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Abstract: The p47P"° is a key regulatory subunit of Nox2-containing NADPH oxidase (Nox2) that by
generating reactive oxygen species (ROS) plays an important role in Angiotensin II (AnglI)-induced
cardiac hypertrophy and heart failure. However, the signalling pathways of p47P"° in the heart
remains unclear. In this study, we used wild-type (WT) and p47ph0x knockout (KO) mice (C57BL/6,
male, 7-month-old, 1 = 9) to investigate p47P"°*-dependent oxidant-signalling in AngII infusion
(0.8 mg/kg/day, 14 days)-induced cardiac hypertrophy and cardiomyocyte apoptosis. Angll infusion
resulted in remarkable high blood pressure and cardiac hypertrophy in WT mice. However, these
Angll-induced pathological changes were significantly reduced in p47P"** KO mice. In WT hearts,
Angll infusion increased significantly the levels of superoxide production, the expressions of Nox
subunits, the expression of PKCo and C-Src and the activation of ASK1 (apoptosis signal-regulating
kinase 1), MKK3/6, ERK1/2, p38 MAPK and JNK signalling pathways together with an elevated
expression of apoptotic markers, i.e., YH2AX and p53 in the cardiomyocytes. However, in the
absence of p47Ph°X, although PKCx expression was increased in the hearts after Angll infusion,
there was no significant activation of ASK1, MKK3/6 and MAPKSs signalling pathways and no
increase in apoptosis biomarker expression in cardiomyocytes. In conclusion, p47Ph°*-dependent
redox-signalling through ASK1, MKK3/6 and MAPKSs plays a crucial role in Angll-induced cardiac
hypertrophy and cardiomyocyte apoptosis.
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1. Introduction

Nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase, or Nox)
is a membrane-bound enzyme that by generating reactive oxygen species (ROS) plays
important role in the regulation of cellular function. So far, seven isoforms of the catalytic
component of Nox have been identified namely Nox1-5, and durox 1-2 [1]. Angiotensin II
is a vasoconstricting peptide (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe) of the renin-angiotensin-
aldosterone system involved in the regulation of blood pressure and other aspects of organ
functions [2]. Oxidative stress and inflammation due to the activation of a Nox2-contaninig
NADPH oxidase (Nox2) has been found to play an essential role in mediating AnglI-
induced cardiac hypertrophy and failure [1-5]. Nox2 is a multi-subunit enzyme consisting
of two membrane-bound subunits, p22P"* and Nox2 (also named gp91P"°X), and four
cytosolic regulatory subunits, i.e., p40PNX, p47PhoX pe7PhoxX and racl. The p47PX is a
key regulatory subunit of Nox2 enzyme [2,6,7]. The phosphorylation of p47P"°% initiates
the process of coordination and association of regulatory subunits with membrane-bound
Pp22PhoX /Nox2 complex, and the subsequent O,*~ production [2,6].

In the mammalian heart, the p47P"°% is expressed in the myocardium, epicardium
and coronary vessels [1]. In cardiomyocytes p47P"°* had been reported to co-localise with
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F-actin and cortactin in order to facilitate the translocation of the cytosolic regulatory
subunits to the p22PM°%/Nox2 complex [8,9]. Under pathological conditions, p47Phox
was suggested to link oxidative stress with the hypertrophic growth of cardiomyocytes
through the activation of mitogen-activated protein kinases (MAPKs), i.e., extracellular
signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated
protein kinase (p38MAPK) [10,11]. In response to oxidative stress, the redox-sensitive
MAPK kinase (MKK) to MAPKs signalling pathways are activated, which in turn promote
the activities of pro-apoptotic signalling molecules such as p53, YH2AX and apoptosis
signal-regulating kinase 1 (ASK1) leading to cardiac damage [12-14]. Genetic ablation of
p47PhoX attenuated Angll-induced abdominal aortic aneurysm formation in apolipoprotein
E-deficient mice [15], and reduced the level of cardiac hypertrophy after experimental
myocardial infarction [16].

