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Abstract: Thioredoxin 1 (Trx1) is a major antioxidant that acts adaptively to protect the heart during
the development of diabetic cardiomyopathy. The molecular mechanism(s) responsible for regulating
the Trx1 level and/or activity during diabetic cardiomyopathy is unknown. β-hydroxybutyrate
(βHB), a major ketone body in mammals, acts as an alternative energy source in cardiomyocytes
under stress, but it also appears to be involved in additional mechanisms that protect the heart against
stress. βHB upregulated Trx1 in primary cultured cardiomyocytes in a dose- and a time-dependent
manner and a ketogenic diet upregulated Trx1 in the heart. βHB protected cardiomyocytes against
H2O2-induced death, an effect that was abolished in the presence of Trx1 knockdown. βHB also
alleviated the H2O2-induced inhibition of mTOR and AMPK, known targets of Trx1, in a Trx1-
dependent manner, suggesting that βHB potentiates Trx1 function. It has been shown that βHB
is a natural inhibitor of HDAC1 and knockdown of HDAC1 upregulated Trx1 in cardiomyocytes,
suggesting that βHB may upregulate Trx1 through HDAC inhibition. βHB induced Trx1 acetylation
and inhibited Trx1 degradation, suggesting that βHB-induced inhibition of HDAC1 may stabilize
Trx1 through protein acetylation. These results suggest that βHB potentiates the antioxidant defense
in cardiomyocytes through the inhibition of HDAC1 and the increased acetylation and consequent
stabilization of Trx1. Thus, modest upregulation of ketone bodies in diabetic hearts may protect the
heart through the upregulation of Trx1.
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1. Introduction

The prevalence of obesity and metabolic syndrome has increased tremendously in the
past few decades [1]. Individuals with obesity and metabolic syndrome eventually develop
insulin resistance and type II diabetes. More than half of diabetic patients develop cardiac
dysfunction characterized by cardiac hypertrophy and diastolic dysfunction, collectively
termed diabetic cardiomyopathy [2]. The hearts of patients suffering from obesity and
metabolic syndrome often exhibit increased oxidative stress and mitochondrial dysfunction,
the major driving force for the progression of diabetic cardiomyopathy [3].

Thioredoxin 1 (Trx1) is an evolutionarily conserved antioxidant that reduces oxidized
proteins with disulfide bonds through thiol disulfide exchange reactions catalyzed at the
catalytic center of Trx1 [4]. Trx1 also indirectly scavenges H2O2 through reduction of
peroxiredoxins (Prdxs), Trx1-dependent peroxidases [5]. We have previously shown that
mTOR and AMPK are the major direct targets of Trx1 in cardiomyocytes. Trx1 directly
reduces oxidized cysteine residues in mTOR and AMPK through thiol disulfide exchange
reactions, thereby maintaining their kinase activity even under stress conditions [6,7].
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Although Trx1 becomes oxidized during thiol disulfide exchange reactions, it is reduced
and recycled in the presence of thioredoxin reductase and NAPDH, an electron donor. We
have recently shown that the increased production of NADPH through coordinated actions
of Nampt (nicotinamide phosphoribosyltransferase), NAD kinase, and the pentose phos-
phatase pathway ameliorates high fat diet-induced diastolic dysfunction in mice, through
the stimulation of Trx1 and glutathione [8]. Thus, Trx1 appears to be an important target
for the treatment of diabetic cardiomyopathy, and it is therefore important to understand
how endogenous Trx1 is regulated in diabetic cardiomyopathic hearts.

