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Abstract: In recent decades, natural plant-based foods have been increasingly used to improve human
health due to unhealthy modern dietary patterns, such as the consumption of foods high in sugar and
fat. Many indigenous species have been used by Aboriginal peoples for their food and therapeutic
properties. Thus, it is important to understand the health-enhancing bioactive profile of Australian
indigenous species. The Proteaceae family, such as the genera of Protea, Macadamia, and Grevillea, have
been commercially used in the horticulture and food industries. Researchers have reported some
findings about Persoonia species, one of the genera in the Proteaceae family. The aim of this review
was to provide an overview of the family Proteaceae and the genus Persoonia, including distribution,
traditional and commercial uses, phytochemicals, bioactive properties, potential opportunities, and
challenges. In this review, bioactive compounds and their properties related to the health benefits of
the Proteaceae family, particularly the Persoonia genus, were reviewed for potential applications in
the food industry.

Keywords: Proteaceae; indigenous fruits; phytochemicals; bioactive properties; functional ingredients

1. Introduction

The use of traditional food has been an important trade for thousands of years and
the value addition to edible plants harvested from the land of Australian Aboriginal
communities is one of the potential enterprise opportunities [1,2]. Due to urbanization and
environmental challenges, traditional food has been used nationally and internationally
for food security and diet diversity [3]. Modern dietary patterns (or “Western diets”) are
often highly processed, high in fat, unsaturated fatty acids, and sugar, and low in essential
micronutrients and fibre, and contribute to several diet-related diseases, such as coronary
heart disease, high blood pressure, and diabetes. Whereas traditional (plant-based) foods
are usually high in protein, fibre, and essential micronutrients [4]. Thus, natural plant-based
products have positive impacts and become very vital to human health [5]. For example,
the high vitamin C content of the Kakadu plum (Terminalia ferdinandiana), the bush tomato
(Solanum centrale) with high carbohydrate levels, Davidson’s plum (Davidsonia pruriens)
with a high vitamin A content, and the quandong (Santalum acuminatum) with high folates,
are four of the most popular native fruits commercialized in the Australian market [6].

The Proteaceae family, which occurred in Gondwana over 100 million years ago [7],
one of the largest flowering plant families, comprises more than 80 genera and 1800 species
recorded in the world [8]. The Proteaceae family is predominantly distributed in the
southern hemisphere and approximately 45 genera and 1100 species are diverse in Australia,
while 37 genera are native to Australia [9]. The name Proteaceae originated from the Greek
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sea god, Proteus, and was named by Carl Linnaeus in 1767 [10]. The first monograph on
the family Proteaceae was published by Robert Brown in 1810 and it was classified into two
subfamilies based on the 38 genera found by Weston in 1995 [11]. Then, Peter Weston finally
revised the subfamilies into five groups: Persoonioideae (5 genera), Bellendenoideae (1 genus),
Grevilleoideae (47 genera), Proteoideae (25 genera), Symphionematoideae (2 genera) [12]. Plants
from the Proteaceae family are shrubs or trees from 0.2 to 40 m in height with a variety of
leaves, often leathery, rarely fleshy, spinescent, or toothed. The venation of the plants is
usually brochidodromous, pinnate, palmate, or parallel [7]. The plants usually are bisexual,
whose flower parts are actinomorphic to strongly zygomorphic. Proteaceae plants in many
taxa are self-pollinated flowers, contributing to a low flower-to-fruit ratio due to inbreeding
depression. In particular, a few plants are sterile and have natural vegetative propagation,
such as Lomatia tasmanica and Hakea pulvinifera. Inflorescences may be compound or simple,
often forming racemes. Fruits of the family Proteaceae are diversified into the dehiscent or
leathery follicle, indehiscent drupe or falsely drupe, and developed by solitary carpel [7].

The Persoonia genus, belonging to the family Proteaceae, comprises about 100 species
that are endemic to Australia [13]. Persoonia spp. are commonly described as Geebung,
which originated from the Aboriginal term ‘jibbong’ [14]. They are insect-pollinated shrubs
or small trees ranging from 0.2 to 25 m in height [15,16]. Persoonia spp. have diverse leaves
including fine, round, elliptical, lanceolate, linear, grass-like, finely ribbed, pungent, and
pine-like [15]. Anthers and tepals vary in colour from bright or greenish yellow to white
with auxotelic or anauxotelic inflorescences [15]. The fruit is green, purple, or black in
colour [15]. The flowering and fruiting are continuous throughout the year but with poor
propagation by human attempts (as low as 0.01% in terms of fruit-to-flower ratio) due to
the ability of complex dormancy mechanisms [15–17]. Persoonia spp. are prostrate or shrubs
to small trees with light green single leaves, smooth bark and yellow flowers arranged
singly or in a raceme, which is a drupe, up to 0.1–25 m high [18]. Most species are grown in
fire-prone areas of eastern Australia, which contributes to the poor propagation success
of Persoonia spp. [16]. Rare Persoonia spp. seem to receive few pollinators compared with
common species [19]. Thus, 15 Persoonia species have been conserved and documented as
vulnerable, critically endangered, or extinct under the Biodiversity Conservation Act of
2016 and the Environment Protection and Biodiversity Conservation Act of 1999 (EPBC
Act) [20] and all of them are distributed in the NSW region [19,21].

