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Abstract: Oxidative stress is a phenomenon caused by an imbalance between the production and
accumulation of reactive oxygen species in cells and tissues that eventually leads to the production
of various diseases. Here, we investigated the antioxidant effects of the extract from Sonchus brachy-
otus DC. (SBE) based on the 0.2% oxazolone-induced intestinal oxidative stress model of zebrafish.
Compared to the model group, the treatment group alleviated oxazolone-induced intestinal tissue
damage and reduced the contents of malondialdehyde, reactive oxygen species, IL-1β, and TNF-α
and then increased the contents of superoxide dismutase, glutathione peroxidase, and IL-10. The
16s rDNA gene sequencing findings demonstrated that SBE could increase the relative abundance of
Fusobacteriota, Actinobacteriota, and Firmicutes and decrease the relative abundance of Proteobacteria.
Based on the correlation analysis between the oxidative stress biomarkers and intestinal flora, we
found that the trends of oxidative stress biomarkers were significantly correlated with intestinal
microorganisms, especially at the genus level. The correlations of MDA, IL-1β, and TNF-α were
significantly negative with Shewanella, while SOD, GSH-Px, and IL-10 were significantly positive
with Cetobacterium, Gemmobacter, and Flavobacterium. Consequently, we concluded that the antiox-
idant effect of SBE was realized through the interaction between oxidative stress biomarkers and
gut microbiota.

Keywords: Sonchus brachyotus DC.; extract; oxidative stress; gut microbiota; zebrafish

1. Introduction

It is well known that when intracellular reactive oxygen species (ROS, including O2
•−,

•OH, H2O2, O3, and so on) or reactive nitrogen species (RNS, including NO, ONOO−,
HOONO, and so on) levels exceed the intracellular antioxidant capacity [1,2], it leads to
oxidative stress, in severe cases further causing tissue damage, oxidative damage to DNA,
lipid peroxidation, and oxidation of protein [3–5]. Mild oxidative stress is regulated by the
body’s antioxidant system, including superoxide dismutase (SOD), glutathione peroxidase
(GSH-Px), catalase (CAT), etc., which is the body’s first line of defense against oxidative
stress [6].

Most of the time, the gastrointestinal tract is one of the major sites in living organisms
that has an adequate response to oxidative stress due to the generation of pro-oxidants [7],
whose production is primarily due to the presence of a plethora of food ingredients,
interactions between immune cells, and microbes [1,7]. However, under the production of
exacerbating ROS or RNS, these defenses are inadequate and promote the development of
intestinal pathology [1,8]. Gut microbiota plays many physiological roles in the organism,
including digestion, metabolism, nutrient absorption, vitamin synthesis, prevention of
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pathogen invasion, and immune regulation [9]. Under normal conditions, the intestinal
flora and the host are mutually beneficial and in dynamic equilibrium, but when the
balance is disturbed by the influence of external factors, intestinal damage is caused [10,11].
Numerous studies have proven that natural plants and their extracts could significantly
adjust the dysbiosis of intestinal flora, promote the growth of beneficial bacteria, inhibit
the overgrowth of harmful bacteria, and balance the number of probiotic and pathogenic
bacteria, thus keeping the intestinal environment in a healthy state [12–14].

Sonchus brachyotus DC. is an annual herb of the Sonchus genus in the Compositae
family, which can be found in China, Japan, Mongolia, and Russia’s far east. Sonchus
brachyotus DC. is considered a vegetable and rarely considered to be medicinal, but in fact,
Sonchus brachyotus DC. is often used as a kind of traditional folk herb to clear heat toxins
and stop bleeding and treat acute dysentery, enteritis, and other diseases [15,16]. Although
Sonchus brachyotus DC. is widely used to treat diseases among people, there are only a
few studies and reports on it, especially on its antioxidant effects. A previous study has
shown that the methanol extract of Sonchus brachyotus DC. has the powers of free radical
scavenging and the inhibition of lipid peroxidation [17,18]. Similarly, in our previous
research, we demonstrated the ethanol extract of Sonchus brachyotus DC. (SBE) obtained
with less toxic ethanol as the extraction solvent also has good antioxidant effects, and at
the same time, high-performance liquid chromatography (HPLC) analysis was carried out
on SBE [15]. However, the antioxidant effect and mechanism of SBE in vivo have not been
reported so far.

