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Abstract: Deoxynivalenol (DON) is a threatening mycotoxin primarily present in the agricultural
environment, especially in food commodities and animal forages, and exerts significant global health
hazards. Lycopene (LYC) is a potent antioxidant carotenoid mainly present in tomatoes and other
fruits with enormous health benefits. The present study was designed to ascertain whether LYC could
protect DON-induced intestinal epithelium oxidative injury by regulating Keap1/Nrf2 signaling in
the intestine of mice. A total of forty-eight mice were randomly distributed into four groups (n = 12),
Control (CON), 10 mg/kg BW LYC, 3 mg/kg BW DON, and 3 mg/kg DON + 10 mg/kg LYC BW
(DON + LYC). The experimental groups were treated by intragastric administration for 11 days. Our
results showed that LYC significantly increased average daily feed intake (ADFI), average daily gain
(ADG), and repaired intestinal injury and barrier dysfunction, as evident by increased trans-epithelial
electrical resistance (TEER) and decreased diamine oxidase (DAO) activity, as well as up-regulated
tight junction proteins (occludin, claudin-1) under DON exposure. Furthermore, LYC treatment
stabilized the functions of intestinal epithelial cells (Lgr5, PCNA, MUC2, LYZ, and Villin) under DON
exposure. Additionally, LYC alleviated DON-induced oxidative stress by reducing ROS and MDA
accumulation and enhancing the activity of antioxidant enzymes (CAT, T-SOD, T-AOC, and GSH-
Px), which was linked with the activation of Nrf2 signaling and degradation of Keap1 expression.
Conclusively, our findings demonstrated that LYC protects intestinal epithelium from oxidative
injury by modulating the Keap1/Nrf2 signaling pathway under DON exposure. These novel findings
could lead to future research into the therapeutic use of LYC to protect the DON-induced harmful
effects in humans and/or animals.

Keywords: deoxynivalenol; lycopene; bioactive compound; intestinal injury; oxidative stress;
Keap1/Nrf2 signaling

1. Introduction

Food safety is a global challenge to fulfill dire human needs. The research impetus
is focused on the food contamination caused by the mycotoxins commonly present in the
global environment [1,2]. Mycotoxins pose significant harm to human and animal health
since they are major hazardous factors contaminating 25% of global crop production [3].
Deoxynivalenol (DON, vomitoxin) is a trichothecenes mycotoxin, primarily produced
by Fusarium graminearum and Fusarium culmorum [4,5]. DON is frequently present in
the agricultural environment, especially in cereals and animal forages, and causes health
hazards to humans and animals [6,7]. Many studies described the deleterious effects
of DON on human and animal health, such as food refusal, emesis, growth retardation,
immune system, and gastrointestinal tract disorders [8,9].
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Intestinal health is of paramount importance for the healthy growth of humans/and
or animals, and it reflects the status of the intestinal physical barrier and immune func-
tion. The intestinal epithelium is the first layer of protection against gut infection [5]; it
also regulates various nutrients absorption and represents the defensive barrier against
enteric pathogens and their toxins [10,11], or other naturally occurring contaminants, for
instance, DON [12]. Several studies have revealed that DON can alter the gut structure [13],
malfunction the intestinal barrier function [2], and affect the absorption of nutrients [8,14],
consequently compromising intestinal health. Moreover, the intestinal mucosal epithelium
consists of four main cell types: absorptive enterocytes, goblet cells, Paneth cells, and
enteroendocrine cells, which play a vital role in maintaining intestinal homeostasis [15,16].
Previous studies have stated that DON could alter the functions of intestinal epithelial
cells [5]. Additionally, oxidative stress is a key risk factor of DON-induced toxicity in the
intestinal epithelium [17]. The Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor
erythroid 2-related factor 2 (Nrf2) pathway is involved in cell survival and defense against
extracellular or intracellular stress [18]. Previously, it was observed that DON-induced
intestinal oxidative injury is linked with dysregulation of Nrf2 signaling [19].

