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Abstract: Accumulating evidence has witnessed the Kelch-like ECH-associated protein 1(KEAP1)-
nuclear factor (erythroid-derived 2)-like 2 (Nrf2) axis is the main regulatory factor of cell resistance
to endogenous and exogenous oxidative assaults. However, there are few studies addressing the
upstream regulatory factors of KEAP1. Herein, bioinformatic analysis suggests bromodomain-
containing protein 4 (BRD4) as a potential top transcriptional regulator of KEAP1 in lung cancer.
Using molecular and pharmacological approaches, we then discovered that BRD4 can directly bind
to the promoter of KEAP1 to activate its transcription and down-regulate the stability of Nrf2 which
in turn transcriptionally suppresses glucose-6-phosphate dehydrogenase (G6PD) in small cell lung
cancer (SCLC), a highly proliferative and aggressive disease with limited treatment options. In
addition, BRD4 could associate with the Nrf2 protein in a non-KEAP1-dependent manner to inhibit
Nrf2 activity. Furthermore, simultaneous application of JQ1 and ATRA or RRx-001 yielded synergistic
inhibition both in vitro and in vivo. These data suggest metabolic reprogramming by JQ1 treatment
improves cell resistance to oxidative stress and might be a resistance mechanism to bromodomain
and extra-terminal domain (BET) inhibition therapy. Altogether, our findings provide novel insight
into the transcriptional regulatory network of BRD4 and KEAP1 and transcriptional regulation of the
pentose phosphate pathway in SCLC.

Keywords: small cell lung cancer; BRD4; KEAP1; Nrf2; pentose phosphate pathway

1. Introduction

Redox imbalance with increased generation of reactive oxygen species (ROS) has
been implicated in the pathogenesis of diverse disease conditions including cancer. The
Kelch-like ECH-associated protein 1(KEAP1)- nuclear factor (erythroid-derived 2)-like 2
(Nrf2) pathway is the primary regulator of cellular protection response to endogenous
and exogenous threats caused by ROS and electrophiles [1]. The inherent reactivity of
the thiol group of cysteines on KEAP1 could sense redox assaults and allow Nrf2 release
from KEAP1 to activate a battery of anti-oxidative genes. A growing number of studies
have recorded abnormalities in the KEAP1-Nrf2 system under pathological conditions
including KEAP1 and Nrf2 mutations, DNA hypermethylation in the KEAP1 promoter
region, and KEAP1 gene heterozygotic deletion [2,3]. Moreover, extensive studies have
documented the importance of the proper interplay between KEAP1 and Nrf2 for various
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biological events. However, transcriptional regulations of KEAP1 expression, especially in
an epigenetic manner, remain largely unexplored.

Glucose, a key intracellular fuel, is metabolized by glycolysis to produce nicotinamide
adenine dinucleotide phosphate (NADPH), besides ATP and biomass, which is required
to scavenge ROS via the oxidative pentose phosphate pathway (PPP) [4,5]. In the past
decades, accumulating data have indicated that the flux of the PPP is increased in re-
sponse to the tumor microenvironment and intracellular demands to promote cancer cell
proliferation and survival across cancers [6,7]. Regulation of the PPP pathway entails a myr-
iad of different aspects. For instance, the expression and activity of glucose-6-phosphate
dehydrogenase (G6PD), a rate-limited enzyme in the oxidative PPP pathway, is tightly
regulated by several oncoproteins and tumor suppressors [8,9]. In addition, several recent
studies have shown the importance of the interplay between G6PD and the KEAP1-Nrf2
axis. Nrf2 up-regulation could enhance G6PD expression, promoting the proliferation
and migration of breast cancer cells [10]. Constitutive activation of Nrf2 by inactivating
mutations in KEAP1 or activating mutations in Nrf2 interferes with the KEAP1-Nrf2 inter-
action, reprogramming glucose metabolism to support cell proliferation and contribute
to cancer progression [11,12]. Furthermore, sustained activation of Nrf2 can up-regulate
the expression of the PPP genes by attenuating miR-1 and miR-206 expression, enhancing
PPP-dependent NADPH production and promoting tumor cell growth [11,13]. How-
ever, how the KEAP1-Nrf2 axis modulates G6PD and the PPP pathway has yet to be
fully characterized.

The bromodomain and extra-terminal domain (BET) family members have been
recognized as potential therapeutic targets across human cancers. Specifically, BET proteins
include bromine domain proteins 2, 3, and 4 (BRD2, BRD3, and BRD4) and testicular-
specific bromine domain proteins (BRDT) [14]. Bromodomain-containing protein 4 (BRD4)
is the most widely studied BET member and is up-regulated in a broad spectrum of human
cancers. For example, high levels of BRD4 are closely associated with poor prognosis in
patients with non-small-cell lung cancer (NSCLC) [15] and breast cancer [16]. Based on
the encouraging anti-tumor activity of BRD4 inhibition in hematological malignancies and
solid tumors such as prostate cancer [17], glioblastoma [18], neuroblastoma [19], and lung
cancer [20], a number of BRD4 inhibitors have entered clinical trials for cancer treatment [21].
However, accumulating evidence has shown that intrinsic and acquired drug resistance
occurs once applying BRD4 inhibitors in therapeutics [22]. For example, cancer cells can
gain resistance to BET inhibitors (BETis) through adaptive kinome reprogramming, which
means that JQ1 as monotherapy may not provide a lasting therapeutic response [23,24].
Therefore, it is critical to dissect the underlying mechanisms responsible for the resistance
to improve the therapeutic efficacy of BETi.

