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Abstract: Carotenoids are pigments contained mainly in fruit and vegetables (F&V) that have bene-
ficial effects on cardiometabolic health. Due to their lipophilic nature, co-ingestion of fat appears to
increase their bioavailability via facilitating transfer to the aqueous micellar phase during diges-
tion. However, the extent to which high fat intake may contribute to increased carotenoid plasma
concentrations is still unclear. The objective was to examine the degree to which the consumption
of different amounts of both carotenoid-rich foods and fats is associated with plasma carotenoid
concentrations within a Mediterranean lifestyle context (subsample from the PREDIMED-Plus
study baseline) where consumption of F&V and fat is high. The study population was catego-
rized into four groups according to their self-reported consumption of F&V and fat. Carotenoids
were extracted from plasma samples and analyzed by HPLC-UV-VIS-QqQ-MS/MS. Carotenoid
systemic concentrations were greater in high consumers of F&V than in low consumers of these
foods (+3.04 µmol/L (95% CI: 0.90, 5.17), p-value = 0.005), but circulating concentrations seemed to
decrease when total fat intake was very high (−2.69 µmol/L (−5.54; 0.16), p-value = 0.064). High
consumption of F&V is associated with greater systemic levels of total carotenoids, in particular
when fat intake is low-to-moderate rather than very high.

Keywords: bioactive compounds; phytochemicals; dietary fats; Mediterranean diet; PREDIMED-Plus
study; plasma carotenoids; matrix effect absorption; liquid chromatography; mass spectrometry
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1. Introduction

A high intake of phytochemicals from fruits and vegetables (F&V) has been linked
to better cardiovascular health [1]. Among them, carotenoids, phytochemicals that give
these foods their yellow to reddish shades [2], have been associated with decreased risk of
type 2 diabetes [3], cardiovascular disease [4,5], and cancer [6,7]. Some carotenoids can be
enzymatically converted into essential vitamin A, but the main mechanism that explains
their salutary health effects seems to be their antioxidant action [8].

Carotenoids are very hydrophobic molecules which contain a long carbon chain rich
in conjugated double bonds and they are classified based on their chemical structure:
carotenes only contain hydrocarbons, while xanthophylls are oxygenated carotenes. Their
specific molecular structure and physicochemical characteristics explain their storage in
vegetable chromoplasts and conjugation with proteins. Therefore, they are strongly linked
to the food matrix and, consequently, have low bioaccessibility. However, their absorption
can be increased by simple processing and cooking methods [9–11] and, because of their
lipophilic profile, by the use of oils during cooking [12]. Dietary fat appears to increase
their bioaccessibility and bioavailabity and, hence, their plasma concentrations via the
emulsification and facilitation of incorporation into mixed micelles during digestion [12,13].
Once liberated from the matrix, carotenoids are absorbed and distributed in the human
body in a similar way to other dietary fat-soluble compounds. In this matter, genetic
variability in cleavage, transport and metabolism proteins can also affect carotenoid plasma
concentrations [14].

A minimum fat consumption of 3–5 g/day guarantees sufficient carotenoid absorp-
tion [9], and some reports have pointed out that greater fat intakes may increase their
bioavailability [15,16]. Interestingly, no large studies have investigated whether this associ-
ation is linear or if it plateaus at some point.

The objective of this study was to assess the association of F&V consumption and fat
intake, individually and combined, with plasma concentrations of carotenoids in an older
Mediterranean population with metabolic syndrome. The Mediterranean diet is one of the
most renowned healthy dietary patterns, and it is rich not only in F&V, but also in healthy
fats. This is a novel approach given that, to our knowledge, no studies have contemplated
actual dietary intake in order to assess this relationship.

2. Materials and Methods
2.1. Study Design

This work has been carried out as a baseline cross-sectional analysis within the
PREDIMED-Plus study, a 6-year, multicenter, randomized, parallel-group lifestyle interven-
tion trial for the primary prevention of cardiovascular disease that involves 6874 participants
recruited in 23 Spanish centers from September 2013 to November 2016 [17]. Eligible par-
ticipants were overweight or obese (body mass index between 27 and 40 kg/m2) men and
women ranging in age from 55 and 60 years, respectively, to 75 years. They all met at
least three metabolic syndrome criteria according to the International Diabetes Federation
and the American Heart Association and National Heart, Lung, and Blood Institute [18].
The selection and the description of the study sample have been reported elsewhere [19].
Details on the study protocol can be found at http://www.predimedplus.com/ (accessed on
16 October 2020).