Growing evidence has suggested that functional food components could alleviate the
intestinal oxidative damage induced by DON [19]. Lycopene (LYC) is a naturally occurring
bioactive compound mainly present in tomatoes, red-colored fruits, and vegetables [20].
LYC is a lipid-soluble pigment of carotenoid and is readily absorbed in the intestine by
passive diffusion; enterocytes were identified as a potential site of LYC isomerization
in-vivo [21]. LYC, a potent antioxidant, can effectively quench singlet oxygen and scavenge
free radicals due to its distinctive unsaturated long-chain molecular structure [22,23]. Ad-
ditionally, LYC exerts a broad range of biological activities, comprising anti-carcinogenic,
anti-inflammatory, anti-cardiovascular diseases, neuroprotective, and detoxification abili-
ties in several experimental and epidemiological studies [23–25]. Previous reports revealed
that LYC relives AFB1-induced liver damage via increasing hepatic antioxidation and
detoxification capacity through Nrf2 signaling activation [25]. However, the shielding
effects and underlying mechanisms of LYC against DON-induced intestinal epithelium
damage have not been reported yet. The present study hypothesized that LYC could protect
DON-induced intestinal epithelium oxidative injury by regulating Keap1/Nrf2 signaling
in the intestine of mice. To the best of our knowledge, this is the first study to highlight the
protective role of LYC against DON-induced intestinal epithelium injury in mice.

2. Materials and Methods
2.1. Chemicals and Antibodies

Deoxynivalenol (DON, #D0156), N-acetylcysteine (#616-91-1), SB202190 (#S7067),
nicotinamide (#98-92-0), ethylenediaminetetraacetic acid disodium salt (EDTA, #6381-92-
6) and 4′,6-diamidino-2- phenylindole (DAPI, #28718-90-3) were procured from Sigma-
Aldrich (St. Louis, MI, USA). Lycopene (LYC, #C10579425) and corn oil (#805618) were
supplied by Macklin Biochemical Co., Ltd. (Shanghai, China). LYC was dissolved in corn
oil, and DON was dissolved in PBS. Fetal bovine serum (FBS, #10099-141), B27 supplement
(#12587010), N2 supplement (#17502048), and streptomycin/penicillin (#10378016) were
purchased from Gibco (Waltham, MA, USA). Matrigel (#354230) was acquired from BD
Biosciences (San Jose, CA, USA). Y27632 (#04-0012) was obtained from Stemgent (Cam-
bridge, MA, USA). Recombinant murine EGF (#53003-018) was procured from PeproTech
(Rocky Hill, NJ, USA). CHIR99021(#S1263) and LY2157299 (#S2230) were obtained from
(SelleckChem, Houston, TX). Beyo ECL Plus, a chemiluminescence detection kit, was
obtained from Beyotime Institute of Biotechnology (Shanghai, China). The kits for DAO
((#A088-1), ROS (#E004), MDA (#A003-1), T-AOC (#A015), GSH-Px (#A005), CAT (#A007-
1) and T-SOD (#A001) were obtained from (Jiancheng Bioengineering Institute, Nanjing
China). Bicinchoninic acid assay kit was supplied by Thermo Fisher Scientific (Waltham,
MA, USA).
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The primary antibodies, including occludin (#331500) and claudin-1 (#374900), were
obtained from Thermo Fisher Scientific (Waltham, MA, USA). Villin (sc-58897) and MUC2
(sc-15334) were procured from Santa Cruz Biotechnology (Santa Cruz, CA, USA). LYZ
(A0099) was obtained from Dako (Copenhagen, Denmark). Lgr5 (TA503316) was acquired
from OriGene Technologies (Rockwell, IA, USA). The Keap1 (#8047), HO-1 (#5853), NQO1
(#3187), and secondary antibodies used in the present study, including anti-mouse IgG
(#4410) and anti-rabbit IgG (#4414), were procured from Cell Signaling Technology (Beverly,
MA, USA). Nrf2 (#380773), p-Nrf2 (#381559), PCNA (#200947), and β-actin (#600149) were
acquired from Zen BioScience (Chengdu, Sichuan, China). Cy3-conjugated (#111-165-045)
and FITC (#115-545-003) antibodies were procured from Jackson Laboratory (Jackson,
MS, USA).

2.2. Ethics Statement

All experimental procedures were approved by the Laboratory Animals Care and Use
Committee of South China Agricultural University, Guangzhou, China (SCAU) (Protocol
code # SCAU-0206). All the methods were carried out following the approved guidelines
of SCAU.

2.3. Animals and Experimental Design

Healthy C57BL/6 mice were procured from Medical Experimental Animal Center
(Foshan, China). Following a week of acclimatization period, a total of forty-eight mice
were allocated randomly into four treatment groups (n = 12), as summarized in Table 1. All
groups were treated with gavage administration once a day.