Ketone bodies are produced from fatty acids in the liver and act as an energy carrier
to peripheral tissues when the glucose level is low during prolonged exercise or starvation
or in the presence of low dietary carbohydrates [9]. Ketone bodies are also produced in
the presence of insulin deficiency, such as Type I diabetes, when body cells cannot use
blood glucose. Although excessive production of ketone bodies leads to life-threatening
ketoacidosis in diabetic patients under glucose lowering treatment, increasing lines of
evidence suggests that modest levels of ketone bodies, including β-hydroxybutyrate (βHB),
play adaptive or salutary roles in the heart [9]. A ketogenic diet protects the heart against
stress, such as ischemia and pressure overload [10,11]. Sodium glucose cotransporter 2
(SGLT2) treatment in diabetic patients increases circulating levels of βHB, which may play
an important role in mediating some of the protective effects of SGLT2 inhibitors [12].
Ketone bodies serve as an alternative fuel source in a failing heart when fatty acid oxidation
is reduced [13]. Importantly, ketone bodies facilitate protective effects not only through
energy production, but also by affecting cellular signal transduction mechanisms [9].
For example, βHB inhibits class I histone deacetylases (HDACs) [14]. Ketone bodies
also upregulate antioxidant enzymes such as catalase and superoxide dismutase [15,16].
However, the detailed molecular mechanisms through which βHB protects the heart
independently of its role as an energy source remain unclear.

In this study we asked (1) whether βHB upregulates Trx1 in cardiomyocytes, and if
so, (2) whether the salutary effect of βHB upon cardiomyocytes during oxidative stress is
mediated through Trx1 and, (3) if so, how βHB leads to upregulation of Trx1 in cardiomy-
ocytes.

2. Materials and Methods
2.1. Primary Cultures of Neonatal Cardiomyocytes and Fibroblasts

Primary cultures of cardiomyocytes were prepared from 1-day-old Crl: (WI) BR-Wistar
rats. Cardiomyocyte- and fibroblast-rich fractions were obtained by centrifugation through
a discontinuous Percoll gradient. Cardiomyocytes were cultured in complete medium
containing Dulbecco’s Modified Eagle’s medium/F-12 supplemented with 5% horse serum,
4 µg/mL transferrin, 0.7 ng/mL sodium selenite, 2 g/L bovine serum albumin (fraction V),
3 mM pyruvate, 15 mM Hepes (pH 7.1), 100 µM ascorbate, 100 mg/L ampicillin, 5 mg/L
linoleic acid, and 100 µM 5-bromo-2′-deoxyuridine. Culture dishes were coated with 0.3%
gelatin. Fibroblasts were cultured with Dulbecco’s Modified Eagle’s medium with 10%
fetal bovine serum. The cardiomyocyte viability was examined using trypan blue dye
exclusion.

2.2. Immunoblot Analyses

Heart homogenates or cell lysates were prepared using a lysis buffer (50 mM Tris-HCl
(pH 7.6), 1% Triton X-100, 10 mM EDTA, 150 mM NaCl, 50 mM NaF, 10 mM Sodium
Butyrate, and protease inhibitor cocktail (Sigma-Aldrich, Saint Louis, MO, USA)). Total
protein lysates (10–30 µg) were incubated with SDS sample buffer (Final concentration:
100 mM Tris (pH 6.8), 2% SDS, 5% glycerol, 2.5% 2-mercaptoethanol, and 0.05% bromophe-
nol blue] at 95 ◦C for 5–20 min). For SDS-PAGE under non-reducing conditions, the lysates
were prepared with lysis buffer containing 100 mM N-ethylmaleimide and SDS sample
buffer without 2-mercaptoethanol. For immunoprecipitation, the lysates were incubated
with Flag-agarose. Immunocomplexes were washed with lysis buffer three times and
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eluted with 2 × SDS sample buffer. Antibodies used for this study were Acetylated lysine
(Cell Signaling Technology, Danvers, MA, USA (CST), 9814), Trx1 (CST, 2429), mTOR (CST,
2797), Phospho-mTOR (Ser2481) (CST, 2774), p70 S6 Kinase (CST, 9202), Phospho-p70
S6 Kinase (CST, 9205), 4EBP1 (CST, 9644), Phospho-4EBP1 (CST, 2855), AMPKα2 (CST,
2757), Phospho-AMPKα (CST, 2535), ACC (CST, 3662), Phospho-ACC (CST, 3661), Gapdh
(CST, 5174), Prdx1 (Abcam, Cambridge, UK, ab41906), Sirt1 (EMD Millipore, Burlington,
MA, USA, 07-131), Nampt (Abcam, ab58640), Namnat1 (Bethyl, Montgomery, TX, USA,
A304-317A), Tubulin (Sigma, T6199), α-cardiac actin (Novus, Saint Louis, MO, USA, NBP2-
61474), and HDAC1 (BioVision, Milpitas, CA, USA, 3601-30T). The signal intensity of the
Western blot signals was quantified using the ImageJ program (Bethesda, MD, USA). The
signal intensity of the non-phosphorylated proteins was normalized by a loading control
(Tubulin). The signal intensity of the phosphorylated or acetylated proteins was normalized
by that of the relevant total protein. Normalized signal intensity relative to the control was
used for statistical analyses of one or more Western blot membranes.