Despite the importance of p47Ph°% as a key regulator of Nox2-derived ROS production
in the heart, its signalling pathways and functional complexity in Angll-induced cardiac
hypertrophy and cardiomyocyte damage remained unclear. There was insufficient informa-
tion about the upstream and downstream signalling pathways of p47P"°X in the hearts. In
the current study, we investigated the role of p47P"* and its oxidant-signalling pathways
in the hearts using a murine model of Angll-infusion-induced cardiac hypertrophy and
cardiomyocyte apoptosis in WT and p47Ph°* KO mice. The complex role of p47P"°X in the
myocardium was investigated by examining Angll-induced cardiac oxidative stress, the
expressions of Nox subunits, the expression of PKCx and C-Src (both were involved in
p47PhoX phosphorylation). We also examined the levels of Angll-induced p47P"°X phospho-
rylation, the activation of redox-sensitive ASK1, MKK3/6 and MAPKs and the expression
of pro-apoptotic markers, i.e., YH2AX and p53 in the cardiomyocytes. Our results sug-
gested that p47Pho% oxidant-signalling through ASK1, MKK3/6 and MAPKSs played a vital
role in mediating cardiac hypertrophic response and the expression of apoptotic markers
in cardiomyocytes in response to Angll challenge. Knockout of p47Ph°% inhibited the
activation of these stress signalling pathways and protected hearts from Angll-induced
oxidative damages.

2. Materials and Methods
2.1. Chemicals and Reagents

Angll was purchased from Sigma-Aldrich (Amersham, UK); NADPH was purchased
from Fisher Scientific (Loughborough, UK); dihydroethidium (DHE) was purchased
from Invitrogen (Loughborough, UK); FITC-labelled wheat germ agglutinin (WGA, Cat-
alogue No. L-4895) was from Sigma-Aldrich. Primary antibodies to p47PhoX, p22phox,
Nox1, Nox2, Nox4, p38-MAPK, ERK1/2, phos-JNK (Thr183/Tyr185) and total JNK, phos-
Akt (Ser473) and total Akt were purchased from Santa Cruz Biotechnology (Dallas, TX,
USA); antibodies to 3-actin, phos-MKK3(Ser189)/6(Ser207) and phos-ASK1 (Thr845), to-
tal MKK3/6, YH2AX (Ser139/Tyr142) were purchased from Cell Signalling Technology
(London, UK); Antibodies to phos—p471°h°’< (Ser359), phos-p38-MAPK (Thr180/Tyr182) and
phos-ERK1/2 (Thr202/Tyr204) were purchased from Sigma-Aldrich. Nox2-ds-tat (Nox2tat,
[H]-RKKRRQRRRCSTRVRRQL-[NH2]) were provided by PeptideSynthetics (PPR Ltd.,
Fareham, UK). Other reagents, chemicals and antibodies, unless specified, were purchased
from Sigma-Aldrich.

2.2. Animals

All studies were performed following protocols approved by the Ethics Committees
of the Surrey and Reading Universities and the Home Office under the Animals (Scientific
Procedures) Act 1986 UK. The p47PM°X KO mice on a 129sv background were initially
obtained from the European mouse mutant archive, and backcrossed to C57BL/6 for ten
generations at the animal units in the University of Surrey [17]. Littermates of wild-type
and p47PMX KO mice at the age of 7-months were randomly grouped into control and
Angll groups (1 = 9 per group). The dose of Angll (0.8 mg/kg/day) was chosen based on
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the literature and our own pilot experiments to produce significant cardiac hypertrophy
effectively. Angll was delivered to mice through osmotic minipumps (ALZET osmotic
pumps, DURECT Corporation, Cupertino, CA, USA) for 14 days. The control group was
infused with saline. Systolic and diastolic blood pressure (BP) were measured using a
computerised tail-cuff system (CODA, Kent Scientific, Torrington, CT, USA) on conscious
mice following one week of training with the instrument [18]. Mice were used at the end
of two weeks of Angll infusion. Bodyweight and heart weight were measured, and the
tissues were harvested and stored in —80 °C freezer for experimental use.

2.3. Measurement of Cross-Sectional Cardiomyocyte Sizes

Left ventricular cryosections (8 pm) were prepared and fixed in freshly prepared 1%
formaldehyde phosphate-buffered solution. Cardiomyocytes in the cardiac sections were
outlined by FITC-conjugated wheat germ agglutinin (WGA) that binds to glycoproteins of
the cell membrane, and is routinely used for the staining of cardiac sarcolemma to deter-
mine cross sectional area or myocyte density [19]. Staining was visualised under the AIR
confocal microscope (Nikon, Chiyoda, Japan) (20-40x magnification, 1024 x 1024 pixels)).
Cross-sectional cardiomyocyte sizes were measured according to the method published
previously [19,20] using software of Image] 1.50i (NIH, Bethesda, MD, USA). For statistical
analyses, cardiomyocyte sizes were obtained from at least three microscopic areas per
section, three cross sections per heart and nine mice per group.