2.1.1. Ethics Statement

The study was conducted according to the ethical standards’ guidelines of the Dec-
laration of Helsinki and all procedures involving human participants and patients were
approved by the Institutional Review Boards of the participating centers. The clinical trial
was registered in the ISRCTN of London, England with the number 89898870 on 24 July
2014. Written informed consent was obtained from all participants.

http://www.predimedplus.com/
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2.1.2. Sample Selection

Dietary intake was determined using the validated, semi-quantitative 143-item
PREDIMED-Plus food frequency questionnaire of the year prior to inclusion [19]. Accord-
ing to the consumption of F&V and total dietary fat, we randomly selected four groups
of 60 participants similar in age, sex, anthropometric measurements and cardiovascular
risk factors, who fulfilled the following characteristics: (1) participants with low F&V
consumption (first decile) and low-to-moderate fat (first quartile) intake (reference); (2)
participants with low F&V consumption (first decile) and very high fat intake (fourth
quartile); (3) participants with high F&V consumption (tenth decile) and low-to-moderate
fat intake (first quartile); and (4) participants with high F&V consumption (tenth decile)
and very high fat intake (fourth quartile).

2.1.3. Covariates

Trained personnel collected baseline data on: age; sex; prevalence of diabetes, hyperc-
holesterolemia, and hypertension; body mass index; physical activity; and smoking habit
as previously described [19]. From the validated food frequency questionnaire, we also es-
timated the consumption in g/day of alcohol and energy intake in kcal/day. Finally, based
on the 17-item energy- reduced Mediterranean diet adherence score [20], we estimated the
overall quality of diet regardless of the consumption of fruits, vegetables, dietary fats and
alcohol (this modified version was obtained using the 9 questions that were independent
from the consumption of these items; the higher the value of the score obtained, the higher
the overall quality of the diet).

2.1.4. Sample Size Calculation

A sample size of 60 participants per group allowed≥80% power to detect a significant
difference of 0.42 µg/mL in the concentration of total carotenoids in plasma between
groups, considering a 2-sided type I error of 0.05, a loss rate of 5%, and the standard
deviation of the differences in plasma concentration of total carotenoids in middle-aged
Spanish adults (SD = 0.80) [21].

2.2. Carotenoids Extraction and Analysis
2.2.1. Standards and Samples

K3-EDTA fasting plasma samples from the baseline blood extractions were analyzed.
These samples were drawn in the first visit of the study, just after being randomly assigned
to an intervention group and stored at−80 ◦C until use. All samples and standards were al-
ways handled avoiding exposure to light and under cool conditions. Carotenoid standards:
astaxanthin, canthaxanthin, E-β-apo-8′-carotenal, α-carotene, β-carotene, fucoxanthin, and
lycopene were purchased from Sigma-Aldrich (St. Louis, MO, USA). Lutein was provided
by Cayman Chemical (Ann Arbor, MI, USA), zeaxanthin and β-cryptoxanthin were pur-
chased from Extrasynthese (Genay, Lyon, France). 13-Z-β-carotene and 9-Z-β-carotene
were purchased from Carbosynth (Newbury, Berkshire, UK). Standards were stored in
powder form at −20 ◦C and protected from light.

Methanol of LC-MS grade, n-hexane, ethanol and methyl tert-butyl ether (MTBE) of
HPLC grade, blank human plasma and butylated hydroxytoluene (BHT) were obtained
from Sigma-Aldrich. Ammonium acetate (AMAC) and acetic acid of HPLC grade were
purchased from Panreac Quimica SLU (Barcelona, Spain). Ultrapure water (Milli-Q) was
generated by a Millipore system (Bedford, MA, USA).