2.3. Adenovirus Vectors

Adenovirus vectors expressing Flag- and HA-Tagged Trx1 (Flag-Trx1-HA) and shTrx1
were generated with the AdMax system as described previously [7]. Ad-shHDAC1 was
generated using 19 nucleotides corresponding to the mouse HDAC1 N-terminal region.

2.4. Ketogenic Diet

C57BL/6 mice (11-week-old) were fed a control (D10070802) or ketogenic diet (D10070801)
for 5 days. Diets were purchased from Research Diets, Inc (New Brunswick, NJ, USA). The
control diet consisted of 10% protein, 80% carbohydrates and 10% fat, whereas ketogenic
diet consisted of 10% protein and 90% fat [17]. All procedures involving animals were
performed in accordance with protocols approved by Rutgers Biomedical and Health
Sciences (Protocol Number: 999900700).

2.5. Statistical Methods

Statistical comparisons were made using Student’s t test for pairwise and one-way
ANOVA for multiple comparisons. p < 0.05 was defined as statistically significant and is
indicated by a filled asterisk. All error bars represent S.E.M.

3. Results
3.1. βHB Upregulates Trx1

To examine the effect of βHB upon Trx1 expression, primary cultured cardiomyocytes
were treated with 0.1 to 10 mM βHB for 16 h. The circulating level of βHB is 0.4–0.5 mM
in non-diabetic patients at baseline [18]. This is significantly higher in diabetic patients
at baseline or in response to fasting in non-diabetic patients. We have previously shown
that 1 mM βHB affects signaling in cardiomyocytes [10]. Therefore, we chose dosages
of βHB ranging from 0.1 to 10 mM. βHB upregulated Trx1 in a dose-dependent manner
from 0.1 mM to 3 mM, whereas 10 mM βHB induced Trx1 less effectively than other
dosages (Figure 1A). βHB also upregulated Prdx1, a Trx1 substrate, at 0.1 and 0.3 mM. In
contrast, the levels of other factors previously reported to act protectively against diabetic
cardiomyopathy, including Sirt1, Nampt, and Namnat1, were not significantly changed
by the βHB treatment. βHB (1 mM) also upregulated Trx1 in a time-dependent manner
(Figure 1B). Significant upregulation of Trx1 was observed as early as 20 min after βHB
treatment, reached a plateau at 1 h, and was sustained for 24 h, the longest time point
evaluated. Thus, βHB upregulates Trx1 in cardiomyocytes in a dose- and time-dependent
manner. To examine whether βHB also upregulates Trx1 in cardiac fibroblasts, cells were
treated with 3 mM βHB for 16 h. βHB-induced Trx1 upregulation was also observed in
cardiac fibroblasts (Figure 1C). Ketogenic diet consumption for 5 days also upregulated
Trx1 in mouse hearts in vivo (Figure 1D). Taken together, these results suggest that βHB, a
ketone body, upregulates Trx1 in the heart in a cell autonomous manner.
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Figure 1. βHB upregulates Trx1. (A) Dosage effect of βHB on Trx1 expression. Cardiomyocytes were treated with the
indicated concentrations of βHB for 16 h. n = 6–8 (Trx1) and 5–7 (Prdx1). (B) Time-dependent effect of 1 mM βHB on Trx1
in cardiomyocytes. n = 5–7. (C) βHB upregulates Trx1 in cardiac fibroblasts. Cardiac fibroblasts were treated with 3 mM
βHB for 16 h. n = 6. (D) Ketogenic diet consumption upregulates Trx1 in the heart in vivo. n = 4. Western blot analyses with
indicated antibodies were performed. * p < 0.05 (A–D).