2.4. Measurement of ROS Production

ROS production was measured using the homogenates of left ventricular tissues. The
homogenates were used immediately for the ROS measurement as described previously
using three independent methods [4]. Lucigenin (5 uM)-chemiluminescence was used for
measuring real-time NADPH-dependent O,°~ production in heart homogenates detected
using a 96-well microplate luminometer (Molecular Devices, Wokingham, UK). Catalase
(300 U/mL)-inhibitable amplex red (6.25 uM) assay was used for measuring the H,O, pro-
duction in heart homogenates detected using FluoStar OPTIMA (BMG LabTech, Aylesbury,
UK). DHE (2 uM)-fluorescence was used to measure in situ ROS production by cardiac
sections, and images were captured using Nikon Eclipse Ti2-E inverted microscope and
the DHE fluorescence intensities were quantified. The specificity of the lucigenin and DHE
assays for the detection of O,°~ was confirmed by using tiron (10 mM), a non-enzymatic
0,°*” scavenger, and superoxide dismutase (SOD) (200 U/mL). The enzymatic sources
of Oy°*~ production were investigated using different enzyme inhibitors, i.e., L-NAME
(N-nitroarginine methyl ester, 100 uM, nitric oxide synthase inhibitor), rotenone (100 uM,
mitochondrial complex-1 enzyme inhibitor), diphenyleneiodonium (DPI) (20 uM, flavo-
protein inhibitor), oxypurinol (100 uM, xanthine oxidase inhibitor) and Nox2tat (a specific
peptide Nox2 inhibitor, 10 uM) [21]. Individual inhibitor was added into the wells loaded
with homogenates and incubated for 10 min at room temperature before the measurement
of ROS production.

2.5. Immunoblotting

Immunoblotting was performed exactly as described previously [4,18] using the left
ventricular tissue homogenates. 3-actin detected in the same sample was used as a loading
control. For the quantification of phosphorylation of MAPKs, the total levels of the same
protein in the same sample were pre-tested and justified for equal loading and used
as loading controls for the quantification of phosphorylated proteins. The results were
captured by BioSpectrum AC imaging system (UVP, Upland, CA, USA). The optical density
of the bands was quantified and normalised to the relevant loading controls.

2.6. Immunofluorescence Microscopy

These experiments were performed as described previously [18]. The left ventricular
tissue cryosections (8 um) were fixed with 1:1 methanol: acetone solution for 10 min at
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—20 degree. All buffers and reagents were freshly prepared and kept on ice before use.
Sections were then blocked using 2% bovine albumin serum (BSA) in PBS with 0.1% Triton
X-100. BSA (2%) was used in the place of primary antibodies as a negative control. Primary
antibodies were used at 1:100 dilutions in 0.2% BSA /PBS. Biotin-conjugated secondary
antibodies were used at 1:1000 dilution in 0.2% BSA /PBS and detected using streptavidin-
FITC or streptavidin-Cy3. Images were captured by Nikon A1R confocal microscope, and
the fluorescent intensities (Fluo-intensity) were quantified. For statistical analysis, at least
five random fields per section with three sections per heart were used per animal and nine
animals were used per group. The control background fluorescence captured from sections
without primary antibody was deducted and the results were expressed as Fluo-intensity.

2.7. Statistics

The Statistical analysis was performed using GraphPad Prism 7.0. Two-way ANOVA
plus Tukey’s multiple comparison test were used for multiple-group significance testing
and for testing repeated measures of blood pressure. One-way ANOVA followed by a
Bonferroni post-hoc test was employed for other data analyses where it was appropriate.
p < 0.05 was denoted as statistically significant. Nine mice per group were used for statisti-
cal analysis. Results were presented as mean + SD unless specified in the figure legends.