In this study, we investigated the effects of SBE on oxidative stress biomarkers, in-
testinal flora, and the interaction between oxidative stress biomarkers and intestinal flora
to reveal the antioxidant effect and mechanism of SBE, providing a new reference for
the study of the mechanism of antioxidants and laying a foundation for the research and
development of SBE as a new antioxidant in aquatic products.

2. Materials and Methods
2.1. Chemicals and Reagents

Malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glu-
tathione peroxidase (GSH-Px) assay kits were all purchased from the Beyotime Institute
of Biotechnology (Shanghai, China). The reactive oxygen species (ROS) assay kit was pur-
chased from Nanjing Jiancheng Bioengineering Institute. TRIzol® Reagent was obtained
from Thermo Fisher Scientific. Dimethyl sulfoxide and oxazolone were purchased from
Sigma-Aldrich (Shanghai, China). EasyScript First-Strand cDNA Synthesis SuperMix was
purchased from TransGen Biotech (Beijing, China). Power SYBR Green PCR Master Mix
kit was purchased from Abcam (Cambridge, UK). Other chemical reagents used were
analytically pure.

2.2. Extract Preparation

The aerial parts of Sonchus brachyotus DC. were collected from Binzhou City, Shandong
Province, China in 2020. At that time, all samples were shaded dry. All dried samples
were gained and then passed through a 60-mesh sieve and then ultrasonically extracted
according to the conditions of 75% (v/v) ethanol/water solution, 1:30 (m/v) material to
liquid, and 700 W ultrasonic power for 30 min. Subsequently, after centrifugation at
5000× g for 10 min, the eluate was evaporated by rotary evaporation at 40 ± 2 ◦C to make
a powder out of a liquid plant extract using vacuum freeze-drying technology, which was
stored at 4 ◦C [19].

2.3. Animal Experiments

Adult wild-type zebrafish were obtained from a commercial dealer (Beijing, China).
Twenty zebrafish were housed in 25 L tanks at 28 ◦C (14/10-h light/dark cycle) and fed a
combination of shrimp supplemented with SBE 3 times a day. All zebrafish were treated
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in compliance with the Ethical Committee for Animal Research of the Institute of Feed
Research of CAAS on Experimental Animals (Assurance NO. IFR-CAAS-20210825).

To establish the intestinal oxidative stress model of zebrafish [20] (Table 1), adult
zebrafish were randomly divided into 4 groups (30 fish per group, Table 1): control group
(CON), ethanol group (EtOH), model group (0.2% oxazolone, Oxa), and treatment group
(SBE). The CON group was injected with 0.9% normal saline. The Oxa group was admin-
istered an anal injection of 0.2% oxazolone dissolved in 50% ethanol on days 1, 3, and 5,
and the EtOH group was injected with 50% ethanol to exclude the effect of ethanol on
the oxazolone-induced oxidative stress model. The injection volume for all groups was
0.6 µL/100 mg body weight [20] after 24 h of fasting. Before injection, the belly of the
zebrafish was gently squeezed to find the anal opening.

Table 1. Oxazolone-induced intestinal oxidative stress in adult zebrafish.

Group 0.9%
Normal Saline

50%
Ethanol

0.2%
Oxazolone

0.3%
SBE

Quantity
per Group

CON + − − − 30
EtOH − + − − 30
Oxa − + + − 30
SBE − + + + 30

“+” means “added” to the group; “−” means “not added” to the group.

After being injected for 24 h, the zebrafish were treated by feeding shrimp supple-
mented with 0.3% SBE for 14 days. Then, zebrafish were executed by the hypothermal
shock method. Subsequently, the foregut and midgut parts of the zebrafish were collected
for biomarker detection and approximately 0.5 cm of the exact location of the hindgut was
taken for histological analysis. At the same time, fresh feces samples were taken from the
bowel of all zebrafish and then transferred into 2 mL sterile EP tubes. These tubes were
rapidly snap-frozen in liquid nitrogen and stored at −80 ◦C.