2.2.2. Extraction

In order to avoid oxidation and isomerizing, the samples were extracted and analyzed
in a room with filtered light and kept in ice at all times. The extraction was performed
using a method previously developed by our group [22]. Briefly, 450 µL of the samples
were thawed and mixed with 800 µL of ethanol, 500 µL of ultrapure water and 2 mL of
n-hexane/BHT (100 mg/L) in crystal tubes and vortexed for 1 min. 100 µL of fucoxanthin
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at 1 mg/mL were also added as internal standard. Then, they were centrifuged at 2070× g
for 5 min at 4 ◦C and the upper nonpolar layer was separated into a new tube. The
lower aqueous phase underwent re-extraction with 2 more milliliters of n-hexane/BHT
(100 mg/L), 1 min of vortexing and 5 min of centrifugation at 2070× g and 4 ◦C. The
upper nonpolar layer was again separated and combined with the first one to undergo
evaporation to dryness by a sample concentrator under nitrogen gas at room temperature.
The evaporate was then reconstituted with 100 µL of methanol and stored in glass amber
vials with inserts at −80 ◦C until the day of analysis.

The same procedure was followed to prepare calibration curves. Stock solution of
blank human plasma was used to this end.

2.2.3. HPLC-UV-VIS-MS/MS Analysis

After extraction, the carotenoids were analyzed using a YMC Carotenoid S-5 µm,
250 × 4.6 mm (Waters, Milford, MA, USA) column for separation coupled for detection to
a UV-VIS detector set at 450 nm and a triple quadrupole mass spectrometer QTRAP4000
(Sciex, Foster City, CA, USA) equipped with APCI ionization source and controlled by
Analyst v.1.6.2 software (Sciex). The column was maintained at 40 ◦C throughout the
analysis [23].

The chromatographic separation was achieved by means of the combination of two mo-
bile phases. Mobile phase A consisting of methanol, AMAC at 0.7 g/L and 0.1% of acetic
acid. Mobile phase B consisting of MTBE and methanol (80:20, v/v), AMAC at 0.7 g/L and
0.1% of acetic acid. The mobile phase A gradient conditions used were (t (min),%): (0.0, 90);
(10.0, 75); (20.0, 50); (25.0, 30); (35.0, 10); (37.0, 6); (39.0, 90); (50.0, 90). The flow rate was
0.6 mL/min and total run time of analysis 50 min. 20 µL of the sample were injected into
the system.

Quantitation was achieved by the construction of calibration curves for each com-
pound and interpolation into them using MultiQuant software version 3.0.1 (Sciex) by
the internal standard method. Due to the labile profile of the Z-lycopene standard, this
carotenoid was quantified in E-lycopene equivalents. Detection and quantification limits,
concentration ranges, and correlation coefficients of the calibration curves prepared in
blank human plasma for the eleven compounds are shown in Supplementary Table S1.

2.3. Statistical Analysis

Baseline characteristics of the participants are presented as means ± standard devi-
ations for continuous variables and percentages for categorical variables. To determine
possible differences in baseline characteristics between groups, we used one-way ANOVA
for continuous variables and χ2-test for categorical variables. Nine samples were excluded
from the analyses for they had implausible energy intakes reported (>3500 Kcal/day for
women and >4000 Kcal/day for men) [24].

Considering the particular nature of carotenoids as a biomarker (we were unable
to quantify some sub-species in some participants since they were below the limit of
quantification), we studied the inter-group differences using adapted survival regression
models as described by Helsel DR [25] using the ‘survival’ package in R Software version
4.0.0. We first determined whether there was a significant interaction between the groups
according to F&V and fat intake and carotenoid levels. We adapted survival regression
models where the plasma carotenoid concentration was the dependent variable and applied
a likelihood ratio test between the nested models with and without an interaction product-
term of “F&V intake group × fat intake group”. Any p-value < 0.1 for the interaction
was considered as significant following the strategy described by other authors [26,27].
We used three regression models of increasing complexity. Model 1 was adjusted for age
(continuous) and sex. Model 2 was further adjusted for physical activity (continuous).
Model 3 was additionally adjusted for total energy intake, the modified Mediterranean
diet adherence score and alcohol consumption (continuous, all).
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Statistical analyses were performed for individual carotenoids and also for the two
groups of carotenoids: carotenes (α-carotene, β-carotene, E-lycopene and Z-lycopene) and
xanthophylls (astaxanthin, lutein, canthaxanthin and β-cryptoxanthin), for the sum of
lycopenes and for the total sum of total measured carotenoids. We used standard statistical
methods from the ‘survival’ package. The differences between groups are expressed as me-
dian changes (95% confidence intervals, CI). p-values < 0.05 were deemed to be significant.