3. Results

3.1. Knockout p47P" Attenuated AnglIl Infusion-Induced High Blood Pressure and
Cardiac Hypertrophy

The mice used in this study were middle-aged (7-months) which were more suscepti-
ble to Angll-induced cardiovascular damages than mice at younger ages. At day 0 (before
Angll challenge), there was no significant difference in BP between WT and p47Ph°X KO
mice. Angll infusion (14 days) of WT mice markedly increased the systolic BP to an average
of 180.3 = 7.5 mmHg and the diastolic BP to an average of 142.6 & 10.8 mmHg as compared
to saline-infused controls (Figure 1A,B). However, in the absence of p47P"°X, Angll infusion
only caused mild but significant increases in the systolic BP to an average of 150 & 6 mmHg
and the diastolic blood pressure to an average of 118.6 + 9.7 mmHg (Figure 1A,B). The lev-
els of Angll-induced cardiac hypertrophy were expressed as the increases in heart weight
(HW) and the HW /body weight (BW) ratios. In WT mice, Angll infusion significantly
increased the heart weights (Figure 1C) and the HW /BW ratios (Figure 1D). However, in
the p47P"°X KO mice, Angll induced cardiac hypertrophy was significantly reduced in
comparison to WT mice. Although there were increases in HW /BW ratio in Angll-infused
p47PhoX KO mice, these were not statistically significant (Figure 1D). Angll-induced cardiac
hypertrophy was further examined by measuring cardiomyocyte cross sectional area in the
left ventricular tissue sections. The cardiomyocytes were labelled with FITC-WGA, which
binds to glycoproteins of the cardiomyocyte membrane and outlines the cardiomyocytes
on cross sections [19]. In comparison to saline-infused controls, there were significant
increases in the cross-sectional areas of cardiomyocytes in Angll-infused WT hearts, which
were significantly reduced in p47P"°X KO hearts (Figure 1E).

3.2. Knockout p47v°"* Inhibited Angll-Induced Cardiac Oxidative Stress

The effect of genetic ablation of p47P"° on Angll-induced cardiac oxidative stress were
first examined by measuring NADPH-dependent O,°~ production in heart homogenates
using lucigenin chemiluminescence. A representative example of real-time measurements
of O,*~ production by heart homogenates is shown in the left panel of Figure 2A. Tiron
(an O,°~ scavenger) was used to confirm the assay specificity. The statistical analyses
were shown in the right panel of Figure 2A. Compared to saline-infused WT controls,
Angll infusion resulted in 2.6-folds increases in the levels of O,*~ production in the WT
hearts. However, this was significantly inhibited by knockout of p47PhX. Although
there were some increases in the levels of O,*~ production in Angll infused p47Ph°X KO
hearts, they were not statistically significant. The enzymatic sources of Angll-induced
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O,°*~ production found in WT hearts were examined using different enzyme inhibitors
including L-NAME (nitric oxide synthase inhibitor), rotenone (mitochondrial respiratory
chain inhibitor), oxypurinol (xanthine oxidase inhibitor), apocynin (NADPH oxidase
inhibitor), DPI (flavoprotein inhibitor) and Nox2tat (a specific peptide inhibitor of Nox2)
(Figure 2B). The O,°*~ production detected in Angll-infused WT hearts was not affected
by rotenone and oxypuronol, but was significantly inhibited by apocynin, Nox2tat or DPI
suggesting Nox2 as a major enzymatic source of Angll-induced O,°~ production. There
was some inhibition of Angll-induced O,°~ production by L-NAME, indicating nitric
oxide synthase disfunction. SOD (superoxide dismutase) was used to double confirm the
detection of O,°~.

O,°~ is not stable and can be quickly converted to HyO; in cells. Therefore, we
examined cardiac HyO, production using catalase-inhibitable amplex red assay (Figure 2C).
There was no significant difference in the basal (without Angll) levels of H,O, production
between WT and p47Ph°X KO hearts. Compared to saline infused controls, the level of
H,O; production was significantly increased in Angll-infused WT hearts, which might
link to the high level of O*~ production. However, in the p47P"°* KO hearts, although the
level of O,°*~ production showed no change in response to Angll challenge, there was a
significant increase in the levels of H,O, production in Angll-infused p47P"* KO hearts as
compared to saline controls.

The levels of Angll-induced O,*~ production in the hearts were further examined
by in situ DHE fluorescence on cardiac cryosections (Figure 2D). There were significant
high levels of O,°*~ production in Angll-infused WT hearts in comparison to saline-infused
WT controls. However, there was no significant difference in DHE fluorescence intensities
between Angll-infused and saline-infused p47P"** KO hearts.