Table 1. Experimental design.

Treatment
Days

1 2 3 4 5 6 7 8 9 10 11 12

CON OIL OIL OIL Euthanized
LYC LYC LYC LYC Euthanized
DON OIL DON OIL Euthanized

DON+LYC LYC DON+LYC LYC Euthanized

CON (corn oil); LYC (10 mg/Kg BW); DON (3 mg/Kg BW); DON+LYC (DON 3 mg/Kg + LYC 10 mg/Kg BW).

2.4. Sample Collection

After euthanizing, blood samples were harvested by retro-orbital puncture, sepa-
rated by centrifugation for serum samples, and stored at −80 ◦C for a subsequent test.
The intestine samples were excised immediately and washed with ice-cold PBS. Subse-
quently, the intestine samples were weighed and fixed in 2.5% glutaraldehyde or 4% fresh
paraformaldehyde for morphological observation or immersed in liquid nitrogen and then
preserved at −80 ◦C for further assessment. The rest of the jejunum tissue was used to
isolate the crypts. LYC or DON dosages chosen in the current research were based on
our preliminary experiment. Body gain, water intake, and feed intake were monitored
throughout the experiment. Animals were kept under laboratory conditions at 22 ± 2 ◦C
and were subjected to a controlled photoperiod (12 h light–12 h dark) and relative humidity
of 45–60%. Pellet diet and water were provided ad libitum. Animal health was closely
observed, and there were no signs of morbidity or mortality in any experimental mice.

2.5. Intestinal Crypt Isolation and Culture

The intestinal crypt isolation was performed based on our previous study [5]. In
brief, jejunum samples were washed with DPBS and cut into about 5 cm segments. After
that, they were incubated with DPBS containing 30 Mm ethylenediaminetetraacetic acid
disodium salt (ETDA). The crypts were then transferred into 50 mL tubes, and fresh DPBS
was added, and the process was repeated until high purity crypts were obtained. Finally,
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the purified crypts were cultured as previously described in our study [26]. The enteroids
forming and budding efficiency were calculated by using Image-Pro Plus software.

2.6. Transepithelial Electrical Resistance (TEER) Assay

The TEER was determined by using an ECOM2 epithelial Volt/Ohm meter (Milli-
pore, Billerica, MA, USA). Fresh jejunal samples were dissected into small fragments and
balanced in Krebs–Ringer buffer. The jejunum segments were mounted between the two
halves of a chamber and filled with an appropriate volume of Krebs–Ringer buffer on both
sides. The system was constantly gassed with carbogen to maintain the tissue viability,
and the temperature was sustained at 37 ◦C with a water jacket. Following a 30-min
equilibration period, the solutions were changed with a new Krebs–Ringer buffer, and then
the tests were performed. The data were expressed as Ω (resistance) × cm2 (surface area of
the monolayer) after deducting the filter resistance value.

2.7. Hematoxylin and Eosin (H&E) Staining

The H&E staining was carried out as previously described [27]. Briefly, jejunum
tissues were fixed in 4% paraformaldehyde, dehydrated with alcohol, and embedding
was performed. The 4 µm fragments were sectioned and prepared for H&E staining.
The morphometry of intestinal villus and crypt were measured using Image-Pro Plus
software [26].

2.8. Scanning Electron Microscope (SEM)

SEM was performed following our previously reported procedure [28]. The jejunum
tissues were soaked in 2.5% glutaraldehyde for 24 h, then washed in PBS and incubated
with 1% osmium tetroxide in sodium cacodylate buffer for an hour. Next, the samples
were dehydrated with an alcohol solvent and finally dried to the critical point. Afterward,
the jejunum was pasted to stubs by carbon tape and covered with gold. The jejunum
images were taken using an EVO MA 15 scanning electron microscope (Carl Zeiss AG,
Jena, Germany).

2.9. Measurement of Oxidative Stress Indices and Diamine Oxidase Activity

For the oxidative stress indices, jejunum tissue homogenates were prepared following
the corresponding kit requirements. BCA kit was used to measure the protein content
of samples. Reactive oxygen species (ROS), Malondialdehyde (MDA), catalase (CAT),
total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), total antioxidant
capacity (T-AOC), and diamine oxidase (DAO) activity were detected using commercially
available kits supplied by (Jiancheng Bioengineering Institute, Nanjing, China).