2.4. Measurement of Oxidative Stress Biochemical Markers

ROS, MDA, SOD, CAT, and GSH-Px levels were determined by assay kit. All detection
methods were performed according to the kit instructions.

2.5. Histological Analysis

Zebrafish intestinal tracts were harvested, washed, and fixed with formalin and em-
bedded in 4% paraformaldehyde. Intestinal sections (5 µm) were stained with hematoxylin
and eosin (H&E) [21]. At least 3 zebrafish were used for this experiment.

2.6. Detection of Primary Active Substances

The polysaccharide was analyzed employing the method described by Yang et al.
(2018) [22]. The results were expressed in mg of glucose equivalents/mg of extract. The
polyphenol was analyzed employing the method described by Ren et al. (2018) [23]. The
results were expressed in mg of gallic acid equivalents/mg of extract. The alkaloids were
analyzed according to the method proposed by Pan et al. (2018) [24]. The results were
expressed as mg of ammothamnine equivalents/mg of extract. The assays were performed
in triplicate. The final results are converted to percentages and displayed in the table.

2.7. RNA Isolation and Real-Time Polymerase Chain Reaction

Intestinal tissues were ground with liquid nitrogen and then the total RNA was
extracted with Trizol regent. Subsequently, RNA was isolated using the EasyScript First-
Strand cDNA Synthesis SuperMix kit; 1 µg RNA was retroactively transcribed into cDNA
and then used for a subsequent real-time quantitative polymerase chain reaction. The
household gene of β-actin was used. Real-time PCR was performed for interleukin (IL)-1β,
tumor necrosis factor (TNF)-α, and interleukin (IL)-1β. The relative expression levels of
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different cytokines were determined by4Ct method. Design of Rt-qPCR primer sequences
using the NCBI website and Primer 5 and the primer sequences of Rt-qPCR are shown in
Table 2.

Table 2. Sequences of RT—qPCR primers.

Gene Primer Sequence (5′-3′)

IL-10
F TGCGGGCAATATGAAGTC
R TTCGCCATGAGCATGTCC

IL-1β
F AGGGCTTTCCTTTAAGACTG
R ATATCCCGCTTGAGTTCC

TNF-α
F GGCGCTTTTGGATGTT
R TTGCCCTGGGTCTTATG

β-actin F ACCGCTGCCTCTTCTT
R GCAATGCCAGGGTACA

2.8. 16s rDNA Gene Sequencing

Collection of bacterial DNA from intestinal content, sequencing of PCR amplicons,
and gene analysis were all performed by Biomarker Technologies Co., Ltd. (Beijing,
China). Based on the PacBio sequencing platform, the marker genes were sequenced
by single-molecule real-time sequencing (SMRT Cell) method, followed by CCS (circular
consensus sequencing) sequence filtering to obtain Optimization-CCS for OTUs (oper-
ational taxonomic units) clustering, species annotation, and abundance analysis. Spe-
cific primers with barcodes were synthesized based on 16S full-length primers 27F (5′-
AGRGTTTGATYNTGGCTCAG-3′) and 1492R (5′-TASGGHTACCTTGTTASGACTT-3′),
PCR amplification was performed and the products were purified, quantified, and homog-
enized to form a sequencing library (SMRT Bell), and the library was first quality-checked
and sequenced by PacBio Sequel. Alpha diversity, beta diversity, and significant species
difference analysis, etc. at the phylum and genus levels were analyzed to explore the
differences among samples [25,26].

2.9. Data and Statistical Analysis

All data were represented as mean ± standard error (SD). Statistical significance
was defined as p < 0.05, p < 0.01. One-way analysis of variance (ANOVA) was used to
test each variable for differences among three groups with GraphPad Prism 9. Micro-
bial diversity analysis was performed using BMKCloud (www.biocloud.net accessed on
1 December 2022). Correlation analysis was performed using the Pearson algorithm and
significant correlations were calculated at p ≤ 0.05.