This study employed bioinformatics and molecular approaches to explore the po-
tential transcription factors directly activating KEAP1 expression. We identified BRD4
as a potential factor positively modulating KEAP1 expression at the transcriptional level
in lung cancer. Using small cell lung cancer (SCLC) as a model, we further found that
BRD4 binds to the promoter region of KEAP1 and transcriptionally regulates its expression.
Both knockdown of BRD4 by siRNA and JQ1 treatment dramatically down-regulated
KEAP1 expression, stabilized Nrf2, and activated its downstream targets. Importantly,
we demonstrated that BRD4 could suppress G6PD through the KEAP1-Nrf2 axis. Finally,
the combined use of JQ1 and ATRA or RRx-001 achieved synergistic anti-tumor activity
in cellular and xenograft models based on the discovery of the novel mechanism. Our
results contribute insight into the transcriptional regulatory network of BRD4 and nominate
new and effective combination therapy strategies in treating SCLC, a poorly differentiated
neuroendocrine cancer, and the most malignant type of lung cancer [25].
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2. Materials and Methods
2.1. Cell Culture and Small Compounds

Human small cell lung cancer cells (H82, SHP77, H526, H69, and DMS273) were
kindly provided by Dr. Matthew Meyerson’s Laboratory at Dana-Farber Cancer Institute,
USA. H82, SHP77, H526, H69 are originally purchased from the American Type Culture
Collection (ATCC) and DMS273 was originally obtained from the European Collection of
Cell Cultures (ECACC).

All human small cell lung cancer cells (H82, SHP77, H526, H69, and DMS273) were
cultured at 37 ◦C in a humid atmosphere containing 5% carbon dioxide and in RPMI
1640 medium supplemented with 10% fetal bovine serum (FBS). JQ1 was purchased from
Selleck Chemical (Shanghai, China), and acetylcysteine (NAC), ATRA, and RRx-001 were
obtained from MedChemExpress (Shanghai, China). JQ1, ATRA, and RRx-001 were dis-
solved and aliquoted in DMSO (Sigma-Aldrich, Shanghai, China) and NAC was diluted in
nuclease-free water.

2.2. Protein Extraction and Western Blot Analysis

Total proteins of cells were extracted with lysis buffer (150 mM NaCl, 50 mM Tris-HCl,
1% Triton-X-100, 1 mM EDTA), EDTA-free PhosStop, and complete protease inhibitor
(Roche Applied Science, Indianapolis, IN, USA). The protein concentration was determined
by the bicinchoninic acid (BCA) protein assay kit (Sangon Biotech, Shanghai, China).
Protein samples (15–20 µg) were run on polyacrylamide gels and transferred to PVDF
membranes using TurboBlot (Bio-Rad, Hercules, CA, USA). Then, the blocked membrane
was incubated with primary antibodies Nrf2 (Abcam, Cambridge, UK, 1:1000), BRD4
(Bethyl, Los Angeles, CA, USA, 1:500), KEAP1 (CST, Boston, MA, USA, 1:500), G6PD
(Abcam, Cambridge, UK, 1:1000), H3 (CST, Boston, MA, USA, 1:1000), Tubulin (CST,
Boston, MA, USA, 1:1000), and β-actin (Transgen, Beijing, China 1:1000) overnight and
HRP-conjugated secondary antibody, Rabbit IgG (CST, Boston, MA, USA, 1:3000), and
mouse IgG (CST, Boston, MA, USA, 1:3000) for 2 h. Signals were visualized using an ECL
chemiluminescence detection kit (NCM, Suzhou, China) as per the manufacturer’s protocol
on a Tanon 5200 Chemiluminescence image analyzer (Shanghai, China).

2.3. Chromatin Immunoprecipitation and PCR

Briefly, cells were crosslinked for 10 min with 1% (v/v) formaldehyde. Crosslinking
was terminated for 5 min by adding a 1/10 volume of 1.25 M glycine and sonicated lysate
to shear DNA into 200–500 bp fragments. Then, the chromatin was incubated with various
antibodies (Nrf2, Abcam, ab62352; BRD4, CST, #13440; G6PD, Abcam, ab133525; IgG, and
CST). Finally, the immunoprecipitated DNA was purified and amplified with gene-specific
primers by quantitative PCR (qPCR). The primer sequences used for ChIP-qPCR were
as follows: G6PD_Prom_F, 5′-ACGAGCAAACAGGCATATGA-3′ and G6PD_Prom_R, 5′-
CCAAACTTGACTGCGCTCTAT-3′; KEAP1_Prom_F, 5′-GAAAGG AGCGGCGATTCTC-3′

and KEAP1_Prom_R, 5′-TGGAAGGGACAGTGAGAAGG-3′.

2.4. Co-Immunoprecipitation (Co-IP)

For co-immunoprecipitation (Co-IP) experiments, cells were lysed using IP lysis buffer
(20 mM Tris-HCl pH 8, 137 mM NaCl, 1% nonidet-P-40 (NP-40)) and EDTA-free PhosStop
and complete protease inhibitor (Roche Applied Science) on ice for 30 min. First, the protein
was quantified after supernatant collection by centrifugation (1300 rpm, 15 min). Next,
500 µg protein extracts were mixed with 2.5 µL antibodies (Nrf2; BRD4) and incubated by
rocking at 4 ◦C. After overnight incubation, 50 µL of magnetic beads (Thermo Scientific,
Rockford, IL, USA) were added and the mixture continued to rock for 4 h. Finally, the beads
were harvested and re-suspended in 20 µL of 2× sample buffer, followed by SDS-PAGE
and immunoblotting
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2.5. RNA Isolation and Quantitative RT-PCR Analysis

Total RNA was isolated from SCLC cells using TRIzol reagent (Thermo Scientific,
Rockford, IL, USA) and reverse-transcribed using an Evo M-MLV Kit (Accurate Biology,
Hunan, China). In addition, quantitative PCR was performed using an SYBR Green Premix
Pro Taq HS qPCR Kit (Accurate Biology, Hunan, China) on a LightCycler 96® Instrument
(Roche, Indianapolis, IN, USA). The primer sequences are as follow:

BRD4-F: 5′-ACCTCCAACCCTAACAAGCC-3′;
BRD4-R: 5′-TTTCCATAGTGTCTTGAGCACC-3′;
β-actin-F: 5′-TGTATGCCTCTGGTCGTACC-3′;
β-actin–R: 5′-CAGGTCCAGACGCAGGATG-3′;
G6PD-F: 5′-CCGGAAACGGTCGTACACTT-3′;
G6PD-R: 5′-ATGACGCTGTCTGCGCTT-3′;
KEAP1-F: 5′-TGGCCAAGCAAGAGGAGTTC-3′;
KEAP1-R: 5′-GGCTGATGAGGGTCACCAGTT-3′;
NQO1-F: 5′-CCTGCCATTCTGAAAGGCTGGT-3′;
NQO1-R: 5′- GTGGTGTGTGGAAAGCACTGCCT-3′;
FTL-F: 5′-CACCTACCTCTCTGGGCT-3′;
FTL-R: 5′-CAATTCGCGGAAGAAGTGGC-3′;
FTH1-F: 5′-CCAGAACTACCACCAGGACTC-3′;
FTH1-R: 5′-GTAAGTAGCTGGGCAGAGGCAA-3′.