2.10. Immunohistochemistry (IHC) Analysis

The immunohistochemical analysis was performed as described by [28]. First, the
stained sections were incubated with primary antibodies at 4 ◦C for overnight. Later, the
sections were washed three times in PBS, each for 5 min. After washing, the sections were
incubated with secondary antibodies for two h at room temperature, then washed with
PBS thrice. Finally, DAPI was used for staining the nuclei for 10 min at room tempera-
ture. The images were observed using a fluorescence microscope (Nikon, Tokyo, Japan).
Quantification was performed by Image-Pro plus software.

2.11. Western Blotting

Western blotting was conducted as we described previously [29]. In short, SDS-PAGE
was used to separate the jejunum and crypt proteins. Then, the samples were shifted to
PVDF membranes and blocked with 5% skim milk; subsequently, the membranes were
incubated overnight at 4 ◦C with primary antibodies. Finally, following three washes with
TBST, membranes were incubated with secondary antibodies for visualization [30].
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2.12. Automated Capillary Western Blotting (WES)

WES was conducted in accordance with our earlier described procedure [31]. En-
teroids samples were lysed with RIPA buffer and mixed with a 5 × fluorescent master
mix and then warmed for 5 min at 95 ◦C. Finally, the diluted protein lysate sample, wash-
ing buffer, blocking reagent, primary and secondary antibodies, and chemiluminescent
substrate are distributed to the specified wells. The default settings were used for auto-
matic protein separation in each capillary. The data were examined by using Compass
software 3.1 (ProteinSimple, San Jose, CA, USA).

2.13. Statistical Analysis

The data were analyzed using SPSS (version 22, IBM Corporation, Armonk, NY, USA)
software. Statistical analyses were performed using one-way ANOVA followed by the least
significant difference (LSD) test. The results are presented as mean ± SEM. The differences
among groups were considered statistically significant at p-value < 0.05.

3. Results
3.1. LYC Treatment Improves Growth Performance of Mice Exposed to DON

To evaluate the beneficial effect of LYC treatment on DON-induced growth retardation
in mice, the ADFI, ADG, and ADWI were monitored during the experiment. The ADFI,
ADG, and ADWI in the DON group were significantly lower than those of the CON group
(p < 0.05). On the other hand, compared to the DON challenged group, LYC treatment
increased the ADFI (p < 0.05) (Figure 1A) and ADG (p < 0.05) (Figure 1B), while no
significant difference was found on the ADWI of mice. These findings demonstrated that
LYC treatment could eliminate the toxic effects of DON on mice growth performance.
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Figure 1. LYC treatment improves the growth performance of mice exposed to DON. (A) ADF1, (B) ADG, and (C) ADWI.
The results are presented as mean ± SEM (n = 12). Columns with different superscripts letters indicating significant
difference (p < 0.05).

3.2. LYC Treatment Repairs Intestinal Epithelium Injury of Mice Exposed to DON

To explore the shielding role of LYC on DON-induced intestinal epithelial injury
of mice, we investigated the growth or wound healing of the intestinal epithelium. As
shown in Figure 2A–C, DON decreased the duodenum and jejunum weight significantly
without affecting the ileum weight compared to the CON group. On the other hand, LYC
considerably increased the duodenum (p < 0.05) and jejunum (p < 0.05) weight of mice
as compared to the DON group. The morphological changes in the jejunum of mice are
depicted (Figure 2D,H). The morphological results revealed that DON challenged group
displayed severe atrophy, cell exfoliation, and multifocal apical necrosis of the villi in the
jejunum of mice. Interestingly, LYC treatment significantly reversed the DON-induced
morphological alterations, as presented in the ordered crypt-villus axis architecture in
the jejunum of mice. Conversely, the LYC treatment markedly increased the villus height
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(p < 0.05) and crypt depth (p < 0.05), as well as villus/crypt ratio (p < 0.05) in the jejunum
of mice decreased by DON (Figure 2E–G).
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3.3. LYC Treatment Protects the Intestinal Barrier Disruption of Mice Exposed to DON