3.2. βHB Confers Resistance against Oxidative Stress through a Trx1-Dependent Manner

To examine whether βHB induces resistance against oxidative stress in a Trx1-dependent
manner, cardiomyocytes were treated with H2O2 in the presence of βHB with or without
short-hairpin RNA (shRNA)-mediated downregulation of Trx1. We confirmed that βHB-
induced Trx1 upregulation was abolished in the presence of adenovirus harboring Trx1
shRNA (shTrx1) but did not control shRNA (Figure 2A). βHB attenuated H2O2-induced
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cardiomyocyte death, as evaluated with trypan blue staining, but the effect was abolished
in the presence of Trx1 knockdown (Figure 2B). Compared to 1 mM βHB, 10 mM βHB
did not significantly attenuate H2O2-induced cardiomyocyte death (Figure 2C). This is
consistent with the fact that 10 mM βHB no longer significantly upregulates Trx1 compared
to 0.3–3 mM βHB (Figure 1A). These results suggest that βHB protects cardiomyocytes
against oxidative stress through endogenous Trx1.
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Figure 2. βHB potentiates the antioxidant defense in a Trx1-dependent manner. (A) Trx1 knockdown
inhibits βHB-induced Trx1 upregulation. Cardiomyocytes were treated with Trx1 short hairpin RNA
(shTrx1) adenovirus vector for 3 days and with 1 mM βHB for 16 h. The expression of Trx1 was
examined using Western blot analysis. n = 5–6. (B) βHB inhibits H2O2-induced cardiomyocyte
death in a Trx1-dependent manner. (C) A high dose of βHB (10 mM) did not significantly inhibit
H2O2-induced cardiomyocyte death. (B,C) Cardiomyocytes were treated with 1 or 10 mM βHB for
16 h and were then treated with 100 µM H2O2 for 6 h. The cardiomyocyte viability was examined
using trypan blue dye exclusion. n = 4. * p < 0.05 (A–C).
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3.3. βHB Prevents H2O2-Induced mTOR Inhibition in a Trx1-Dependent Manner

To investigate whether βHB potentiates Trx1 functions, the effect of βHB on mTOR, a
known Trx1 substrate [6], was examined. As shown previously, following H2O2 treatment, the
mTOR in cardiomyocytes exhibited a band shift to higher molecular weights in SDS-PAGE
analyses under non-reducing conditions, whereas the band shift was abolished under reducing
conditions in the presence of 2-mercaptoethanol (2ME) (Figure 3A) [6]. These results suggest
that mTOR forms intermolecular disulfide bonds upon H2O2 treatment. The band shift is
promoted by Trx1 knockdown, indicating that mTOR is a Trx1 substrate [6]. Although βHB
prevented the H2O2-induced mTOR band shift, this effect was abolished in the presence of Trx1
knockdown (Figure 3B). βHB also normalized H2O2-induced decreases in the phosphorylation
of mTOR and its substrates, including S6K and 4EBP1. Again, the effect of βHB was abolished
in the presence of Trx1 knockdown (Figure 3C). These results suggest that βHB prevents the
oxidation and inactivation of mTOR in response to H2O2 in a Trx1-dependent manner. These
results are consistent with the notion that βHB potentiates Trx1 function.
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Figure 3. βHB potentiates mTOR function in a Trx1-dependent manner. (A) mTOR exhibits intermolecular disulfide
bond formation upon oxidation. Cardiomyocytes were treated with 100 µM H2O2 for 30 min. Western blot analyses were
performed following SDS-PAGE under non-reducing (without 2-ME) and reducing (with 2-ME) conditions. (B) βHB inhibits
H2O2-induced mTOR oxidation in a Trx1-dependent manner. Cardiomyocytes were treated with 1 mM βHB for 4 h and
were then treated with 100 µM H2O2 for 30 min. LE: long exposure, SE: short exposure. (C) βHB normalizes H2O2-induced
mTOR inhibition in a Trx1-dependent manner. Western blot analyses were performed with indicated antibodies. n = 6–9
(p-mTOR), 3–6 (P-S6K), and 3–6 (P-4EBP1). * p < 0.05 (C).