3.3. Angll-Induced Uprequlation of Nox Subunits, PKCx and C-Src Protein Kinases and p47v"*
Phosphorylation in Murine Hearts

The levels of expression of p47PhX, p22PhoX pa7Phox rac1, Nox1, Nox2 and Nox4 in
response to Angll infusion were examined in WT and p47P"°X KO hearts by immunoblot-
ting (Figure 3). The levels of 3-actin detected in the same sample were used as loading
controls. The p47Ph°% was highly expressed in the WT hearts, but was barely detectable
in the p47Ph°X KO hearts. Angll infusion resulted in a great upregulation of the levels
of p22PhoX expression in both WT and p47Ph°X KO hearts without significant difference
between the two groups. In comparison to saline infused WT controls, Angll-infusion
increased significantly the levels of expression of p47P"%, p67Ph°X rac1 and Nox2 in the
WT hearts. However, in the absence of p47P"°X KO, AnglI infusion had no significant effect
on the levels of expression of p67P'°* and Nox2, but increased significantly the levels of
p22PhoX Nox4 and rac1 expression. Nox1 expression remained the same without significant
difference between WT and p47PP°*KO hearts.

Protein kinase C alpha (PKCo) is highly expressed in the myocardium [22], and
phosphorylates p47Ph°% at multiple serine sites in response to AngllI stimulation. [23]. C-Src
had been proposed to be an upstream tyrosine kinase that phosphorylates p47Ph°% in
response to Angll stimulation [24]. Therefore, we examined the levels of expressions of
(PKCa) and C-Src together with the levels of p47P"°X phosphorylation in WT and p47Phox
KO hearts by immunoblotting (Figure 4A). Compared to saline-infused controls, AnglI
infusion increased the levels of PKC o expression in both WT and p47Ph°X KO hearts without
significant difference between these two groups. However, Angll-induced C-Src expression
was only found in WT hearts, but not in p47Ph°% KO hearts suggesting a key role of
oxidative stress in cardiac C-Src activation (Figure 4A). Accompanied with increased PKCax
expression, there were significant increases in p47P"°% serine phosphorylation detected
using specific antibodies to phos-p47Phox,
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Figure 1. Development of hypertension and cardiac hypertrophy in Angll-infused WT and p47P"ox
KO mice. (A) Systolic blood pressure. (B) Diastolic blood pressure. Day 0: day of minipump
implantation. Day 14: day of minipump removal. (C) Heart weights. (D) Heart weight (HW,
mg)/body weight (BW, g) ratio. (E) Left panels: Representative images of cardiomyocyte sizes on
the cross-sections of left ventricular tissues. The cardiomyocytes membranes were labelled with
WGA-FITC (green). Right panel: Statistical analysis of cardiomyocyte cross-sectional areas (um?).
n =9 mice per group. Statistical analyses were performed using two-way ANOVA. * p < 0.05 for
Angll values versus saline values in the same genetic group; T p < 0.05, for p47Ph* KO AngllI values
versus WT Angll values.
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Figure 2. Cardiac ROS production. (A) Levels of O,*~ production measured by lucigenin-
chemiluminescence. Left panel: Representative examples of kinetic measurements of O,*~ pro-
duction by WT heart homogenates. NADPH (0.1 mM) was added at 10 min. Tiron (10 mM) was
added at 30 min to scavenge O,°~. Right panel: Differences in NADPH-dependent O,°~ production
measured between 10-30 min shown in the left panel. (B) The effects of different enzyme inhibitors
on the levels of O,*~ by Angll-infused WT heart homogenates. L-NAME: (NG-nitroarginine methyl
ester), NOS inhibitor; Rotenone: mitochondrial respiratory chain inhibitor; Oxypurinol, xanthine
oxidase inhibitor; DPI: (diphenyleneiodonium), flavoprotein inhibitor; SOD: (superoxide dismutase).
(C) Cardiac HyO, production detected by amplex red assay. (D) In situ detection of reactive oxygen
species production by DHE fluorescence. Left panel: Representative images of DHE staining on
cardiac sections; right panel: Quantification of DHE fluorescence intensity. # = 9 per group. Statistical
comparisons were done using one-way ANOVA for inhibitor assay, and two-way ANOVA for the
rests (panels A, C, D). * p < 0.05 for indicated Angll values versus saline values in the same genetic
group; t p < 0.05 for p47PhoX KO AnglI values versus WT AnglI values.
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using two-way ANOVA. * p < 0.05 for Angll values versus saline values in the same genetic group;  p < 0.05 for p47Phox
KO Angll values versus WT AngllI values.
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Figure 4. Expressions of protein kinase C alpha (PKCa), Proto-oncogene tyrosine-protein kinase Src (C-Src) and p47Phox
phosphorylation in Angll-infused murine hearts. (A) Western blots. Left panels: Representative images. 3-actin detected in the
same samples were used as loading controls. Right panels: Optical densities (OD) of Western blot bands were quantified and
normalised to the levels of 3-actin detected in the same samples. (B) Confocal immunofluorescence of cardiac sections. Left panel:
Representative immunofluorescence images. Cardiomyocyte cell membrane was labelled by WGA-FITC (green) and p47P"ox
phosphorylation was identified using phos-p47P"°% specific antibody (Cy3, red). Nuclei were labelled by DAPI (blue). Right panel:
Quantification of phos—p47PhOX fluorescence intensity. 7 = 9 hearts per group. Data were presented as Mean =+ SD. Statistical
comparisons were made using two-way ANOVA. * p < 0.05 for Angll values versus saline values in the same genetic group.
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Angll-induced p47P"° phosphorylation in the myocardium was further examined by
confocal immunofluorescence (Figure 4B). The sarcolemma membranes of cardiomyocytes
were labelled with FITC-WGA (green), and the nuclei were labelled with 4’,6-diamidino-2-
phenylindole (DAPI, blue) to visualise cardiomyocytes. The phospho-p47P'°* was labelled
by Cy3 (red), and was only detected in WT hearts. Angll infusion significantly increased the
levels of p47P"°% phosphorylation (red) mainly located at the cardiomyocyte gap junctions or at
the cell membranes overlapped with FITC-WGA as indicated by the yellow colour (Figure 4B).