Persoonia spp. is one of the popular food sources consumed by Australian Aboriginal
people. The fruit, seed, and kernel are edible [22,23]. Persoonia spp. has shown potential
applications in bactericidal treatment for a range of maladies [24–27]. A few studies have
reported antimicrobial activities in the genus Persoonia. Persoonia falcata contained saponins and
tannins used in the treatment of gastrointestinal disorders, colds/flu and eye disorders [28]. P.
juniperina and P. pinifolia exhibited high inhibitory effects against Gram-positive and Gram-
negative bacteria, respectively [25]. Therefore, the genus Persoonia is one of the traditional
plants that have potential applications in the nutraceutical or food industry.

Comprehensively understanding the potential values of indigenous Australian plants
is important for people to develop functional food products. “Functional foods” are foods
that have unique properties that provide additional physiological benefits [29]. However,
the genus Persoonia has been less reviewed and reported on in the literature. Therefore,
Persoonia spp. should be studied as a native plant of interest. This can provide a better
understanding of its bioactive properties and potential health benefits for the Australian
Aboriginal communities, as well as for the functional food industry and can improve food
security. This review aimed to provide knowledge on the distribution, traditional and
commercial use, phytochemicals (including their distribution on the plant), and bioactive
properties of the Proteaceae family and the genus Persoonia.

2. Methodology

To evaluate the distribution, traditional and commercial use, phytochemicals (includ-
ing their distribution on the plant), and bioactive properties of the Proteaceae family and the
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genus Persoonia, this review compiled information from the literature and was conducted
utilizing several electronic databases including the Web of Science, PubMed, Wiley online
library and Google Scholar databases. Search terms such as bioactive, biological activities,
bioactivities, bioactive properties, phytochemistry, Persoonia, and Proteaceae, etc. were
used to perform the literature search.

3. Distribution

Proteaceae is a large family with a wide distribution. It started on the superconti-
nent of Gondwana and this family diversified successfully before the fragmentation of
Gondwana [7]. There is evidence of fossil pollen history found in Gondwana regarding
the origination of Proteaceae [7,30]. A large amount of proteaceous pollen was found in
the Cretaceous coalmine of the South Island of New Zealand [30]. The family Proteaceae is
most diverse in Australia, Africa, and South America, followed by Central America, Asia,
India, Fiji, Indonesia, Japan, New Zealand, New Caledonia, Sri Lanka, Vanuatu, Micronesia,
Madagascar, Solomon Islands, and Papua New Guinea [31]. The subfamily Persoonioideae
is only distributed in Australia, New Zealand, and New Caledonia including five genera,
of which Persoonia, Acidonia, and Placospermum are in Australia, one (Garnieria) in New
Caledonia, and one (Toronia) in New Zealand [15,32].

The Persoonia genus is mainly distributed in the subtropical to temperate regions of
northern, south-eastern, and southwestern Australia [16]. The genus Persoonia shows great
diversity in southwestern and southeastern Australia. The majority of Persoonia species
are grown in sclerophyll woodlands and shrublands, while few are in rainforests [33].
Except for P. pertinax, it is only distributed in the Great Victoria Desert region of Western
Australia [15]. There are 99 species grown in Australia, of which 49 are native to New
South Wales, 43 to Western Australia, 19 to Queensland, 11 to Victoria, 4 to Tasmania, 1 to
the Northern Territory, and 1 to Southern Australia, respectively. P. linearis distributed in
southeastern Australia is the most abundant species in the genus Persoonia, followed by
P. levis, P. juniperina, P. falcata, P. glaucescens, P. confertiflora, P. nutans, and P. pinifolia [34].
The distribution of P. falcata is the broadest across over 3000 km in the regions of northern
Australia. This could be due to less rainfall in the southern regions, which leads to a
difficulty in propagation and growth [32].

4. Traditional and Commercial Use

The family Proteaceae has provided potential economic value and contributed to a range
of products in the food industry, pharmaceutical industry, horticultural industry, and material
industry. Table 1 summarizes the traditional and commercial use of the family Proteaceae.