Antioxidants 2021, 10, 1153 7 of 12

3.4. βHB Prevents H2O2-Induced AMPK Inhibition in a Trx1-Dependent Manner

To further confirm that βHB potentiates Trx1 function, the effect of βHB on AMPK,
another Trx1 substrate [7], was examined. As shown previously, AMPKα exhibited band
shifts to higher molecular weights in SDS-PAGE analyses under non-reducing conditions
following H2O2 treatment. The band shifts were abolished when the SDS-PAGE analy-
ses were conducted in the presence of 2ME (Figure 4A) [7]. These results suggest that
AMPKα forms intermolecular disulfide bonds upon H2O2 treatment. βHB prevented the
H2O2-induced AMPKα band shifts, an effect that was abolished in the presence of Trx1
knockdown (Figure 4B). βHB also normalized H2O2-induced decreases in the phosphory-
lation of ACC, an AMPK substrate [19], but the effect was abolished in the presence of Trx1
knockdown (Figure 4C). These results suggest that βHB maintains AMPK function in a
Trx1-dependent manner.
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Figure 4. βHB potentiates AMPK function in a Trx1-dependent manner. (A) AMPKα exhibits
intermolecular disulfide bond formation upon oxidation. Cardiomyocytes were treated with 100 µM
H2O2 for 30 min. Western blot analyses were performed following SDS-PAGE under non-reducing
(without 2-ME) and reducing (with 2-ME) conditions. (B) βHB inhibits H2O2-induced AMPKα

oxidation in a Trx1-dependent manner. (C) βHB normalizes H2O2-induced AMPK inhibition in a
Trx1-dependent manner. n = 6–10. Western blot analyses were performed with indicated antibodies.
* p < 0.05 (C).

3.5. βHB May Upregulate Trx1 through HDAC Inhibition

We then investigated the mechanism through which βHB upregulates Trx1 in cardiomy-
ocytes. Since βHB inhibits the HDAC activity of class I HDACs [14], βHB may upregulate
Trx1 through HDAC inhibition. Consistent with our hypothesis, βHB promoted protein
acetylation in a dose-dependent manner. βHB increased HDAC1 protein, which likely
represents compensatory feedback regulation. The dose-dependency of the effect of βHB
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on the induction of protein acetylation (Figure 5A) was similar to that observed in the
upregulation of Trx1. In contrast to βHB, 30 and 100 µM H2O2 did not significantly upreg-
ulate HDAC1, whereas 300 µM H2O2 downregulated HDAC1 (Figure 5B). To investigate
whether HDAC1 inhibition upregulates Trx1, HDAC1 was knocked down with HDAC1
shRNA in the cardiomyocytes. The knockdown of HDAC1 upregulated Trx1 in a dose-
dependent manner (Figure 5C). To test whether βHB induces Trx1 acetylation, Flag- and
HA-tagged Trx1 was overexpressed in cardiomyocytes using an adenovirus vector. Trx1 was
immunoprecipitated with anti-Flag antibody and then subjected to immunoblot analyses
with anti-acetylated lysine antibody and anti-HA antibody. βHB significantly increased
acetylated Trx1/total Trx1, indicating that βHB induces Trx1 acetylation (Figure 5D). Since
Trx1 upregulation is observed shortly after βHB treatment, βHB may upregulate Trx1 with a
posttranslational mechanism. To test this possibility, cardiomyocytes were treated with βHB
and cycloheximide (CHX), an inhibitor of protein translation. Degradation of the Trx1 protein
in cardiomyocytes in the presence of CHX was significantly retarded in the presence of βHB
(Figure 5E), suggesting that βHB may upregulate Trx1 by inhibiting protein degradation.
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Figure 5. βHB may upregulate Trx1 through HDAC inhibition. (A) Dosage effects of βHB on protein acetylation and
HDAC1 expression. Cardiomyocytes were treated with the indicated concentrations of βHB for 16 h. n = 4–5. (B) Dosage
effects of H2O2 upon HDAC1 expression. Cardiomyocytes were treated with the indicated concentrations of H2O2 for 16 h.
n = 3–4. (C) Knockdown of HDAC1 upregulates Trx1. (Left) Cardiomyocytes were transduced with 0, 0.3, 1, 3, 10, or 30 MOI
of shHDAC1 for 3 days. (Right) Trx1 induction by shHDAC1 (3 MOI). n = 7–9. (D) βHB induces Trx1 acetylation. Flag- and
HA-tagged Trx1 was expressed with adenovirus vector and immunoprecipitated with anti-Flag antibody. n = 4–6. (E) βHB
inhibits Trx1 degradation. Cardiomyocytes were treated with 100 µM cycloheximide (CHX) for 1 h followed by 1 mM βHB
for 1 to 4 h. n = 4–5. (A–E) Western blot analyses were performed with indicated antibodies. * p < 0.05 (A–E).
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4. Discussion
4.1. βHB Upregulates Trx1