3. Results
3.1. Oxazolone-Induced Intestinal Oxidative Stress in Zebrafish

To elucidate the potential antioxidant effects of SBE on intestinal oxidative stress, we
constructed a model of oxazolone-induced intestinal oxidative stress in adult zebrafish
(Table 1). As we all know, ROS and MDA are the main biomarkers of oxidative stress. When
oxazolone was continuously injected for 1, 3, and 5 days, compared to the CON group, the
ROS and MDA contents were significantly elevated in the intestine of zebrafish exposed to
oxazolone for 1 day and 5 days (Figure 1). In addition, in terms of ROS levels, the EtOH
group was higher than the CON group but was not significantly elevated compared to
the Oxa group. There was no significant difference in MDA levels between the CON and
EtOH groups. Therefore, we excluded the influence of ethanol on the oxazolone-induced
oxidative stress model. Considering all together, we selected 0.2% oxazolone-induced
intestinal oxidative stress in zebrafish for 1 day as the candidate experimental model.

www.biocloud.net
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Figure 1. Changes in ROS content and MDA content caused by oxazolone injection time. The values
are expressed as the mean ± SD. (n = 6 per group). Statistical differences between groups during the
indicated time course were obtained according to repeated-measurement ANOVA (compared with
the CON group, # p < 0.05, ## p < 0.01).

3.2. Antioxidant Effects of SBE and Main Active Substances
3.2.1. Effects of SBE on Intestinal Tissue Morphology

We used H&E to monitor the histological alterations in the zebrafish gut (Figure 2).
After exposure to oxazolone, acute enteritis of the zebrafish intestine was induced, accompa-
nied by loss of intestinal villi and exposure of the muscular layer. Moreover, degeneration,
necrosis, and detachment of mucosal epithelial cells could be observed, and a large number
of neutrophilic infiltrates were noted in the lamina propria and muscularis of the mucosa.
The intestinal inflammation was resolved by SBE treatment. Results showed that in the
SBE group, there was a more intact mucosal epithelium, a decrease in goblet cells, necrosis
and breakage of individual intestinal villi, and occasional neutrophilic infiltration in the
lamina propria of the mucosa. Compared to the Oxa group, the SBE group reduced the
histopathological score (an indicator of the severity of enteritis). No histological changes
were observed in the CON group.
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Figure 2. Effects of SBE on the intestinal tissue of zebrafish. Representative hematoxylin and eosin
(H&E)-stained intestinal sections and semiquantitative scoring showed tissue damage. The values
are expressed as the mean ± SD. (n = 3). The thin black arrows represent degeneration, necrosis, and
detachment of mucosal epithelial cells. The hollow arrows represent the exposed muscle layer. The
folded arrow represents neutrophil infiltration. Thick black arrows represent villi breakage. Groups
with different letters statistically differ (compared with the CON group, # p < 0.05, ## p < 0.01).

3.2.2. Effects of SBE on Biomarkers of Oxidative Stress

ROS and MDA contents were detected in the dissected intestinal tissues to determine
the protective impact of SBE against intestinal oxidative stress carried on by oxazolone
exposure. When compared to the CON group, the level of ROS and MDA were relatively
high after exposure to oxazolone. SBE treatment effectively decreased the ROS and MDA
contents as compared to the Oxa group (Figure 3A,B). For determining the antioxidant
capacity of SBE against oxidative stress in the intestine, this was measured by examining
the intestinal antioxidant enzyme activity (Figure 3C–E). Compared to the Oxa group, the
activity of SOD and GSH-Px significantly increased by 56.36% and 52.47% in the SBE group,
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respectively. While the CAT enzyme activity in the SBE group declined below the level of
the control group, it rose in the Oxa group to surpass that of the CON group. According to
the findings (Figures 2 and 3), SBE could successfully lessen the severity of acute oxidative
stress in zebrafish, which means the positive impact of SBE on oxazolone-induced intestinal
oxidative stress.
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Figure 3. Effects of SBE on the oxidative stress biomarkers. Zebrafish intestines were collected, and
the ROS relative intensity of fluorescence (A), the MDA contents (B), and the enzyme activities of
SOD (C), GSH-Px (D), and CAT (E) are shown. Fold changes are expressed as means ± SD (n = 30 per
group). Groups with different letters statistically differ (compared with the CON group, # p < 0.05,
## p < 0.01; compared with the Oxa group, * p < 0.05, ** p < 0.01).