And the gene ID accession numbers are as follow: BRD4 (23476), β-actin (60), G6PD
(2539), KEAP1 (9817), NQO1 (1728), FTL (2512) and FTH1 (2495).

2.6. Cell Viability Assay

Cells (3000 per well) were seeded into 96-well plates and cultured for 24 h. The
cells were then treated with different concentrations of drugs for 72 h. Cell viability
was determined by the CellTiter-Glo Luminescent assay and luminescence was recorded
using an Envision PerkinElmer porous plate microplate reader. The values were nor-
malized, and the IC50 was calculated using GraphPad Prism (GraphPad Prism Software,
San Diego, CA, USA).

2.7. Preparation of Cytoplasmic and Nuclear Extracts Assay

A total of 1 × 106 cells were collected by centrifugation (1000 rpm, 5 min). After
washing with cold PBS, the cells were incubated with 400 µL precooled buffer solution A
(10 mM HEPES pH 7.9, 10 mM KCl, 0.1 mM EDTA, 1 mM DTT, protease inhibitor) and
extracted for 30 min by stirring very gently. Then, 25 µL of 10% NP-40 was added to the
mixture and allowed to be vortexed for 10 s. Then, the samples were centrifuged in a
low-speed centrifuge (2000 rpm, 15 min, 4 ◦C). The resulting supernatant was centrifuged
at high speed (10,000× g, 5 min, 4 ◦C), and collected the supernatant as the cytoplasmic
fraction. Then, after washing the remaining precipitate, 50 µL cold buffer C (20 mM HEPES
pH 7.9, 0.4 M NaCl, 1 mM EDTA, 1 mM DTT, protease inhibitor) was added and incubated
on ice for 15 min. The supernatant was collected as nuclear extracts. Finally, samples were
analyzed using immunoblot analysis.

2.8. Transcription Factor Prediction

Transcription factors were predicted using the AnimalTFDB 3.0 database, a compre-
hensive resource for annotation and prediction of animal transcription factors. The KEAP1
promoter was defined as 2000 bp upstream and 100 bp downstream from the KEAP1
transcription start site. The cut-off of the q-value was defined as 0.01 and transcription
factors were included only if the predicted binding site was located in a positive strand.

2.9. Multi-Omics Data Analysis

The RNA-seq data for 17 different cancer types and associated clinicopathologi-
cal information were downloaded from the TCGA database (TCGA. Available online:
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https://portal.gdc.cancer.gov/ (accessed on 16 November 2021)) [26]. Receiver operating
characteristic (ROC) curves and prognostic analyses were performed using GraphPrism
after the expression data of KEAP1 for specific cancer and its clinicopathological informa-
tion were retrieved. Differential expression analysis across human cancers was carried
out using a standard processing pipeline from the TIMER database (TIMER. Available on-
line: https://cistrome.shinyapps.io/timer (accessed on 15 November 2021)), an interactive
web resource for analyzing cancer OMICS data [27]. Finally, the comprehensive mutation
profiles of KEAP1 were analyzed by a standard processing pipeline in the cBioPortal (cBio-
Portal. Available online: https://www.cbioportal.org (accessed on 12 January 2022)), a
web-based database analyzing multidimensional cancer genomics data [28,29].

2.10. Analysis of Expression Data

Sequencing data (RNA-seq) from SCLC cell lines and general information for these
cell lines were downloaded from https://portals.broadinstitute.org/ccle/data (accessed
on 21 April 2021). In addition, transcriptome sequencing data from 81 human primary
SCLC tumors and sample information were obtained from George et al., 2015. Sequencing
data (RNA-seq) from 79 human primary SCLC tumors and microarray data from 18
SCLC and their matched normal tissues were downloaded from GSE60052 and GSE14956,
respectively. Expression data for KEAP1, G6PD, and BET members were retrieved, analyzed,
and displayed in scatter plots.

2.11. RNA Interference

For siRNA-mediated BRD4, cells were seeded into 6-well plates at 60% density and
transfected with BRD4 siRNA or NC-siRNA using Effectene Transfection Reagent (QI-
AGEN, Dusseldorf, Germany) according to the manufacturer’s protocol. After 48 h of
incubation, cells were harvested for western blot and RT-qPCR analysis. The siRNA
sequences are shown:

siControl: 5′-UUCUCCGAACGUGUCACGUTT-3′,
5′-ACGUGACACGUUCGGAGAATT-3′;

siBRD4#1: 5′-GCCAAATGTCTACACAGTATA-3′;
siBRD4#2: 5′-CAGTGACAGTTCGACTGATGA-3′.

2.12. SCLC Xenograft Mouse Models

Six-week-old athymic nude mice were subcutaneously injected with 5 × 106 H82
cells in 100 mL of PBS and 100 mL of Matrigel (BD Biosciences, Franklin, NJ, USA). Drug
treatment was initiated once the tumors reached 100 mm3. Before administration, JQ1 and
RRx-001 were dissolved in DMSO and then injected into the tail vein at 40 mg/kg and
6 mg/kg, respectively, at a frequency of 4 injections every 5 days. The tumor size was
measured with a caliper, and the following formula determined the tumor volume: tumor
volume [mm3] = (tumor length × tumor width2)/2.

