTTAGGGATGC
	C	
MaMsrB2-	GAGGAGGACCTGCATATGATGA	ACGGATCCCCGGGAATTCCTACT
BD	TCAGTCGATGGAAAATCCTCCG	TCGGCTTCAGCTTTAGGGATGC
	C	
For protein expression		
MaAPXI-	CCGCGCGGCAGCCATATGGCGA	AGTCATGCTAGCCATATGTTAAG
His	AGTCGTATCCGACGGTGA	CCTCAGCAAATCCGAGTTCT
MaMsrB2-	CTGGTTCCGCGTGGATCCATGA	CCGGGAATTCGGGGATCCCTAC
GST	TCAGTCGATGGAAAATCCTCCG	TTCGGCTTCAGCTTTAGGGATGC
	C	