3.2.3. Main Active Substances of SBE

When it was determined that SBE has antioxidant effects in vivo, we further investi-
gated which types of main active substances are principally exerting an antioxidant effect
in the SBE. We measured the content of polysaccharides, alkaloids, and polyphenols in
SBE. The results are shown in Table 3; the main active substances of SBE were polysac-
charides, alkaloids, and polyphenols, the contents of which were 50.14%, 20.03%, and
7.27%, respectively.

Table 3. Main active substances in SBE.

Main Active Substances Contents (%)

Polysaccharides 50.14%
Alkaloids 20.03%

Polyphenols 7.27%

3.3. Effects of SBE on Intestinal Inflammatory Factors under Oxidative Stress

An inflammatory reaction can be triggered by oxidative stress, which is a component of
the inflammatory response. IL-1β and TNF-α expression in the intestinal tract of zebrafish
exposed to oxazolone were considerably higher than in control animals (Figure 4A,B). We
also observed decreased expression of IL-1β and TNF-α in zebrafish treated with SBE.
Furthermore, oxazolone injection did not result in the expression of IL-10, which was
unique from the SBE-fed zebrafish group’s behavior (Figure 4C).
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3.4. Effects of SBE on Intestinal Microbiota in Zebrafish

We performed 16S rDNA gene sequencing to investigate whether SBE treatment alters
the composition of gut microbiota in zebrafish. The zebrafish injected with oxazolone and
treated with SBE indicated variation in the intestinal microbial population. As for the CON,
Oxa, and SBE groups, the distinct OTU counts were 9, 30, and 30, respectively (Figure 5A).
The Shannon diversity index fell by 19% and rose by 28% in the Oxa and SBE groups,
respectively, compared to the CON group, showing that exposure to oxazolone reduced
and SBE enhanced the community variety of the zebrafish gut flora (Figure 5B). The PCoA
analysis further indicated a distinct separation of the gut microbiota at the family level
between the Oxa group and the SBE groups. (Figure 5C). The intestinal flora of zebrafish
were dominated by the Proteobacteria and Firmicutes (Figure 5D) in the CON, Oxa, and SBE
groups. In comparison with the CON group, the Proteobacteria was significantly reduced
(p < 0.05), while the Firmicutes showed an increasing trend (no significance), in the SBE
group. It was found that the SBE group significantly enhanced the relative abundance
of Fusobacteriota and Bacteroidota, which were compared with the CON group. It was
further found at the genus level that the Oxa group increased the abundance of Kinneretia,
Edwardsiella, and Gemmobacter as well as decreased the abundance of Aeromonas compared
to the CON and SBE groups.
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the genus level (E).
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3.5. Effect of the Association between the Biomarkers of Oxidative Stress and Intestinal Microbiota
in Zebrafish

To predict a relationship between the biomarkers of oxidative stress and the diversity
of gut microbial, an additional correlation analysis was carried out (Figure 6). When the
relationships between oxidative stress biomarkers and intestinal microbial abundance
were analyzed at the phylum level (Figure 6A), changes in MDA content were negatively
connected to Actinobacteriota that exhibited a declining tendency after Oxa injection, and
a positive significant correlation was found between GSH-Px and Plancromucetota and
Fusobacteriota (Figure 6A). The abundance of intestinal flora at the phylum level with signifi-
cant correlation with variation in biomarkers is displayed as histograms (Figure 6B–D). The
SBE group increased the abundance of Actinobacteriota, Fusobacteriota, and Plancromucetota,
particularly Fusobacteriota.
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Figure 6. The correlation analysis between the contents of oxidative stress biomarkers and intestinal
flora. The variation of oxidative stress biomarkers with relation to the intestinal microbiota. Cor-
relation between biomarkers and intestinal microbiota at the phylum level (A). Histogram about
the abundance of microbe that correlated with biomarkers contents at the phylum level (B–D). Cor-
relation between biomarkers and intestinal microbiota at the genus level (E). Histogram about the
abundance of microbe that correlated with biomarkers contents at the genus level (F–I). Mechanistic
diagram of SBE regulating oxidative stress biomarkers via intestinal flora in zebrafish (J). A redder
color indicates a positive correlation, while a bluer color indicates a negative correlation (* p < 0.05,
** p < 0.01. n ≥ 3/per group).