To identify the protective effects of LYC on DON-induced gut barrier dysfunction
of mice, we examined the trans-epithelial electrical resistance (TEER) in the jejunal tissue
and diamine oxidase (DAO) activity in the serum of mice. Our results reflected that DON
exposure significantly declined TEER in the jejunum (p < 0.05) (Figure 3A), while DAO
activity was (p < 0.05) increased in the serum (Figure 3B) in the comparison of CON group,
while LYC treatment considerably reversed these changes altered by DON (p < 0.05).
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To further investigate the LYC-mediated defensive effects on DON-induced gut barrier
dysfunction are implicated with tight junction proteins, the claudin-1 and occludin protein
expression in the jejunal tissue and crypt of mice were measured by Western blotting. The
LYC treatment significantly up-regulated the claudin-1 and occludin protein expression
in the jejunum (p < 0.05) (Figure 3C,D) and crypt (p < 0.05) (Figure 3E,F) down-regulated
by DON. These findings indicated that LYC mitigated the intestinal barrier disruption
induced by DON.
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3.4. LYC Treatment Improves the Growth Advantages of Enteroids under DON Exposure

The jejunal crypts from the CON and experimental groups of mice were isolated and
cultured. As shown in Figure 4A–C, DON exposure significantly declined the enteroids
forming and budding efficiency (p < 0.05) compared to the CON group. However, LYC
significantly (p < 0.05) improved the enteroids expansion reduced by DON. Furthermore,
our results revealed that LYC treatment significantly up-regulated Lgr5 expression (active
ISC marker) in the jejunum (p < 0.05) (Figure 4J,K), crypt (p < 0.05) (Figure 4L,M), and
enteroids (p < 0.05) (Figure 4N,O) of mice in the comparison of DON group. The above
findings suggested that LYC protects intestinal epithelium integrity by maintaining ISC
activity under DON exposure.
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Figure 4. LYC treatment stabilized the functions of intestinal epithelial cells under DON exposure. (A) Represented images
of enteroids expended from crypt stem cells. (B,C) Enteroid forming and budding efficiency. (D–F) Represented images of
immunohistochemistry staining with MUC2, LYZ, and Villin antibodies in the jejunum. (G,H) Statistical analysis of MUC2+
cells and LYZ+ cells. (I) Statistical analysis of fluorescence intensity of Villin. (J,K) Protein expression of PCNA, Lgr5, MUC2,
and LYZ in the jejunum. (L,M) Protein expression of PCNA, Lgr5, MUC2, and LYZ in the crypt. (N,O) Protein expression of
Lgr5 and PCNA in the enteroids of mice. Results are presented as mean ± SEM (n = 3). Columns with different superscripts
letters indicating significant difference (p < 0.05).
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3.5. LYC Treatment Stabilized the State of Intestinal Epithelial Functional Cells under DON Exposure

Proliferative and differentiative cell markers are the essential components for main-
taining intestinal epithelium survival. To highlight the effect of LYC on intestinal epithelial
cell proliferation and differentiation, the protein expression and fluorescence intensity of
PCNA, MUC2, LYZ, and Villin were detected. In comparison to the DON group, LYC
dramatically up-regulated the MUC2, LYZ, and PCNA protein expression in the jejunum,
crypt, and enteroids of mice (p < 0.05) (Figure 4J–O). We further detected the number of
MUC2+ and LYZ+ cells and the fluorescent intensity of Villin. DON exposure (p < 0.05) de-
creased MUC2+ cells in the villi and LYZ+ cells in the crypt. Additionally, the fluorescence
intensity of Villin was also declined by DON (p < 0.05). On the other hand, LYC treatment
significantly reversed the DON-induced changes in the MUC2+ cells, LYZ+ cells, and Villin
fluorescence intensity in the jejunum of mice (Figure 4D–I).

3.6. LYC Treatment Attenuated Intestinal Epithelium Oxidative Damage Induced by DON

To detect the redox status in the intestinal epithelium of experimental mice, the levels
of ROS and MDA, as well as the CAT, T-SOD, T-AOC, and GSH-Px were measured. As
shown in Figure 5, in the comparison of CON group, ROS and MDA levels were raised
in response to DON exposure (p < 0.05). However, LYC treatment significantly (p < 0.05)
mitigated ROS and MDA levels in the jejunum of mice compared with the DON treated
group. Moreover, DON exposure markedly declined the CAT, T-SOD, T-AOC, and GSH-Px
activities (p < 0.05) compared with the CON group. In contrast, LYC treatment revealed
a significant increase in CAT, T-SOD, T-AOC, and GSH-Px, compared to the DON group
(Figure 5A–F).
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Figure 5. LYC treatment attenuated intestinal epithelium oxidative injury induced by DON. (A) Reactive oxygen species
(ROS), (B) malondialdehyde (MDA), (C) total antioxidant capacity (T-AOC), (D) glutathione peroxidase (GSH-Px),
(E) catalase (CAT), and (F) total superoxidase dismutase (T-SOD). Results are presented as mean ± SEM (n = 6). Columns
with different superscripts letters indicating significant difference (p < 0.05).
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3.7. LYC Treatment Promoted DON-Induced Nrf2 Signaling Activation via Down-Regulation
of Keap1