3. Results
3.1. KEAP1 Is UpRegulated and Correlated with Prognosis in Various Cancer Types

To investigate the differential expression of KEAP1 across cancers, a pan-cancer anal-
ysis of KEAP1 expression was performed using the TIMER portal, an interactive tool for
analyzing The Cancer Genome Atlas (TCGA) RNA-sequencing data. Bioinformatics analy-
sis of 17 different types of cancer diseases revealed that KEAP1 expression was significantly
elevated compared with normal tissues in all primary tumors as compared with normal
tissues except kidney chromophobe (KICH), thyroid carcinoma (THCA), and uterine corpus
endometrial carcinoma (UCEC) (Figure 1A), indicating frequent elevated expression of
KEAP1 in cancer. To evaluate the diagnostic value of KEAP1, receiver operating character-
istic curve (ROC) analysis was applied to determine the diagnostic efficiency of KEAP1
expression in discriminating cancer patients from healthy individuals. The data showed
that the area under the ROC curve (AUC) of KEAP1 was larger than 0.7 in patients with

https://portal.gdc.cancer.gov/
https://cistrome.shinyapps.io/timer
https://www.cbioportal.org
https://portals.broadinstitute.org/ccle/data
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invasive breast carcinoma (BRCA), colon adenocarcinoma (COAD), rectum adenocarci-
noma (READ), esophageal carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), lung
cancer, prostate adenocarcinoma (PRAD), or thyroid carcinoma (THCA). Among them, the
sensitivity and specificity of KEAP1 in LIHC prediction were 0.920 and 0.874, respectively,
under the optimal KEAP1 expression cut-off value (Figure 1B, Supplementary Table S1).
These data indicated that KEAP1 possessed a conspicuous prognostic value in clinical prac-
tice. To investigate whether KEAP1 could serve as a prognostic marker for patient survival,
overall survival (OS) curves were plotted by the Kaplan-Meier method according to the
KEAP1 expression level. The results demonstrated that KEAP1 expression was significantly
associated with overall survival. Patients with cervical squamous cell carcinoma and endo-
cervical adenocarcinoma (CESC), lung squamous cell carcinoma (LUSC), mesothelioma
(MESO), ovarian serous cystadenocarcinoma (OV), and stomach adenocarcinoma (STAD)
with high KEAP1 expression and patients with adrenocortical carcinoma (ACC), acute
myeloid leukemia (LAML), and LIHC with low levels of KEAP1 expression were predicted
to have a high overall survival (Figure 1C). These results suggest that KEAP1 is aberrantly
expressed in cancers and might be used as a potential biomarker to predict the prognosis
of patients in a subset of cancers.

Figure 1. Cont.
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Figure 1. KEAP1 expression across cancers and its prognostic implications. (A) Box plots showing
the distribution of KEAP1 mRNA expression in 17 types of cancer versus normal tissues based on
the TCGA database. * p < 0.05, ** p < 0.01, *** p < 0.001. (B) ROC analysis of KEAP1 expression for
distinguishing cancers from normal tissues. BRCA, breast invasive carcinoma; COAD, colon adeno-
carcinoma; RSAD, rectum adenocarcinoma; ESCA, esophageal carcinoma; LIHC, liver hepatocellular
carcinoma; PRAD, prostate adenocarcinoma; and THCA, thyroid carcinoma. (C) Kaplan–Meier
analysis showing that KEAP1 expression was linked to overall survival in eight cancer types based
on the TCGA database. BLCA, Bladder Urothelial Carcinoma; BRCA, Breast invasive carcinoma;
CHOL, Cholangio carcinoma; COAD, Colon adenocarcinoma; ESCA, Esophageal carcinoma; HNSC,
Head and Neck squamous cell carcinoma; KICH, Kidney, Chromophobe; KIRP, Kidney renal pap-
illary cell carcinoma; LIHC, Liver hepatocellular carcinoma; LUAD, Lung adenocarcinoma; LUSC,
Lung squamous cell carcinoma; PRAD, Prostate adenocarcinoma; READ, Rectum adenocarcinoma;
STAD, Stomach adenocarcinoma; THCA, Thyroid carcinoma; UCEC, Uterine Corpus Endometrial
Carcinoma; ACC, Adrenocortical carcinoma; CESC, Cervical squamous cell carcinoma; LAML, Acute
Myeloid Leukemia; MESO, Mesothelioma; OV, Ovarian serous cystadenocarcinoma.

3.2. BRD4 Targets the KEAP1 Promoter and Regulates KEAP1 Expression in Lung Cancer

To explore the underlying mechanisms leading to the dysregulation of KEAP1 in can-
cer, we first characterized genomic alterations of the KEAP1 gene. Mutations, copy number
changes, and structural variants for KEAP1 were analyzed across human cancers using the
cBioPortal database. The results showed that high-level copy number gains of KEAP1 were
observed in uterine carcinosarcoma, ovarian serous cystadenocarcinoma, and sarcoma. In
contrast, we only observed relatively low-level copy number gains and losses of KEAP1,
even though a high mutation rate of KEAP1 was detected in lung adenocarcinoma (LUAD)
and squamous cell carcinoma (Supplementary Figure S1A). Given that somatic copy num-
ber alterations affect gene expression, we integrated copy number variation (CNV) and
RNA-seq data from the TCGA database to determine the association of CNV and KEAP1
expression. As shown in Figure 2A, the mRNA level of KEAP1 was significantly positively
correlated with the changes in somatic copy number in most cancer types examined ex-
cept DLBC, KICH, and THYM (Figure 2A). Although LUAD and LUSC have significant
correlation coefficients, OV exhibits the highest correlation coefficient across cancers. Since
the expression of genes of interest could be regulated at the transcriptional level, we then
sought to explore the transcription factors responsible for the up-regulation of KEAP1. We
focused on lung cancer since relatively low-level copy number changes were found in lung
cancer. We first predicted the potential transcription factor binding sites at the promoter of
KEAP1 using the HumanTFDB 3.0 database. A total of 133 transcription factors showed
the possibility of binding to the KEAP1 promoter. To narrow down potential transcription
factors, we chose transcription factors whose predicted scores were larger than 20, and
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finally, 23 genes were selected for further analysis (Figure 2B). Pearson correlation analysis
was performed to assess the correlation between the 23 potential transcription factors and
KEAP1 expression in lung cancer. Interestingly, BRD4 showed a strong positive correlation
with KEAP1 expression in three major lung cancer subtypes, including LUAD, LUSC, and
SCLC (Figure 2C–E). We also retrieved ChIP-Seq data from the UCSC database and found
that BRD4 was enriched as the promoter of KEAP1 in H2171 and PC9 cells and, to a lesser
extent, in HCT-116 cells (Supplementary Figure S1B). These data suggest that BRD4, as an
upstream regulator of KEAP1, might regulate gene expression by binding to the KEAP1
promoter in cancer cells.