Then, in the further analysis of the genus level, it was found that the content of MDA
and ROS were negatively correlated with the abundance of Shinella, Aeromonas, Shewanella,
and Rhizobium, particularly Shewanella, and were considerably reduced (Figure 6E,F). Since
SOD and GSH were significantly correlated with a variety of different bacteria as op-
posed to CAT, only the histogram of the abundance of bacteria whose abundance varied
significantly between groups is shown (Figure 6E,G–I). The abundance of Shewanella sig-
nificantly decreased after oxazolone treatment. However, the abundance of Cetobacterium,
Flavobacterium, and Gemmobacter significantly increased in the SBE group (Figure 6J).

The correlation analysis between the inflammation factors and intestinal microbial
abundance revealed that only IL-10 showed a significant positive correlation with Plancro-
mucetota and Fusobacteriota at the phylum level (Figure 7A–C), which was consistent with
the situation of GSH-Px (Figure 6C,D). At the genus level (Figure 7D), the abundance of
genera with significant correlation with cytokines was analyzed, which was found to be
significant between groups in terms of the abundance of Shewanella, Cetobacterium, Gem-
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mobacter, and Flavobacterium. The results in Figure 7 show that SBE treatment caused an
increase in the abundance of Cetobacterium, Gemmobacter, and Flavobacterium and signifi-
cantly regulated the expression of IL-10 for the improvement of inflammation (Figure 7I).
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4. Discussion

Zebrafish have been widely used as a relatively inexpensive in vivo model for dis-
covering the effects of environmental chemical exposures on various biological processes
directly related to health [27,28]. At the same time, the host provides a nutrient-rich en-
vironment for its microbes, which serves crucial functions in host health, growth, aiding
digestive functions, and protecting against intestinal infections [29]. There are three forms
microbiota found in fish intestinal microflora: facultative anaerobic, obligately anaerobic,
and aerobic [30]. So, using fully developed zebrafish as a pre-screen model to guide studies
in aquaculture species may contribute to elucidating mechanisms between feed and host-
microbe interactions [31]. The zebrafish is therefore a useful and powerful model to study
host-bacteria interactions in detail [32]. The study of antioxidant activity of SBE in vitro
was apparent in our previous study [15], while the antioxidant effect and mechanism of
SBE in vivo are unclear. Therefore, we evaluated the antioxidant effect and mechanism
of SBE against oxazolone-induced intestinal oxidative stress in terms of the interaction
between oxidative stress biomarkers and gut microbiota.

As we all know, ROS [33,34] and MDA [34,35] are biomarkers of oxidative stress.
Our research showed that that oxazolone could successfully cause intestinal damage and
exhibit oxidative stress in zebrafish (Figures 1 and 2). Based on the oxazolone-induced
intestinal oxidative stress model in zebrafish, the regulatory effect of SBE on oxidative
stress biomarkers was evaluated. In contrast, the SBE group significantly reduced the
levels of ROS and MDA compared to the Oxa group (Figure 3A,B). In addition, SOD,
CAT, and GSH-Px are the major antioxidant enzymes that detoxify free radicals as the
first line of antioxidant defense and are important enzymes in the process of resisting
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oxidative damage [36,37]. In the SBE group, CAT levels were decreased while SOD and
GSH-Px levels were significantly increased (Figure 3C–E). Minor oxidative stress can induce
antioxidant enzyme activity, whereas severe oxidative stress can inhibit enzyme activity due
to oxidative damage and impaired compensatory mechanisms [38]. CAT is an enzyme from
the antioxidant system that is responsible for the scavenging of H2O2, and the induction of
CAT activity indicates a higher production of H2O2 in organisms [39,40]. In UV toxicity
studies [41] on zebrafish embryos, it was found that oxidative stress conditions did not
induce changes in CAT activity in zebrafish, while Campos et al. found that exposure
to 4-MBC inhibited CAT activity, and our results showed the same inhibition of CAT
enzyme activity.