3.4. p47P"o%-Dependent Redox-Signalling through MKK3/6, MAPKs and AKT in AnglI-Induced
and Cardiac Hypertrophy and Apoptosis

The role of p47PM°X in modulating Angll signalling in the hearts was examined for
the activations of stress-signalling pathways, i.e., mitogen-activated protein kinase kinase
(MKK3/6) and down-stream ERK1/2; p38MAPK, JNK and Akt (Figure 5). The total
levels of the same protein in the same samples were pre-tested and used as loading
controls. In saline-infused control hearts, there was no significant difference in the levels
of phosphorylation of these signalling molecules between WT and p47PMXKO hearts.
Compared to saline-infused controls, Angll-infusion resulted in significant increases in the
levels of phosphorylation of MKK3/6, ERK1/2, p38 MAPK, JNK and Akt in WT hearts.
However, in the absence of p47P"°X, AnglI failed to induce the phosphorylation of these
signalling molecules in the hearts (Figure 5).
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Figure 5. Angll-induced activation of mitogen-activated protein kinase kinase 3/6 (MKK3/6), mitogen-activated protein
kinases (i.e., ERK1/2, p38MAPK and JNK) and Akt (also called protein kinase B) in murine hearts. Left panels: Represen-
tative immunoblotting images. The total protein bands of each molecule in heart homogenates were pre-tested for equal
loading. Right panels: Quantification of the optical densities (OD) of phos-protein bands expressed as phosphorylated /total
(P/T) protein ratio. n = 9 mice per group. Data were presented as Mean + SD. Statistical comparisons were made using
two-way ANOVA. * p < 0.05 for AnglI values versus saline values in the same genetic group. * p < 0.05 for p47Ph°x KO

Angll values versus WT AngllI values.

The effects of genetic knockout of p47P"°* on Angll-induced oxidative damage of
cardiomyocytes and apoptotic death was examine by immunoblotting of apoptosis signal-
regulating kinase 1 (ASK1) and biomarkers for DNA double-strand breaks (YH2AX), and
apoptosis (p53) (Figure 6A). The levels of 3-actin detected in the same sample were used as
loading controls. Compared to saline-infused controls, there were remarkable significant
increases in the level of expression of phos-ASK1, YH2AX and p53 in Angll-infused WT
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mice. However, in the absence of p47Ph%, there was no significant increase in the expression
of these markers of cell DNA damage and apoptosis in after two weeks of AnglI-infusion.
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h
wr pa7eretKO P ASKA rH2AX p53