Figure 2. Bioinformatics analysis of factors modulating KEAP1 expression. (A) Copy number
variation (CNV) contribution to KEAP1 expression using the MEXPRESS database. (B) Distribu-
tion of the predicted score sequencing of 139 transcription factors binding to the KEAP1 promoter.
(C–E) Histogram showing the mRNA expression correlation between BRD4 and KEAP1 based on
the TCGA dataset-LUAD (C), TCGA dataset-LUSC (D), and in SCLC primary tumors (E, n = 81).
ns > 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001 (Student’s t-test). SCLC, small cell lung cancer; UCS,
Uterine Carcinosarcoma; GBM, Glioblastoma multiforme; SARC, Sarcoma; TGCT, Testicular Germ
Cell Tumors; LGG, Brain Lower Grade Glioma; PAAD, Pancreatic adenocarcinoma; SKCM, Skin
Cutaneous Melanoma; UVM, Uveal Melanoma; DLBC, Lymphoid Neoplasm Diffuse Large B-cell
Lymphoma; PCPG, Pheochromocytoma and Paraganglioma; KIRC, Kidney renal clear cell carcinoma;
and THYM, Thymoma.
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3.3. The Positive Association between KEAP1 and BRD4 in SCLC

Lung cancer comprises two major histological types: non-small-cell lung cancer
(NSCLC) and small-cell lung cancer (SCLC). Compared with non-small cell lung can-
cer, KEAP1 and BRD4 expression were much higher in SCLC cells than in NSCLC cells
based on publicly available RNA-seq data from Cancer Cell Line Encyclopedia (CCLE) and
microarray data from Genomics of Drug Sensitivity in Cancer (GDSC) (Supplementary
Figure S2A,B). Therefore, we decided to explore the potential transcriptional regulation
of KEAP1 by BRD4 in SCLC cells by first evaluating multiple SCLC microarray and RNA-
seq data sets for KEAP1 and BRD4 expression. Analysis of the GSE149507 data set (18
paired SCLC and adjacent normal tissues) showed that both KEAP1 and BRD4 were ele-
vated compared with adjacent normal tissues (Supplementary Figure S2C). Similar results
were also observed in the GSE60052 data set (data not shown). Interestingly, survival
analysis using the Kaplan-Meyer method showed that high expression of KEAP1 and
BRD4 was associated with better overall and progression-free survival in SCLC. These
results indicate that both KEAP1 and BRD4 are highly expressed and that high BRD4
and KEAP1 expression consistently contributes to a better prognosis of SCLC patients
(Supplementary Figure S2D,E).

To further characterize the correlation between KEAP1 and BRD4 at the mRNA level
in SCLC, we interrogated multiple SCLC RNA-seq and microarray data sets for KEAP1
and BRD4 expression. A primary SCLC data set generated by George et al. [30] (81 human
primary SCLC samples) displayed that BRD4 expression was highly positively correlated
with KEAP1 expression. Similar correlation patterns were observed in the GSE149507,
GSE60052, and CCLE SCLC RNA-seq data sets (Figure 3A). In contrast, BRD2 and BRD3,
two additional BET (bromodomain and extra-terminal domain) family members, exhibited
no or low correlation coefficients with KEAP1. These data suggest that BRD4 might be the
primary BET member responsible for the regulation of KEAP1. To provide mechanistic
evidence of the potential regulation of KEAP1 by BRD4, we silenced BRD4 by siRNA in H82
and SHP77 SCLC cells, and then BRD4 and KEAP1 expression was validated by RT-qPCR
and Western blotting. As depicted in Figure S3B, effective knockdown of BRD4 markedly
decreased KEAP1 expression in both H82 and SHP77 cells (Supplementary Figure S3A,B).
Following the RT-qPCR results, western blot analysis demonstrated a down-regulation of
KEAP1 upon BRD4 knockdown at the protein level (Figure 3B, Supplementary Figure S5A).
Then, we performed BRD4 chromatin immunoprecipitation (ChIP) followed by qPCR
analysis to evaluate whether BRD4 transcriptionally activated KEAP1. The results showed
that BRD4 is directly bound to the promoter region of KEAP1. As expected, treatment
with JQ1, a specific inhibitor of BRD4, led to markedly decreased binding of BRD4 at the
promoter of KEAP1 in H82 and H526 cells (Figure 3C). Notably, JQ1 treatment resulted
in a dose-dependent down-regulation of KEAP1 at the mRNA and protein levels in H82,
SHP77, and H526 cells (Figure 3D,E, Supplementary Figure S5B). We also extracted KEAP1
expression data from two GEO datasets and analyzed the effect of BET inhibitors on the
KEAP1 expression. The results showed that JQ1 caused a dose-dependent decrease in
KEAP1 in four SCLC cell lines in the GSE63782 data set. We also found that NHW870,
another BET inhibitor, down-regulated KEAP1 in an SCLC PDX model (Figure 3F,G).
Altogether, these data validated that BRD4 directly binds to the KEAP1 promoter and
positively regulates its expression in SCLC cells.



Antioxidants 2022, 11, 661 10 of 18

Figure 3. BRD4 targets the KEAP1 promoter and dominantly regulates KEAP1 expression. (A) Scatter
plot showing the correlation between KEAP1 and BRD4 RNA expression that was demonstrated
based on the four databases. (B) Western blot analysis of BRD4 and KEAP1 upon knockdown of
BRD4 in SCLC cells. (C) ChIP-qRT-PCR experiment indicating the direct binding of BRD4 to the
KEAP1 promoter in H82 and H526 cells after 48-h exposure to JQ1 or 0.01% DMSO (vehicle). The
effect of JQ1 on the DNA-binding efficiency of BRD4 to the KEAP1 promoter was observed. (D,E) The
effect of JQ1 on the KEAP1 expression by RT-qPCR (D) or western blot (E) in H82, SHP77, and H526
cells. (F,G) Scatter plots showing KEAP1 expression on BET inhibitor NHW870 (F) or JQ1 (G) based
on the GSE155923 and GSE63782 datasets. * p < 0.05; ** p < 0.01; *** p < 0.001 (Student’s t-test).