A large number of studies have shown that some active ingredients in natural plants
have significant antioxidant effects [42], including small-molecule compounds such as
polyphenols, vitamins, saponins, alkaloids, and large-molecule products such as polysac-
charides and peptides [42–44], which, having in vitro reduction and DPPH scavenging
abilities, and so on, enhance antioxidant enzyme activity and decrease peroxidation pro-
cesses in in vivo antioxidant capacity [45,46]. According to the study of structure-function
relationships [42,47], the phenolic hydroxyl groups in the structure of polyphenols can act
as hydrogen donors to scavenge free radicals, and their reactivity is closely related to the
number and position of phenolic hydroxyl groups such that the adjacent phenolic hydroxyl
structure easily reacts with free radicals to form quinone, so most polyphenolic compounds
have good antioxidant effects in vitro and in vivo. SBE contains many compounds such
as polysaccharides, polyphenols, and alkaloids, which have shown antioxidant effects
in vitro and in vivo. Presumably, it is the large content of polysaccharides, polyphenols,
and alkaloids from SBE that are responsible for its obvious antioxidant activity.

Inflammation triggered by inflammatory cytokines further accelerates oxidative
stress [7,48]. In recent years, there is evidence that oxidative stress plays a crucial role
in the development of inflammation [49]. Oxidative stress induced by ROS production
stimulates the initial inflammatory response through positive feedback, leading to addi-
tional ROS production and in turn further tissue damage [50]. Under normal conditions,
the balance between proinflammatory (TNF-α, IL-1, IL-6, IL-8, IL-17, and IL-23) and pri-
mary anti-inflammatory (IL-5, IL-10, IL-11, and TGF-β) cytokines is tightly controlled in
the GI mucosa [34], but in oxidative stress, IL-1β and TNF-α horizontally rise [51–53].
In our study, the increased expression of TNF-α and IL-1β demonstrated the enteritis
of zebrafish exposed to oxazolone was caused by oxidative stress, and the addition of
SBE reduced the relative mRNA expression of inflammatory factors (Figure 4A,B), and
some data showed that the expression of IL-10 was enhanced under the effect of antioxi-
dants [37,54,55]. Similarly, in our study, the expression of IL-10 was significantly increased
in the SBE group (Figure 4C), indicating that oxazolone-induced enteritis in zebrafish
models could be alleviated by suppressing oxidative stress, lowering the expression of pro-
inflammatory cytokines, and upregulating the expression of anti-inflammatory cytokines
(Figures 2 and 4).

It has been reported that taxa present in the core gut microbiota of adult zebrafish
are conserved and dominated by members of the phylum Proteobacteria, followed by
Firmicutes or Fusobacteria. In addition, Actinobacteria and Bacteroidetes are also present but
as subdominant populations [28,56–58]. According to the literature [37,55,59–61], this
may lead to an increase in the relative abundance of Proteobacteria and Bacteroidetes and a
decrease in the relative abundance of the Fusobacteria and Firmicutes in a zebrafish oxidative
stress model. In our study, Proteobacteria and Firmicutes were the dominant bacteria in the
CON and Oxa groups, while the abundance of Firmicutes, Actinobacteria, and Fusobacteria
increased and proteobacteria decreased in the SBE group (Figure 5).