To confirm our hypothesis of whether LYC maintains the redox homeostasis of intesti-
nal epithelial cells against DON-induced oxidative stress is linked with Nrf2 activation,
the protein expression of Keap1, p-Nrf2, HO-1 and NQO1 were detected. Our findings
showed that DON treatment (p < 0.05) increased the Keap1 protein expression; however,
this effect was reversed considerably with the treatment of LYC (p < 0.05) (Figure 6E,H). In
the DON group, the protein expression and fluorescence intensity of p-Nrf2, HO-1, and
NQO1 were down-regulated (p < 0.05) in comparison to the CON group. In contrast to
the DON treated group, LYC markedly (p < 0.05) up-regulates the fluorescence intensity
(Figure 6A,D) and expression of p-Nrf2, HO-1, and NQO1 in the jejunum (Figure 6E,F),
crypt (Figure 6G,H) and enteroids (Figure 6I,J) of mice.
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Figure 6. LYC treatment promoted DON-induced Nrf2 signaling activation via down-regulation of Keap1. (A,B) Repre-
sented images of immunohistochemistry staining with p-Nrf2 and HO-1 antibodies in the jejunum of mice. (C,D) Statistical
analysis of the fluorescence intensity of p-Nrf2 and HO-1. (E,F) Protein expression of Keap1, p-Nrf2, Nrf2, HO-1, and NQO1
in the jejunum. (G,H) Protein expression of Keap1, p-Nrf2, Nrf2, HO-1, and NQO1 in the crypt. (I,J) Protein expression
of p-Nrf2 and HO-1 in the enteroids of mice. All the data are expressed as mean ± SEM (n = 3). Columns with different
superscripts letters indicating significant difference (p < 0.05).
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4. Discussion

The DON is recognized to contaminate a diversity of food and feedstuffs, posing
serious hazards to the agricultural environment and public health [32]. DON is rapidly
absorbed in the small intestine in the majority of animals by passive diffusion, particularly
proximal jejunum, so the intestinal epithelium is the primary target of DON [33]. Therefore,
it is imperative to find an effective protective agent to shield the intestinal epithelium
from DON-induced toxicity. The LYC, well known as a phytochemical agent, is primarily
present in vegetables and fruits with enormous health benefits [34]. After ingestion, LYC is
isomerized into Cis-configuration in the GIT and finally absorbed in the gut via intestinal
epithelial cells [35]. We found that DON exposure caused poor growth performance of
mice. These results may be attributed to the DON-induced intestinal epithelium injury.
Intestinal morphology is considered one of the most key parameters to reveal intestinal
health and injury [13,36]. The villus height and crypt depth indicate the digestive and
absorption capacity of the intestinal epithelial cells [26]. In our study, DON exposure
decreased the duodenum and jejunum weight, as well as declined the villus height, crypt
depth, and villus to crypt ratio in the jejunum of mice. Our findings indicated that DON
could cause intestinal injury and suppress the growth performance of mice. These results
can be explained, as DON exposure could shorten the villi, resulting in poor nutrient
absorption, diarrhea and consequently lead to poor growth performance [37]. Previously,
LYC supplementation prevented methotrexate-induced intestinal injury by maintaining
intestinal structure in rats [38]. Our results showed that LYC treatment significantly
repaired intestinal injury by increasing villus height and crypt depth resulted in better
nutrient absorption, suggesting that LYC alleviated DON-induced toxicity on the growth
performance of mice.