3.4. BETi and Nrf2i Synergistically Inhibit SCLC Cell Proliferation

The KEAP1-Nrf2 axis is one of the most important cellular defense pathways against
oxidative and electrophilic stress. We analyzed several public data sets for nuclear factor
(erythroid-derived 2)-like 2 (NFE2L2) expression. As shown in Figure S3C, NFE2L2 was
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lower in SCLC tissues/cells than adjacent non-tumor tissues in the GSE145907 data set and
LUAD cells in the CCLE RNA-seq data set (Supplementary Figure S3C). Impaired KEAP1
expression mediated by BRD4 might influence its association with Nrf2, promoting Nrf2
stability by preventing Nrf2 degradation. Therefore, we evaluated Nrf2 expression by RT-
qPCR and Western blotting to determine whether Nrf2 expression was affected with BRD4
knockdown or JQ1 treatment. Notably, knockdown of BRD4 using siRNA or treatment
of H82 and H526 cells with JQ1 had no significant effect on the transcription of NFE2L2
(Supplementary Figure S3D,E). However, BRD4 depletion triggered the accumulation of
Nrf2 at the protein level in both H82 and SHP77 cells. Similarly, JQ1 treatment induced
a dose-dependent up-regulation of NFR2 in H82, SHP77, and H526 cells (Figure 4A,B,
Supplementary Figure S5C,D). Following the down-regulation of KEAP1, Nrf2 would
no longer be sequestered by KEAP1 and translocate and accumulate in the nucleus. We
then checked whether the nuclear fraction of Nrf2 increased following JQ1 treatment.
The nuclear-cytoplasmic separation assay demonstrated that Nrf2 was more translocated
and retained in the nucleus in the presence of JQ1 in H82 and SHP77 cells (Figure 4C,
Supplementary Figure S5E). External oxidative stress also disassociates KEAP1 from Nrf2
and leads to the accumulation of Nrf2 so we treated cells with hydrogen peroxide in the
presence or absence of JQ1 and detected Nrf2 protein by western blotting. As shown in
Figure 4D, the perturbation of redox homeostasis by hydrogen peroxide could further lead
to the dose-dependent accumulation of Nrf2 in H82 and H526 cells. These results suggested
that either BRD4 depletion or blocking the binding of BRD4 to the KEAP1 promoter by JQ1
indeed activates the KEAP1-Nrf2 signaling pathway. In addition, a previous study reported
that Fs(1) h, the fly ortholog of BET member, physically interacts with CncC, the ortholog
of Nrf2 in Drosophila, and inhibits its activity at the posttranslational level. We tested the
possible interaction between BRD4 and Nrf2 in SCLC cells by co-immunoprecipitation
(Co-IP) analysis. The co-IP experiment unveiled an interaction between BRD4 and Nrf2 in
H82, SHP77, and H526 cells. Importantly, JQ1 treatment weakened the binding rate of Nrf2
and BRD4 (Figure 4E). These data suggest that BRD4 can modulate Nrf2 activity through
indirect regulation by KEAP1 and direct protein-protein regulation.

Furthermore, Nrf2 translocation from the cytoplasm to the nucleus will allow it to
bind to antioxidant-response elements and activate a wide battery of genes. Therefore, we
sought to determine the effect of JQ1 on Nrf2 targets. RT-qPCR analysis showed that JQ1
treatment significantly up-regulated the expression of antioxidant-related genes that are
downstream of Nrf2 (NQO1, FTL, and FTH1) in H82 and SHP77 cells (Figure 4F). BRD4 has
been implicated in a broad spectrum of human cancers and is increasingly appreciated as a
promising anticancer target, including SCLC. Both intrinsic and acquired resistance to BET
inhibitors have started to draw much attention and the underlying mechanisms leading
to resistance in SCLC are still largely unexplored. Activating Nrf2 by BRD4 silencing or
BET inhibitors could protect SCLC cells from oxidative stress, therefore promoting cell
survival. To test our hypothesis, we treated SCLC with JQ1 in combination with ATRA, a
well-recognized inhibitor of Nrf2, and evaluated the potential synergistic inhibitory effect.
We found that the combination of JQ1 and ATRA indeed showed strikingly synergistic
anti-tumor activity in H82, SHP77, and H526 cells (Figure 4G). However, the addition
of N-acetyl L-cysteine (NAC), a well-known reactive oxygen species (ROS) scavenger,
prevented the synergistic effects induced by the combined treatment with JQ1 and ATRA
in the cell lines examined (Figure 4G). These results strongly suggest that JQ1-mediated
activation of Nrf2 facilitates cell survival and that ATRA may promote the cytotoxicity of
JQ1 by interfering with Nrf2 and increasing ROS levels in SCLC cells.
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Figure 4. Blocking BRD4 results in the accumulation of Nrf2. (A,B) Western blot analysis of Nrf2
upon BRD4 knockdown or JQ1 treatment (B) in H82 and SHP77 cells. (C) Western blot analysis
indicating the distribution of Nrf2 upon JQ1 treatment in H82 and SHP77 cells Tubulin serves as a
reference protein in the cytoplasm and H3 as a reference protein in the nucleus. (D) Western blot
analysis of Nrf2 in H82 and H526 cells with or without H2O2 after treatment with JQ1. (E) Co-IP
experiments demonstrating the interaction of BRD4 and Nrf2 upon JQ1 treatment. (F) RT-qPCR
analysis of FTH1, FTL, and NQO1 upon JQ1 treatment in H82 and SHP77 cells. (G) CellTiter-Glo
Luminescent assays demonstrating the effects of the combination of ATRA and JQ1 with (lower
panel) or without NAC (upper panel) in H82, SHP77, and H526 cells. ns > 0.05; * p < 0.05; ** p < 0.01;
*** p < 0.001 (Student’s t-test).