Ketone bodies have emerged as beneficial nutrients in cardiac pathophysiology. A
modest increase in circulating ketone bodies resulting from ketogenic diet consumption
mitigates oxidative stress in the heart, as evidenced by decreases in oxidized glutathione,
3-nitrotyrosine, and malondialdehyde levels [20]. The current study shows that βHB at
0.3–3 mM upregulates Trx1 and confers resistance against oxidative stress through Trx1
in cultured cardiomyocytes. βHB potentiated Trx1 function in the presence of oxidative
stress, as evidenced by the rescue of oxidation-induced inactivation of mTOR and AMPK,
known direct substrates of Trx1. Although the extent to which how Trx1 contributes to
biological functions of mTOR and AMPK such as cell growth and fatty acid oxidation needs
to be further investigated. Our previous works have shown that Trx1 confers resistance
against oxidative stress, partly through mTOR and AMPK [6,7]. Thus, we propose that
βHB confers stress resistance to cardiomyocytes, partly through upregulation of the Trx1
system (Figure 6).
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4.2. Ketone Bodies in mTOR Regulation

We showed that βHB normalizes the H2O2-induced oxidative inhibition of mTOR
via Trx1. mTOR is inhibited by the direct oxidation at Cys1483, whereas Trx1 normalizes
mTOR activity via the reduction of Cys1483 [6]. The Trx1-mediated normalization of
mTOR may alleviate oxidative stress-induced downregulation of mitochondrial genes [6],
which may protect the heart under diabetic conditions. It should be noted that the overall
effect of ketone bodies upon mTOR appears to be context dependent. Since mTOR is
regulated by multiple mechanisms, βHB may affect the overall activity of mTOR through
multiple mechanisms, both positively and negatively. For example, βHB inhibits mTOR
activation and cardiomyocyte hypertrophy induced by phenylephrine, an agonist of the
α1-adrenergic receptor [10]. Phenylephrine-induced mTOR activation is mediated by Erk,
and phenylephrine-induced Erk activation is sensitive to antioxidant treatment [21,22].
Thus, it is possible that βHB inhibits phenylephrine-induced mTOR activation through the
suppression of Erk, which is facilitated by the maintenance of the redox environment by
the Trx1 system.