O Saline
m Angll

*

P-ASK1‘ - ----_--H -

[
g
n
*
=

*

o
w

~{H2AX‘ - ._.—-——H_ —

CD Units
-+
o

o= — = | = — =]
05 1

Bfactin‘m-m-— 1--”‘-—-‘ *“w‘ 0 0 0 i
WT  pa7ehoxko WT  pd7ohex KO WT  pa7ooxKO

Saline Angll Saline Angll

B) Nox2 expression and ASK1 phosphorylation in cardiomyocytes
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Figure 6. Activation of apoptosis signal-regulating kinase 1 (ASK1), p53 and phosphorylation of H2A histone family
member X (YH2AX) in murine hearts. (A) Western blots for the expressions of phos-ASK1, p53 and YH2AX. Optical
densities of protein bands were quantified and normalised to the levels of 3-actin detected in the same samples. (B) Confocal
immunofluorescence detection of Nox2 (Cy3 labelled, red) and phos-ASK1 expressions (FITC labelled, green) in the cardiac
sections. (C) Confocal immunofluorescence detection of YH2AX expression (Cy3-labelled, red) in the cardiac sections. The
cardiomyocyte membrane was labelled by WGA-FITC (green), and the nuclei were labelled by DAPI (blue). The specific
fluorescent densities were quantified. n = 9 mice per group. Data were presented as Mean =+ SD. Statistical comparisons
were made using two-way ANOVA. * p < 0.05, for AnglI values versus saline values in the same genetic group. * p < 0.05
for p47PhoX KO Angll values versus WT AnglI values.

The crucial role of p47Ph°% in regulating Angll-induced Nox2 activation and ASK1
activation in the cardiomyocytes were examined using immunofluorescence confocal mi-
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croscopy (Figure 6B). Low levels of Nox2 expression (red) could be detected in the control
hearts (infused with saline) without significant difference between WT and p47PhOXKO
groups. Angll infusion significantly increased Nox2 expression together with great in-
creases in ASK1 phosphorylation in the WT hearts. Angll-induced Nox2 expression was
inhibited in p47P"°*KO hearts and there was no change in the levels of ASK1 phosphoryla-
tion in response to Angll infusion in p47PM°XKO hearts.

The role of p47P"°% in modulating Angll-induced DNA damage in cardiomyocytes
was further demonstrated using immunofluorescence confocal microscopy (Figure 6C).
The cardiomyocyte membranes were labelled with FITC-WAG (green), the nuclei were
labelled by DAPI. In saline-infused hearts, there was very low level of YH2AX positive
staining. However, in Angll-infused WT hearts, there were clear visible YH2AX foci (red)
formation detected in the nuclei (blue) of cardiomyocytes as indicated by the pink colour.
Angll-induced nuclear expression of YH2A, seen in WT hearts, was significantly inhibited
in p47PhoXKO hearts. Putting together, our results indicated clearly a key role of p47Phox
in mediating Angll-induced oxidative stress, activation of stress signalling pathways and
oxidative damage of cardiomyocyte DNAs and cell apoptosis.

4. Discussion

Angll is a potent activator of Nox2 enzyme, which by generating ROS is involved
in Angll-induced cardiovascular oxidative stress, hypertension, remodelling and organ
damage [2,3]. The p47P" is a primary regulatory subunit of Nox2 enzyme, and the
phosphorylation of p47Ph°X at multiple serines in the C-terminus is a key step for Nox2
0,*~ production [6,17]. However, the signalling pathways of p47P"°X in the heart remains
unclear. The current study by using a disease model of Angll infusion-induced hyper-
tension and cardiac hypertrophy in WT versus p47P'°*KO mice, provided novel insights
of p47PhoX_dependent signalling pathways in modulating Angll-induced cardiac hyper-
trophy and cardiomyocyte apoptosis. We discovered that p47Ph°X-dependent regulation
of redox-sensitive signalling cascade through ASK1, MKK3/6 and MAPKs is essential
in mediating Angll-induced cardiac hypertrophy and DNA damage in cardiomyocytes.
Genetic knockout of p47PhX inhibited Angll-induced cardiac ROS production, attenuated
ASK1, MKK3/6 and MAPK activation and protected cardiomyocyte from Angll-induced
hypertrophic growth, DNA damage and apoptosis.

The mice used in this study were 7-month-old, equivalent to humans at the middle-age,
and were more susceptible to Angll-induced cardiovascular damages than mice at younger
ages. The crucial role of p47Ph°% in mediating Angll-induced cardiac hypertrophy was
properly controlled using age-matched littermates of p47P"°*KO mice subjected to the same
experimental procedures. Despite a mild increase in BP found in p47PP°*KO mice after
two weeks of Angll-infusion, there was no significant cardiac hypertrophy as evaluated
using two separate methods, i.e., the changes in HW/BW ratio and cardiomyocyte cross-
sectional areas.