The integrity of the epithelial cells layer is essential for gut barrier function. Recently,
LYC has appeared to be an essential functional nutrient for intestinal integrity [39,40]. In
the present research, TEER in the jejunum was significantly reduced, while DAO content
in the serum markedly increased after DON exposure. Our results indicated that DON
exposure debilitates gut barrier function and concedes an invasion of exogenous noxious
agents present in food or feed [12,41]. Additionally, the intestinal barrier function is closely
linked to the junctional proteins network, and several studies have suggested that DON
alters tight junction (TJ) proteins [2,26]. However, we observed that LYC treatment protects
DON-induced gut barrier disruption by improving the structural integrity and promoting
TJ proteins (occludin and claudin-1). Moreover, the intestinal epithelium is considered one
of the fastest self-renewing tissue in the mammalian body. In our research, LYC significantly
protects intestinal epithelium integrity by enhancing the growth advantages of enteroids
under DON exposure. In addition, considerable evidence suggested that Goblet cells
(MUC2) and Paneth cells (LYZ) act as a layer of protection for epithelial cells, also implicated
in resistance to harmful endogenous agents and their toxins [5]. We found that LYC
rescued MUC2, LYZ and PCNA expression and fluorescence intensity of Villin under DON
exposure, suggesting LYC stabilized the functions of intestinal epithelial cells. Similarly,
previously, LYC protected intestinal injury induced by sulfamethoxazole [35]. Another
study demonstrated that LYC treatment prevented dextran sulfate sodium-induced gut
barrier damages and inflammatory responses in male rats [40]. In the current research, the
increased number of MUC2+ cells in the villi and LYZ+ cells in the crypt further indicate
that the LYC can protect barrier function in the small intestinal mucosa.



Antioxidants 2021, 10, 1493 12 of 15

Oxidative stress is typically caused by an imbalance between prooxidants and antiox-
idants, contributing to gut diseases, consequently, intestinal barrier dysfunction [19,42].
The overproduction of ROS or decreased antioxidant capacity usually caused oxidative
stress, leading to severe cell injury and/or cell death in humans or animals [17]. Previously,
it was reported that DON exposure augmented the ROS generation and inhibited the
antioxidant enzyme activities (GSH-Px, T-SOD) in IPEC-J2 cells [33], consistent with our
findings. Antioxidant enzymes play a critical role in the body’s antioxidant defense system
by removing ROS from the cell [43,44]. LYC is a potent antioxidant that effectively scav-
enges ROS accumulation, protecting against cell damage caused by oxidative stress [23].
The present results demonstrated that LYC significantly reduced ROS and MDA accumula-
tion while improving antioxidant enzyme activities (CAT, T-SOD, T-AOC, GSH-Px) under
DON exposure.

Nrf2 is a transcription factor and plays a crucial role in enhancing cell protection
against oxidative damage [25,45]. Normally, Nrf2 is sequestered in the cytoplasm by its
specific negative regulator Keap1. However, under stimulation, Nrf2 dissociates from
Keap1 and translocates to the nucleus, where it binds antioxidant response elements
(ARE) and promotes its associated targets (NQO-1, HO-1, GCLC) [46]. Most notably, Nrf2
appears to play a central role in protecting intestinal epithelium integrity against some
toxic agents [47]. Previously, Nrf2 was involved in DON-induced oxidative injury in the
intestinal epithelium [19]. In this research, DON exposure significantly up-regulated the
Keap1 expression and suppressed Nrf2 as well as its downstream targets (HO-1, NQO1).
There might be some reasons why DON inhibited the nuclear translocation of Nrf2. It
could be involved with the suppression of de novo synthesis of Nrf2 induced by DON.
However, the specific mechanism remains to be clarified. We found that LYC treatment
significantly reversed these effects caused by DON. The current investigation is in line with
the earlier studies, stating that DON exposure suppressed Nrf2 nuclear translocation [19,48].
LYC could protect cells from oxidative damage by enhancing Nrf2 translocation into the
nucleus, thereby increasing the cellular antioxidant gene expression [25,49,50]. The current
study suggested that Nrf2 activation is one of the key mechanisms underlying the LYC
beneficial effects. However, the mechanism by which LYC activates Nrf2 needs to be
further researched.

5. Conclusions

The current study provides significant evidence on the potential protective effects of
LYC against DON-induced intestinal epithelium injuries in mice. LYC effectively repaired
DON-induced intestinal damages, as evident from the improved intestinal structure and
gut barrier functions. Moreover, LYC alleviated DON-induced intestinal epithelium oxida-
tive injury by scavenging ROS production and enhancing the antioxidant defense system,
which is probably linked with Keap1/Nrf2 signaling pathway regulation. In return, this
protects intestinal epithelium injury induced by DON (Figure 7). These novel findings
could lead to future research into the therapeutic use of LYC to protect the DON-induced
hazardous effects in humans and/or animals.
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