3. Results
3.1. Participant Characteristics

All four groups, comprising 106 women and 124 men (one sample was unavailable
for analysis), were comparable in terms of age, sex and cardiovascular risk factors (Table 1).
Around 70% of participants were obese, and the remaining were overweight, overall the
four groups were comparable in terms of body mass index. Their burden of cardiovascular
risk factors was high: 87% had hypertension, 67% hypercholesterolemia, and 23% diabetes.
Only slightly over 15% of the participants were smokers. Those who consumed more F&V
tended to be more physically active. The participants in the first decile of F&V consumption
had an average consumption of 289 g/day of F&V and those in the first quartile of fat intake
had an average intake of fat of 67 g/day. At the other end, intakes in the highest quantiles
were both very high, 1295 g of F&V/day and 141 g of fat/day. Inter-group differences in
food and nutrient intake are detailed in Supplementary Table S2.

Table 1. Participant characteristics by Fruit and Vegetable and Fat Intake groups.

Characteristics All

Low F&V High F&V
p-Value *Low-to-

Moderate Fat Very High Fat Low-to-
Moderate Fat Very High Fat

No. of subjects 230 59 58 60 53
Age, years 66.1 ± 4.40 65.9 ± 4.46 66.3 ± 3.61 65.8 ± 5.07 66.2 ± 4.25 0.935

Women, n (%) 106 (46.1) 26 (44.1) 26 (44.8) 32 (53.3) 22 (41.5) 0.604
Type-2 diabetes
mellitus, n (%) 55 (23.6) 11 (18.6) 11 (19.0) 21 (35.0) 11 (20.8) 0.135

Hypercholesterolemia,
n (%) 155 (67.4) 39 (66.1) 42 (72.4) 40 (66.7) 34 (64.2) 0.811

Hypertension, n (%) 200 (87.0) 50 (84.7) 53 (91.4) 53 (88.3) 44 (83.0) 0.510
Body mass index,

kg/m2 32.7 ± 3.50 32.0 ± 2.99 32.7 ± 3.64 32.4 ± 3.76 33.6 ± 3.53 0.100

Current smoker,
n (%) 37 (16.1) 8 (13.6) 10 (17.2) 6 (10.0) 13 (24.5) 0.189

Leisure-time physical
activity,

MET·min/week
2525 ± 2458 1780 ± 1855 2276 ± 1890 3064 ± 3248 3019 ± 2368 0.011

F&V, fruit and vegetables; MET, metabolic task equivalents. Values are percentages for categorical variables and means± SD for continuous
variables. * p-values were calculated by analysis of variance–one factor was used for continuous variables and the χ2-test for categorical
variables, p < 0.05.

3.2. Carotenoid Concentration in Plasma

Astaxanthin, lutein, canthaxanthin, β-cryptoxanthin, α-carotene, β-carotene and ly-
copene were the predominant carotenoids found in plasma, as described in other stud-
ies [28–30]. The determination of other carotenoids was below the limit of quantification.

3.2.1. High F&V vs. Low F&V

Relative to low F&V consumption (reference according to the model after adjustment
for several covariates), individuals with high F&V consumption showed greater plasma
total carotenoid concentrations (+3.04 µmol/L (95% CI: 0.90, 5.17), p-value = 0.005). The
differences attained statistical significance when the intake of fat was low-to-moderate
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(+3.83 µmol/L (0.97, 6.7), p-value = 0.009, P for interaction = 0.161), but not when the
intake of fat was very high. Likewise, the plasma concentration of carotenes and xantho-
phylls significantly increased (+2.80 µmol/L (0.46; 5.14) and +0.88 µmol/L (0.48; 1.27),
p-values = 0.019 and <0.001, P for interaction = 0.267 and 0.073, respectively) particularly
when fat intake was low-to-moderate (+3.53 µmol/L (0.38; 6.68) and +1.00 µmol/L (0.48;
1.53), p-values = 0.028 and < 0.001, respectively), but not when it was very high (Table 2).

Table 2. Differences in total carotenoid, carotenes and xanthophylls plasma concentrations (µmol/L) between F&V
consumption groups.