NADPH oxidase family contains at least 7 members (Nox1-5 and duox 1-2) [1].
Individual Nox enzyme has distinctive mechanism of activation and functions differ-
ently [25,26]. So far, Nox1-2 and Nox4-5 have been found in the hearts [27]. Nox2 relies
on p47Ph°X to be active and generates O,°*~ involved in many diseased conditions [6].
Whereas, Nox4 is autoactivated and plays a protective role in cardiovascular function [27].
In the current study, we found that Angll-infusion induced a great increase in cardiac
Nox2 expression together with increased level of O,*~ production in the WT hearts. O,°~
is short lived and can be quickly converted to HyO, by SOD as a cellular self-protective
mechanism [28]. This explained the mild elevation of HyO, production observed in AnglI-
infused WT hearts. However, AnglI-infusion of p47P"°*KO mice induced a great increase
in cardiac Nox4 expression together with a high level of H,O, production indicating Nox4
was the enzymatic source of Angll-induced H,0O, production in p47Ph°*KO hearts.

PKCo has been reported to be highly expressed in the hearts [20] and phosphorylates
p47PhoX at multiple serine sites in response to Angll stimulation [21]. C-Src had also been
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proposed to be an upstream tyrosine kinase of p47P"* phosphorylation in response to
Angll stimulation [22]. However, a recent study found that C-Src, rather than an upstream
kinase of p47Ph°X phosphorylation, was a downstream molecule of p47P"°*-dependent ROS
production in lung inflammation [29]. In the current study, we found that Angll-induced
cardiac C-Src activation was oxidant-dependent and was abolished by the knockout of p47PhoX,

MAPKSs belong to a highly conserved family of Ser-Thr protein kinases and have
diverse regulatory roles in normal heart development as well as in pathological cardiac
hypertrophic growth and remodelling [30]. MAPK activation in response to Nox2-derived
oxidative stress is a crucial signalling pathway involved in the development of cardiovas-
cular abnormalities. Akt is also a redox-sensitive Ser-Thr kinase involved in cardiomyocyte
hypertrophic growth and survival. In the current study, we showed that knockout of
p47PhoX attenuated Nox2-derived ROS production, inhibited MKK3/6, MAPK and Akt
activation in response to Angll challenge and protected murine hearts from Angll-induced
cardiac hypertrophy. However, p47P"°X redox-signalling is a complicated mechanism and
we do not know if p47Ph°X is physically a component of these signalling pathways, and
how it promotes both the pro- and anti-apoptotic signalling pathways in response to Angll
infusion. Further detailed investigation is needed.

ASK1 is a member of the mitogen-activated protein kinase kinase kinase (MAPKKK)
family that activates downstream MAPKSs, J]NKs and p38 MAPKSs in response to various
stresses, such as ROS [13,31]. H2AX is a variant of the H2A protein family and is a com-
ponent of the histone octamer in nucleosomes [32]. When DNA is damaged and double
stranded DNA breaks, H2AX is phosphorylated to form YH2AX. Therefore, YH2AX has
been used as a biomarker of DNA damage [32]. The p53 plays an important role in the reg-
ulation of cardiomyocyte hypertrophic growth and apoptosis [33]. An important discovery
from this study is that ASK1 links p47P"°X with the activation of MAPKSs and the expres-
sion of apoptotic markers, i.e., YH2AX and p53, in Angll-induced cardiac hypertrophy
and apoptosis. We showed that ASK1 was phosphorylated in response to Angll-induced
oxidative stress in the WT hearts. Knockout of p47P"°%, inhibited Angll-induced ASK1
phosphorylation and its down-stream signalling pathways. There was no obvious car-
diomyocyte hypertrophic growth and no increase in the expression of apoptosis markers in
Angll-infused p47P"°XKO hearts. A schematic illustration of Angll-induced p47P"°* redox
signalling pathways examined in this study is shown in Figure 7.
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Figure 7. Schematic illustration of p47Ph°X redox-signalling pathways examined.
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5. Conclusions

In conclusion, we have reported that p47P"°% is a key player in mediating AnglI-
induced oxidative stress signalling cascade from the phosphorylation of ASK1, MKK3/6
and MAPKs to the activation of H2AX and p53 involved in DNA damage and apoptosis of
cardiomyocytes. Genetic ablation of p47PM°X inhibited the cardiac Nox2-derived O,*~ pro-
duction, attenuated the activation of ASK1 and MAPK signalling pathways and protected
hearts from Angll-induced hypertrophic growth and DNA damage. Targeting p47P"°* has
great therapeutic potential in preventing or treating Angll-induced cardiac dysfunction
and damages.
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