At present, the analysis of intestinal microbiota mainly focuses on the changes in
flora abundance, but the interaction between gut microbiota and biomarkers of oxidative
stress is unclear. Therefore, in this work, we conducted a correlation analysis between the
abundance of gut microbiota and the content of oxidative stress biomarkers and selected
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the microbiota not only with significant correlations but also with significant interactions
between groups for discussion and analysis (Figures 6 and 7). In the correlation analysis
between oxidative stress biomarkers and intestinal microorganisms, the phylum Actinobac-
teria and genus Shewanella have significant negative correlations with MDA content. At
the phylum level, compared with the CON group, oxazolone injection caused a decrease
in the abundance of Actinobacteria, while SBE treatment increased the abundance of Acti-
nobacteria like the study [62] about the addition of stabilized fermentation products of
commensal Cetobacterium somerae XMX-1 to the diets of zebrafish. At the genus level, the
Oxa group reduced the abundance of Shewanella, and SBE treatment started to recover the
Shewanella abundance, which may be related to the protease encoded by the sigma factor in
Shewanella [63,64]; Shewanella strains have been shown to act as probiotics in fish farming to
protect eukaryotes from pathogens [65].

Defining the contribution of host genetic and cellular factors to intestinal microbiome
assembly is imperative not only to understand the gut-microbe interactions that are essen-
tial to the maintenance of intestinal homeostasis but also to provide insight into disorders
associated with microbiota alterations, including cancer, diabetes, oxidative stress, and
inflammatory disease [28,66,67]. When antioxidant enzyme levels were correlated with
gut microorganisms, GSH-Px was found to have a significant positive correlation with
Fusobacteriota and Planctomycetota, with the SBE group significantly increasing the abun-
dance of Fusobacteriota at the phylum level. Species abundance analysis at the genus level
associated with either IL-10 or GSH-Px showed significant differences between groups
for Shewanella, Cetobacterium, Gemmobacter, and Flavobacterium were significant between
groups. Cetobacterium is an acetate producer, belongs to Fusobacteria, and contributed to
promoting glucose utilization, regulation of glucose homeostasis, and the improvement
of intestinal health in zebrafish [68,69]. Zhang et al. found that the nuclease treatment
enhances the probiotic effect of Bacillus velezensis T23 performance in reducing intestinal
injury and inflammation and significantly increasing the abundance of Cetobacterium of
the phylum Fusobacteriota. Gemmobacter is considered to contribute to host nutrition and
health by providing complementary enzymatic activities and synthesizing vitamins [70,71].
Gemmobacter is strongly associated with amino acid metabolites, including gabapentin and
D-serine [71]. Flavobacterium is closely related to disease and inflammation in fish [72],
and the study of the antioxidant activity of Spirulina platensis polysaccharide showed a
significant increase in the abundance of Flavobacterium [73]. At the same time, we found that
SBE group significantly caused an increase in the abundance of Shewanella, Cetobacterium,
Gemmobacter, and Flavobacterium compared with the Oxa group (Figures 6 and 7). So, we
concluded that SBE regulates oxidative stress biomarkers by playing an anti-oxidative
stress role via Shewanella, Cetobacterium, Gemmobacter, and Flavobacterium.

5. Conclusions

In summary, we found that SBE significantly reduced oxazolone-induced intestinal
oxidative stress and restored tissue damage in zebrafish. It was found that SBE significantly
increased the abundance of Fusobacterium, Firmicutes, and Actinobacteriota while decreasing
the level of Proteobacteria, suggesting that the SBE could positively influence the microbial
populations as well as the gut microenvironment in contrast to oxazolone. The most impor-
tant thing is that there was a significant interaction between oxidative stress biomarkers
and flora abundance at the genus level in explaining the mechanism of the antioxidant
effect of SBE. Oxazolone reduced the quantity of the Shewanella species, which in turn
increased MDA levels and dramatically increased the production of IL-1β and TNF-α.
We would venture to speculate that a decreased abundance of Shewanella may indicate
oxidative-stress-induced peroxidation and inflammation, and we demonstrated for the first
time that SBE is beneficial to increasing the abundance of Cetobacterium, Gemmobacter, and
Flavobacterium in the oxazolone-induced oxidative stress model to affect the level of GSH-Px,
SOD, and IL-10 (which may be related to genes or metabolites of the gut microbes) to prove
the antioxidative function of SBE. Therefore, we concluded that the antioxidant effects
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of SBE were exhibited through the interaction between oxidative stress biomarkers and
gut microbiota, providing a new reference for the study of the mechanism of antioxidants
and laying a foundation for the research and development of SBE as a new antioxidant in
aquatic products.
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