High F&V vs.
Low F&V p-Value

High F&V vs.
Low F&V
(Low-to-

Moderate Fat)

p-Value
High F&V

vs. Low F&V
(High Fat)

p-Value

Total
carotenoids

Median 5.31 vs. 2.08 6.75 vs. 2.48 4.23 vs. 1.71
ß [CI]-model 1 3.64 [1.85; 5.44] <0.001 5.01 [2.54; 7.48] <0.001 2.12 [−0.43; 4.67] 0.104
ß [CI]-model 2 2.97 [1.18; 4.76] 0.001 4.13 [1.67; 6.60] 0.001 1.67 [−0.84; 4.18] 0.192
ß [CI]-model 3 3.04 [0.90; 5.17] 0.005 3.83 [0.97; 6.70] 0.009 1.33 [−1.64; 4.30] 0.379

Carotenes

Median 3.00 vs. 0.25 4.26 vs. 0.95 1.36 vs. 0.19
ß [CI]-model 1 3.47 [1.50; 5.44] <0.001 4.70 [1.99; 7.42] <0.001 2.06 [−0.75; 4.88] 0.150
ß [CI]-model 2 2.77 [0.79; 4.74] 0.006 3.79 [1.07; 6.51] 0.006 1.60 [−1.17; 4.37] 0.257
ß [CI]-model 3 2.80 [0.46; 5.14] 0.019 3.53 [0.38; 6.68] 0.028 1.35 [−1.92; 4.62] 0.419

Xanthophylls

Median 2.04 vs. 1.09 2.44 vs. 1.04 2.03 vs. 1.09
ß [CI]-model 1 1.00 [0.67; 1.33] <0.00001 1.27 [0.81; 1.73] <0.00001 0.69 [0.22; 1.17] 0.004
ß [CI]-model 2 0.89 [0.55; 1.23] <0.00001 1.13 [0.67; 1.59] <0.00001 0.62 [0.15; 1.09] 0.009
ß [CI]-model 3 0.88 [0.48; 1.27] <0.001 1.00 [0.48; 1.53] <0.001 0.42 [−0.13; 0.96] 0.136

ß, difference between groups; CI, confidence interval. Model 1—adjusted for age and sex. Model 2—adjusted for age, sex and physical
activity. Model 3—adjusted for the variables used in model 2 plus energy intake, the modified Mediterranean diet adherence score
(subtracting the questions regarding F&V, fat and wine) and alcohol consumption (g/day). p-values < 0.05 were considered significant.

3.2.2. Very High Fat vs. Low-to-Moderate Fat Intake

In relation to low-to-moderate fat intake, participants with very high fat consumption
tended to present with a lower concentration of carotenoids (−2.69 µmol/L (−5.54; 0.16),
p-value = 0.064), particularly, although the difference did not achieve statistical significance,
when the consumption of F&V was high (−2.52 µmol/L (−6.10; 1.05), p-value = 0.166)
(Table 3). When the consumption of F&V was low, no differences were observed be-
tween the low-to-moderate fat intake and the very high fat intake groups. Likewise, the
plasma concentration of carotenes tended to decrease, and the concentrations of xantho-
phylls significantly decreased (−2.36 µmol/L (−5.51; 0.79) and −0.88 µmol/L (−1.41;
−0.35), p-values = 0.142 and 0.001, respectively), particularly, although not significantly
for carotenes, when F&V intake was high (−2.05 µmol/L (−5.97; 1.87) and −0.78 µmol/L
(−1.44; −0.13), p-values = 0.305 and 0.019, respectively).

3.2.3. Comparisons between Extreme Values

When comparing the groups with extreme conditions (high F&V + low-to-moderate
fat intake vs. low F&V + very high fat intake), the inter-group difference achieved statistical
significance (+3.86 µmol/L (0.86; 6.85), p-value = 0.012). Xanthophyll differences were less
dispersed but smaller in magnitude (+1.20 µmol/L (0.65; 1.75), p-value < 0.001) relative
to carotenes (+3.40 (0.079; 6.72), p-value = 0.045). No significant differences were found
between the group high in both F&V and fat and the group low in F&V and low-to-
moderate in fat (Table 4).
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Table 3. Differences in total carotenoid, carotenes and xanthophylls plasma concentrations (µmol/L) between fat intake groups.