4.3. Ketone Body in Diabetic Cardiomyopathy

Trx1 tended to be upregulated at 0.1 mM βHB, whereas it was significantly upregu-
lated at 0.3 mM βHB in cardiomyocytes (Figure 1A). The plasma level of βHB is 0.4–0.5 mM
in non-diabetic patients at baseline. It is significantly elevated in diabetic patients or in
response to fasting in non-diabetic patients. Thus, it is likely that βHB could affect the
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level of Trx1 in cardiomyocytes under pathophysiologically relevant conditions. Despite
the generally salutary effect of ketone bodies in the heart, whether ketone bodies are also
beneficial in diabetic cardiomyopathy is not fully understood. Further investigation is
needed to demonstrate that modest elevation of the plasma level of βHB protects the heart
through the upregulation of Trx1 in vivo. It should be noted, however, that uncontrolled
ketone body synthesis during diabetes results in ketoacidosis, where βHB reaches over
3 mM in the blood plasma [23]. We show here that βHB confers resistance against oxidative
stress in cardiomyocytes through the upregulation of Trx1. It should be noted, however,
that a high dose of βHB (10 mM) was less effective in inducing Trx1 and Prdx1 as well as
overall protein acetylation levels than lower doses of βHB (Figures 1A and 5A). Indeed, a
high dose of βHB (10 mM) did not significantly confer resistance against oxidative stress
(Figure 2C). Taken together, the data indicate that while ketone bodies at physiological
concentrations and at the slightly elevated (1–3 mM) concentrations seen in diabetic pa-
tients mitigate oxidative stress, they attenuate the ability to promote Trx1 at the high
concentrations (>3 mM) seen during ketoacidosis. Although ketone bodies may act as a
thrifty substrate and may improve energetics [13], our results suggest that βHB also has an
additional effect, namely, to stimulate Trx1, thereby conferring stress resistance to the heart.

4.4. Ketone Bodies, HDAC Inhibtioin and Trx1 as a Longevity Factor

Calorie restriction and fasting promote ketone body synthesis, which potentially
mediates the salutary effects of calorie restriction, including lifespan extension. In rats,
calorie restriction induces a modest elevation of βHB, approximately 0.7 mM, in blood
plasma [24]. βHB is a natural inhibitor of class I HDACs such as HDAC1 and HDAC2 [14],
and the inhibition of class I HDACs enhances cardiac function and longevity in Drosophila
melanogaster [25]. We show here that both βHB and HDAC1 inhibition upregulate Trx1.
Interestingly, both a ketogenic diet and systemic Trx1 overexpression have been shown
to reduce midlife mortality without affecting maximum lifespan in mice [26,27]. Thus,
it will be interesting to investigate whether Trx1 mediates the salutary actions of calorie
restriction, ketogenic diet, and HDAC inhibition.

4.5. Mechanism Responsible for Trx1 Upregulation

Our results show that βHB induces Trx1 acetylation and inhibits Trx1 degradation.
Besides inhibiting HDACs, βHB may induce protein acetylation via an increase in acetyl-
CoA [9]. It has been shown previously that Trx1 is acetylated at several lysine residues,
including Lys94 [28], and that Trx1 is ubiquitinated at Lys94. These results suggest that
Trx1 may be degraded through the ubiquitin–proteasome pathway [29]. Since Lys94 can be
either acetylated or ubiquitinated, βHB-induced acetylation at Lys94 may compete with
other mechanisms promoting ubiquitination at Lys94, thereby controlling the stability of
Trx1. Further investigations are necessary to test this possibility.

4.6. Experimental Limitation

We assessed the activity of mTOR and AMPK to evaluate the oxidoreductase activity
of Trx1 in this study. It should be noted, however, that mTOR and AMPK may be only one
of the many effects of βHB, and we have not evaluated how βHB affects cellular function
through mTOR and AMPK in this study. Thus, further investigation is needed to elucidate
how the βHB–Trx1 axis protects the heart against diabetic cardiomyopathy.

5. Conclusions

βHB, a major ketone body in mammals, confers resistance against oxidative stress to
cardiomyocytes through Trx1 induction. βHB upregulates Trx1, possibly through class I
HDAC inhibition and through the inhibition of Trx1 degradation.
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