3.5. Co-Targeting BRD4 and G6PD Suppresses SCLC In Vitro and In Vivo

Several studies have shown that Nrf2 up-regulates G6PD expression [31]. Therefore,
we first interrogated a couple of data sets for G6PD expression in SCLC. Compared with
that in LUAD cells, the expression of G6PD in SCLC cells was also remarkably lower in
the CCLE RNA-seq data set. Moreover, G6PD expression was much lower in human
primary SCLC tissues than in adjacent non-tumorous tissues in the GSE149507 data set
(Supplementary Figure S4A). Notably, in SCLC cell lines, we found that G6PD expression at
both the RNA and protein levels was significantly negatively correlated with BRD4 expression
but not with BRD2 and BRD3 expression (Figure 5A,B, Supplementary Figure S4C,E). Im-
portantly, knockdown of BRD4 stimulated G6PD mRNA and protein expression in H82 and
SHP77 cells (Figure 5D,F, Supplementary Figure S6A). Similarly, JQ1 treatment enhanced G6PD
mRNA expression and protein expression in SCLC cells or tissue samples (Figure 5E,G,
Supplementary Figure S6B). Consistently, treatment with JQ1 also caused a time-dependent
up-regulation of G6PD in SCLC cells based on the GSE63782 dataset (Figure 5H). Although
we observed the binding of BRD4 to the G6PD promoter by ChIP-PCR, treatment with JQ1
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had a minimal effect on the change in the association of BRD4 with the promoter region of
G6PD (data not shown). Therefore, we wondered whether Nrf2 rather than BRD4 directly
binds to the promoter region of G6PD and activates its expression. The ChIP-qPCR analysis
demonstrated that Nrf2 was enriched in the G6PD promoter in the basal state. Furthermore,
the addition of JQ1 robustly increased the binding of Nrf2 at the promoter of G6PD in H82
and SHP77 cells (Figure 5C). These results indicated that Nrf2, rather than BRD4, directly
binds to the G6PD promoter and controls its expression in SCLC cells.

Figure 5. Nrf2 transcriptionally regulates G6PD in SCLC cells. (A,B) Scatter plots showing the
correlation between BRD4 expression and the expression of G6PD at mRNA (A) and protein (B) levels.
(C) ChIP-qRT-PCR experiment indicating the direct binding of Nrf2 to the G6PD promoter in H82
and H526 cells after 48 h exposure to JQ1 or 0.01% DMSO (vehicle). (D,E) RT-qPCR analysis of
G6PD upon BRD4 silencing (D) in H82 and SHP77 cells and JQ1 treatment (E) in five SCLC cell
lines. (F,G) Western blot analysis of G6PD upon BRD4 silencing (F) in H82 and SHP77 cells and JQ1
treatment (G) in five SCLC cell lines. (H) Scatter plots showing G6PD expression upon JQ1 treatment
based on the GSE63782 dataset. (I) CellTiter-Glo Luminescent assays demonstrating the synergistic
effects of the combination of RRx-001 and JQ1 in H82, SHP77, and H526 cells. * p < 0.05; ** p < 0.01;
*** p < 0.001 (Student’s t-test).

RRx-001 is an effective inhibitor of G6PD and has been used in several clinical trials
for SCLC, including a phase II clinical trial in which sensitization was performed in SCLC
patients with acquired resistance to first-line chemotherapy with the etoposide plus cisplatin
(EP) regimen [27,28]. To explore whether RRx-001 could enhance the cytotoxicity of JQ1 in
SCLC cells, we incubated SCLC cells with RRx-001 and JQ1 at different concentrations and
measured cell viability after 72 h. The experimental results showed that the combined use
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of RRx-001 and JQ1 generated a strong synergistic effect on cell viability in H82, SHP77,
and H526 cells (Figure 5I).

Furthermore, to test the effect of the combination strategy in vivo, subcutaneously
xenografted SCLC in nude mice was established. We then treated these mice with PBS,
JQ1, RRx-001, or a combination of JQ1 with RRx-001 for ten days. Indeed, the outgrowth of
the tumors in the combination treatment group was significantly slower than that in the
RRx-001 or JQ1 only treatment group (Figure 6A). This synergistic effect of the combination
strategy on tumorigenicity was also confirmed by measurements of the total weight or size
of subcutaneous tumors excised from mice 14 days post-injection (Figure 6B,C). Notably,
no animal death occurred during the 2 weeks of drug treatment and the weight of treated
mice remained similar to that of control mice (Supplementary Figure S4G), suggesting that
the combination of RRx-001 and JQ1 is well tolerated. Simultaneously, IHC staining of
mouse tumors showed that combination treatment significantly reduced the expression
levels of Ki67 and KEAP1 in subcutaneous tumor tissue (Figure 6D). In accordance with
our observation, G6PD expression was also increased upon NHW870 treatment in the small
cell lung cancer PDX LX-95 model (Supplementary Figure S4F). These in vivo experimen-
tal results confirmed the JQ1/RRx-001-mediated synergistic effect observed in vitro and
indicated that JQ1-induced G6PD up-regulation might influence the therapeutic efficacy of
BET inhibitors.

Figure 6. Co-targeting BRD4 and G6PD suppresses SCLC in vivo. (A) Tumor volume curves of
H82 xenograft mice treated with RRx-001, JQ1, or a combination of RRx-001 and JQ1. The arrow
represents the time of drug injection. (B) Tumor weights of H82 xenograft mice after 14 days of
drug treatment. (C) Imaging of representative tumors excised at each group’s end of the experiment.
(D) Representative immunohistochemistry images of Ki67, KEAP1, and G6PD on each group. Scale
bar, 50 µm. (E) Model for targeting the BRD4-KEAP1-Nrf2-G6PD axis in SCLC cells. RRx, RRx-001.
* p < 0.05; ** p < 0.01 (Student’s t-test).