High fat vs. Low-to-
Moderate Fat p-Value

High Fat vs. Low-to-
Moderate Fat
(Low F&V)

p-Value
High Fat vs. Low-to-

Moderate Fat
(High F&V)

p-Value

Total
carotenoids

Median 2.35 vs. 5.02 1.71 vs. 2.48 4.23 vs. 6.75
ß [CI]-model 1 −1.46 [−3.31; 0.39] 0.122 0.039 [−2.45; 2.53] 0.976 −2.85 [−5.39; −0.30] 0.028
ß [CI]-model 2 −1.59 [−3.37; 0.19] 0.081 −0.29 [−2.72; 2.15] 0.816 −2.75 [−5.24; −0.27] 0.030
ß [CI]-model 3 −2.69 [−5.54; 0.16] 0.064 −0.021 [−3.54; 3.50] 0.991 −2.52 [−6.10; 1.05] 0.166

Carotenes

Median 0.37 vs. 2.48 0.19 vs. 0.95 1.36 vs. 4.26
ß [CI]-model 1 −1.19 [−3.21; 0.82] 0.245 0.23 [−2.55; 3.00] 0.873 −2.41 [−5.18; 0.35] 0.087
ß [CI]-model 2 −1.32 [−3.27; 0.63] 0.185 −0.12 [−2.85; 2.60] 0.928 −2.31 [−5.02; 0.39] 0.094
ß [CI]-model 3 −2.36 [−5.51; 0.79] 0.142 0.13 [−3.81; 4.07] 0.948 −2.05 [−5.97; 1.87] 0.305

Xanthophylls

Median 1.25 vs. 1.54 1.09 vs. 1.04 2.03 vs. 2.44
ß [CI]-model 1 −0.35 [−0.71; 0.002] 0.051 −0.045 [−0.51; 0.42] 0.847 −0.62 [−1.09; −15] 0.010
ß [CI]-model 2 -0.38 [−0.72; −0.034] 0.031 −0.10 [−0.55; 0.35] 0.668 −0.61 [−1.07; −0.14] 0.010
ß [CI]-model 3 −0.88 [−1.41; −0.35] 0.001 −0.19 [−0.84; 0.45] 0.555 −0.78 [−1.44; −0.13] 0.019

ß, difference between groups; CI, confidence interval. Model 1—adjusted for age and sex. Model 2—adjusted for age, sex and physical
activity. Model 3—adjusted for the variables used in model 2 plus energy intake, the modified Mediterranean diet adherence score
(subtracting the questions regarding F&V, fat and wine) and alcohol consumption (g/day). p-values < 0.05 were considered significant.

Table 4. Differences in total carotenoid, carotenes and xanthophylls plasma concentrations (µmol/L) between extreme groups.

Low-to-Moderate Fat
& High F&V vs.

High Fat & Low F&V
p-Value

High Fat & High F&V vs.
Low-to-Moderate Fat &

Low F&V
p-Value

Total carotenoids

Median 6.75 vs. 1.71 4.23 vs. 2.48
ß [CI]-model 1 4.97 [2.49; 7.45] <0.001 2.16 [−0.39; 4.70] 0.096
ß [CI]-model 2 4.42 [1.98; 6.86] <0.001 1.38 [−1.15; 3.91] 0.284
ß [CI]-model 3 3.86 [0.86; 6.85] 0.012 1.31 [−3.27; 5.89] 0.575

Carotenes

Median 4.26 vs. 0.19 1.36 vs. 0.95
ß [CI]-model 1 4.48 [1.75; 7.21] 0.001 2.29 [−0.52; 5.10] 0.110
ß [CI]-model 2 3.92 [1.22; 6.61] 0.004 1.48 [−1.32; 4.27] 0.300
ß [CI]-model 3 3.40 [0.079; 6.72] 0.045 1.48 [−3.58; 6.54] 0.567

Xanthophylls

Median 2.44 vs. 1.09 2.03 vs. 1.04
ß [CI]-model 1 1.32 [0.86; 1.77] <0.00001 0.65 [0.18; 1.12] 0.007
ß [CI]-model 2 1.23 [0.77; 1.68] <0.00001 0.52 [0.049; 0.99] 0.031
ß [CI]-model 3 1.20 [0.65; 1.75] <0.001 0.22 [−0.62; 1.06] 0.608

ß, difference between groups; CI, confidence interval. Model 1—adjusted for age and sex. Model 2—adjusted for age, sex and physical
activity. Model 3—adjusted for the variables used in model 2 plus energy intake, the modified Mediterranean diet adherence score
(subtracting the questions regarding F&V, fat and wine) and alcohol consumption (g/day). p-values < 0.05 were considered significant.

Supplementary Table S3–S5 are extended versions of the results tables, showing the
comparisons for individual carotenoids.

4. Discussion

High consumption of F&V is associated with greater concentration of total carotenoids
in plasma, especially when dietary fat intake is low-to-moderate (below 70 g/day), but,
unexpectedly, not when fat intake is very high (over 140 g/day). These associations are
particularly striking for xanthophylls but of greater magnitude for carotenes. To the best
of our knowledge, this is the first analysis highlighting the relevance of both the source
(F&V) and the vehicle (fat) involved in carotenoid bioavailability using high-throughput
metabolomic biomarkers in a large cohort study.
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The Mediterranean diet is characterized by a high consumption of F&V along with
healthy fats, mainly olive oil and nuts. The mean consumption of F&V at baseline in the
PREDIMED-Plus study participants, a Mediterranean population following unrestrained
diets, was 685.4 g/day. This is higher than the average of 345 g F&V /day reported for the
Spanish population in the ANIBES (Anthropometry, Intake and Energy Balance in Spain)
study [31,32], and also higher than the average intake reported for Europe [33]. The WHO
recommends an intake of at least 600 g/day of fruits and vegetables in order to prevent
diseases and micronutrient deficiencies [34]. In this study, the group comprising partici-
pants from the first decile of F&V consumption did not meet the minimum recommended
amount, while the tenth decile complied with it by a large margin.

Mean fat intake in the baseline analysis of the PREDIMED-Plus study was 105.3 g/day,
which represents 39.4% of daily energy intake, although saturated fat accounted for less
than 10%. Dietary Guidelines for Americans 2020–2025 do not specify an upper limit for
total fat intake [35]. Overall, around 70 g of fat per day has been defined as a regular
amount [36]. However, fat is a crucial nutrient in the Mediterranean diet, which explains
why mean dietary fat intake in the first decile was only slightly below 70 g/day, a value
equivalent to approximately 30% of daily energy intake.

In individual participant meta-analysis of controlled feeding studies, robust evidence
was presented for a positive dose-response association between F&V consumption and
total plasma carotenoid concentrations [37]. Indeed, in this study total carotenoids and also
carotenes and xanthophylls were in higher concentration in the group that reported high
F&V consumption. Surprisingly, when separating the groups according to dietary fat intake,
the groups with very high fat intake did not show significant differences in carotenoid
plasma concentrations compared to the low-to-moderate fat intake group. This suggests
there may be a limit up to which a positive association between higher fat intake with
higher carotenoid concentrations in plasma is observed, as the group reporting very high fat
and high F&V consumption did not have the highest systemic carotenoid concentrations.

The findings related to the comparison between high and low-to-moderate fat intake
groups in this study are also thought-provoking: total carotenoids tended to be in higher
concentration in the low-to-moderate fat intake group. Similar intriguing results were
obtained when separating the groups with the same F&V consumption: there were no
differences in plasma carotenoid concentration between low F&V consumption groups,
and total carotenoids tended to be, although not significantly, in lower concentration in
the high F&V and fat consumption group. Even though the comparison between the
completely opposite groups is not so typical, it gives hints of a similar outcome: the group
with high F&V and fat consumption did not show sizable differences compared to the
group with low F&V and low-to-moderate fat consumption. If fat was positively associated
with plasma carotenoid concentration regardless of their concentration, these two groups
would have likely been significantly different. The group with high F&V consumption but
low-to-moderate in fat intake disclosed the expected results, significantly higher carotenoid
concentrations in comparison to the group with low F&V consumption and very high
fat intake, which makes sense, as even if a high intake of fat was associated with higher
carotenoid concentrations, the group with low consumption of F&V may not have had the
carotenoid content available to begin with to reach the levels observed with a high F&V
intake, for they are in extreme deciles.