4. Discussion

The KEAP1-Nrf2 axis is the master regulator of cellular and organismal defense against
oxidative and electrophilic assaults. The PPP pathway represents the principal cellular
source of NADPH, the major cellular reductant [5]. In theory, the KEAP1-Nrf2 and PPP
pathways might coordinate the regulation of redox homeostasis. However, currently, there
are minimal data on the crosstalk between these two signaling pathways. In this study, the
TCGA database data mining identified that KEAP1 is up-regulated in most cancer types. In
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addition, prognostic analysis based on TCGA expression data demonstrated that the KEAP1
expression level exhibits potential as a prognostic marker in several cancers. Integrative
analysis of different datasets unveiled that KEAP1 expression might be regulated at the
genomic and transcriptional levels. Furthermore, we found that BRD4 expression was
positively correlated with KEAP1 expression and was predicted to be a factor binding
to the KEAP1 promoter in lung cancer. Using SCLC as a model, we demonstrated that
BRD4 associates with the promoter region of KEAP1 and activates its expression. The
accumulation of Nrf2 in the nucleus by KEAP1 down-regulation or inhibition by JQ1 and a
decrease in the BRD4-Nrf2 interaction, led to the enrichment of Nrf2 in the G6PD promoter,
inducing G6PD activation in SCLC. Our investigations identify that BRD4 may regulate the
activity of Nrf2 in both a KEAP1-dependent and -independent manner, providing novel
insight into the regulatory mechanisms of redox homeostasis in SCLC.

Our investigations emphasize the critical roles of the KEAP1-Nrf2 system in cancers.
Higher KEAP1 expression is correlated with BRD4 expression and higher expressions of
both genes are associated with better overall survival in multiple cancer types, suggesting
that tight control of the KEAP1-Nrf2 pathway might be necessary for maintaining redox
homeostasis in cancer cells and cancer cell survival. Although our study only focused on
SCLC, the molecular regulation of KEAP1-Nrf2-G6PD by BRD4 might be beyond SCLC.
Future investigation of this regulatory network in other cancer types might be warranted.

Two significant findings can be summarized as follows (Figure 6E): (I) BRD4 regulates
Nrf2 and its downstream G6PD in a KEAP1-dependent or KEAP1-independent manner. In
the former, BRD4 can directly bind to the promoter of KEAP1 as a transcription factor to
promote the transcription of KEAP1. Up-regulation of KEAP1 facilitates Nrf2 degradation
and blocks the binding of Nrf2 to the G6PD promoter, ultimately leading to the down-
regulation of the PPP pathway. In the latter, BRD4 directly binds to Nrf2 through acetylated
lysine residues and suppresses Nrf2 activity, ultimately impairing the cell’s ability to
respond to oxidative stress. (II) Metabolic remodeling of Nrf2 in response to oxidative
stress is one of the mechanisms contributing to JQ1 resistance in SCLC, but this resistance
can be solved by combining RRx-001 and JQ1.

BETis are currently being actively evaluated in clinical trials for several cancer types.
Concern regarding resistance to BETis has been raised and some researchers have started to
address this issue since resistance to BETis will limit their clinical efficacy. A number of re-
ports have illustrated that activation of the PI3K/AKT pathway [19], or AKT–mTORC1 [32],
is one of the mechanisms of acquired JQ1 resistance. For example, studies have demon-
strated that BETi resistance is mediated by adaptive kinome reprogramming in ovarian
cancer (OC) [33], neuroblastoma [19], or SPOP-mutated prostate cancer [32]. However,
the underlying mechanisms responsible for intrinsic resistance to BET inhibition remain
undetermined. Based on our results, we propose that activation of Nrf2-G6PD might be a
molecular mechanism underlying the intrinsic resistance to BETis. Therefore, we proposed
a new mechanism for intrinsic resistance to BETis and the enhancement of metabolic re-
programming and oxidative stress capacity of tumors in response to BET inhibition, thus
providing a new direction for addressing resistance to BETis. Furthermore, our study also
suggests the feasibility of a novel combination of JQ1/RRx-001 in the clinical treatment of
patients with SCLC to overcome this type of resistance.

G6PD, the core rate-limiting enzyme in the PPP pathway, acts as a gatekeeper of PPP
flux and plays a pivotal role in maintaining redox homeostasis. RRx-001 is a pleiotropic
anticancer agent with activity mediated primarily through increased nitric oxide (NO)
production and G6PD inhibition. In a phase II study called QUADRUPLE THREAT
(NCT02489903), RRx-001 combined with platinum doublet chemotherapy was well toler-
ated. A phase III clinical study, REPLATINUM (NCT03699956), is also underway to evaluate
RRx-001 as third- or further-line treatment for small-cell lung cancer after platinum-based
chemotherapy and checkpoint inhibitor therapy [34]. Studies have also shown that RRx-001
followed by re-challenging with platinum plus etoposide chemotherapy is associated with
promising results in clinical trials. Interestingly, RRx-001 has been shown to target colon
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cancer stem cells and reduce the expression levels of the Wnt pathway components and
target genes, including c-Myc [35]. The authors suggest that RRx-001 should be used to
treat c-Myc over-expressed tumors. Down-regulation of c-Myc by RRx-001 might also
contribute to the synergistic activity by RRx-001-JQ1 in SCLC cells. In that case, RRx-001
not only acted as an inhibitor of G6PD but also inhibited c-Myc expression in combination
with JQ1 in SCLC. Whether RRx-001 modulates c-Myc or c-Myc signaling in SCLC cells
awaits further investigation.

In addition, we found a significant positive correlation between KEAP1 and BRD4
at the mRNA level in most cancer types. This correlation suggests that the regulatory
mechanism of BRD4 on KEAP1 and G6PD may be beyond SCLC and may exist in a variety
of cancers which provides a new basis for overcoming drug resistance to BETis in other
cancer types. Moreover, we speculate that cancer cells with high BRD4 expression may
depend more on the regulatory mechanism described here. Given that BRD4 is frequently
elevated in cancer cells compared to normal cells, co-targeting of BRD4 and the KEAP1-
Nrf2-G6PD axis might not only maximize the clinical efficacy of BET inhibitors but also
cause fewer side effects in patients.

5. Conclusions

In conclusion, we identify a transcriptional regulatory mechanism for KEAP1 and
G6PD and provide a strong rationale for therapies that include Nrf2i or G6PDi combined
with BRD4 inhibitors for SCLC patients in the clinic.
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