In an intervention study with a similar sample size (n = 122), Djuric et al. (2004)
found that the combination of a low fat and high F&V intervention, but not a F&V
intervention alone (without fat intake recommendations), significantly increased the
plasma concentrations of xanthophylls, indicating an interaction between F&V and fat
in, at least, xanthophyll absorption [38]. The small sample size of both Djuric’s and this
study limit the testing of the interaction for total carotenoids, as carotenes are in higher
concentrations and the modification of the effect is more difficult to detect.

These results taken together lead to the hypothesis of a dual role of dietary fat in
carotenoid appearance in human plasma: when scarce carotenoids are available, even
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moderate fat intake is sufficient to escort them to be absorbed. However, when consuming
high amounts of F&V, very high fat intake might not further increase carotenoid bioavail-
ability. This might be explained by the absorption mechanisms of these phytochemicals:
carotenoids must be released from the food matrix, emulsified into oil droplets and further
integrated into mixed micelles in order to be absorbed at the brush border of the enterocytes,
which can take place by either passive diffusion or active uptake via fat transporters [13,39].
Fat in the intestinal lumen would promote carotenoid bioaccessibility by enhancing their
extractability and micellarization but, when in very high concentrations, it could hinder
bioavailability by saturation of mixed micelles [40] or competition for the transporters.
Bile acids also take an active part in the absorption process of carotenoids and, because
their secretion can be altered by dietary fat intake [41], they could also be influencing the
final carotenoid concentration in plasma [14]. Altogether, these results suggest that, even
though carotenoids perform as biomarkers when assessing F&V consumption, the overall
dietary components must be carefully considered.

The main limitation of this study is the impossibility to determine food processing
from the food frequency questionnaires, along with its cross-sectional design. These factors
preclude establishing a firm conclusion on the association between fat consumption and
carotenoid absorption. In addition, the absence of publications evaluating these amounts
of fat and carotenoids did not allow comparison of the results with previous studies in
similar populations.

Arranz et al. (2015) showed that addition of 10% of olive oil to tomato juice improved
lycopene isomerization and this was associated with reduction of total and LDL-cholesterol
values compared to tomato juice alone [42]. However, this and all studies reviewed that
compared carotenoid absorption in relation to different types of fat have been conducted
using only modest amounts of fat (2.5% to 10%) [43], and most of them were performed
in animal models [44] or cell cultures [40]. Interestingly, the latter stated that carotenoid
micellarization did not increase when higher amounts of fat were used, suggesting that
there was micellar saturation, a finding that might help explain our results. In this way, it
would be interesting to study whether a regular diet rich in F&V as well as healthy fats
(such as extra virgin olive oil) could lead to higher plasma carotenoid concentrations and,
in this way, enhance their salutary biological effects.

5. Conclusions

Differences in plasma carotenoids concentration depending on the amount of fat
consumed were determined in a sub-sample of participants from the PREDIMED-Plus
study at baseline, concerning adults in real-life conditions. Higher plasma carotenoid
concentrations were found when higher amounts of F&V were consumed, but very high
dietary fat intake was associated with lower carotenoid concentrations in plasma when
compared to low-to-moderate fat intake. Clinical trials using different amounts of fat for
outcomes of plasma biomarkers of F&V consumption are warranted to eventually confirm
our results and establish whether the dual role of dietary fat in carotenoid absorption
needs to be controlled for optimizing nutrition. Further research is needed to confirm these
results and determine what the critical point is for fat to facilitate carotenoid absorption.
Further analyses could also examine whether different types of fat, even in high quantities,
are associated with different plasma carotenoid concentrations.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-3
921/10/3/473/s1, List of the PREDIMED-Plus study investigators, Table S1: Limits of detection
and quantification, concentration range and r of the calibration curves of the different carotenoids
(µmol/L), Table S2. Main dietary nutrient intake and food consumption by group, Table S3. Differ-
ences in individual carotenoids plasma concentrations (µmol/L) between F&V consumption groups,
Table S4. Differences in individual carotenoids plasma concentrations (µmol/L) between fat intake
groups, Table S5. Differences in individual carotenoids plasma concentrations (µmol/L) between
extreme groups.

https://www.mdpi.com/2076-3921/10/3/473/s1
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