The fruits, seeds, nuts, and flowers of several Proteaceae species have provided food
security. In particular, the fact that over 50,000 tons of Macadamia nuts from Australia were
produced and exported in 2020 plays an important role in the global nut industry [35]. This
is a 1.5-fold increase over the corresponding value for 2014 and a 30-fold increase compared
with the value in 1987 [11]. Nevertheless, only Macadamia integrifolia and Macadamia tetra-
phylla can be edible as food to provide nutrients and potential pharmacological chemicals,
while Macadamia jansenii and Macadamia ternifolia contain the toxic cyanogenic glycosides,
which cannot be consumed by people [11,36,37]. Proteaceae species also developed many
medicinal applications and have traditionally been used by Aboriginal people, such as for
eye infections, sore throats, skin infections, gastroenteritis, respiratory infections, kidney
problems, liver diseases, and inflammation treatments (Table 1). For example, the leaves
and flowers of Oreocallis grandiflora contain flavonoids and have the potential to be used in
anti-inflammatory and diabetes treatments [38]. Many Proteaceae species can treat skin
infections or be used as skin-lightening products as listed in Table 1. However, some
species are harmful to people. For instance, people who have an allergy to resorcinol
cannot directly be in contact with the flowers or trees of the genus Greville, which could
lead to allergic contact dermatitis [39]. Cultivation is another commercial use in the family
Proteaceae. Persoonia longifolia has been used in cultivation in the UK since 1850 but rarely
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in Australia [40]. Protea, Leucospermum, and Leucadendron are the three major cultivars in the
Proteaceae family, whilst other Proteaceae species also have applicability for ornamental
uses. For instance, the genus Banksia has been commercialized as cut and dried flowers
and the genus Grevillea can be used as a landscape plant due to its characteristic of drought
tolerance [41]. As most Proteaceae species are shrubs or trees, they are a good source of
timber, contributing to the materials industry. For example, Grevillea and Hakea are used in
the manufacture of boomerangs [42].

The genus Persoonia has been commonly used as food and medicine in Australian
Aboriginal communities. For example, P. falcata found in the Madjedbebe region was
consumed as a plant-based food 65,000–53,000 years ago and it is still a highly sought-after
fruit for the local Aboriginal people [43]. There are numerous reports that Persoonia species
are edible, especially the fruits on the ground that are the best and softest, tasting like
nibbling sweet candy floss, including P. pinifolia, P. linearis, and P. levis [44–47]. Aboriginal
peoples from New South Wales normally discard the skin and eat the pulp [45]. Some
Aboriginal peoples eat the whole fruit without the seed, depending on their lifestyle.
However, eating the whole fruit has benefits for human health because different parts of
the fruit have different bioactive compounds, nutrients, and metabolites [48], which need
to be further studied to prove the relationship between them. P. levis was described as
the most popular ‘Indigenous bush lollies’ after they have ripened [46]. P. virgata also has
the potential to be an ornamental crop [44]. The leaves and wood of P. falcata have been
reported as a plant-based medicine used for sore eyes, diarrhea, and chest infections due
to the presence of saponins and tannins [49,50]. Moreover, some Persoonia spp. used as a
protection infusion can prevent the fraying of string and fishing lines by using the bark of
plants, like P. linearis and P. laurina [51,52].

Table 1. Summary of usage of the family Proteaceae.

Industry Genus/Specie Traditional/Commercial Use References

Food industry

Persoonia, Hicksbeachia, Floydia,
Macadamia, Hakea, Brabejum,

Finschia, Gevuina,
Panopsis, Oreocallis

Seeds, nuts, gum, or fruits have
been eaten by Australian

Aboriginal people
[7,11]

Food industry
Pharmaceutical industry

Helicia serrata, H. robusta Young shoots eaten by
Javanese people [7]

Telopea, Lambertia, Grevillea,
Banksia, Macadamia Honey sources [11,53,54]

Hakea leucoptera The roots are used for freshwater [55]

Banksia, Persoonia Relief of coughs and sore throats [54,56]

Pharmaceutical industry
Horticultural industry

Dilobeia thouarsii, D. cordata Leaves against S. aureus used for
skin infection in Madagascar [57]

Lomatia hirsuta
Leaves used for the treatment of
bronchitis and asthma in Chilean

traditional medicine
[58]

Faurea saligna Diarrhea

[7,56,59]Grevillea, Hakea, Persoonia,
Roupala and Xylomelum Skin infections

Heliciopsis Eye infections

Protea Skin infections or
hyperpigmentation [60,61]

Helicia robusta Gastritis or kidney problems [62,63]
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Table 1. Cont.

Industry Genus/Specie Traditional/Commercial Use References

Oreocallis Liver diseases, bleeding, or
inflammation treatments [7,38]

Helicia, Grevillea Skin or mouth sores [56,64]

Grevillea, Hakea, Persoonia, Roupala,
Xylomelum, Aulax, Leucadendron,

Paranomus, Leucospermum,
Mimetes, Heliciopsis,

Toronia, Banksia

Skin lightening agent [7,59,65]

Leucospermum, Persoonia, Hakea,
Grevillea, Protea, Serruria, Waratah,

Banksia, Telopea,
Isopogon, Leucadendron

Colourful horticultural plant [41,55,66,67]

Material industry

Persoonia Fishing lines and strings [11]

Grevillea Cementing compound [55]

Grevillea, Protea, Darlingia,
Buckinghamia,

Athertonia and Hakea
Timber [7,11,42]

5. Phytochemicals

Phytochemical studies of natural plants are providing a pathway to drug discovery, which
is essential for medical needs and discovering potential therapeutic values for human health.
Plants can produce two types of organic compounds: primary and secondary metabolites, of
which secondary metabolites are intermediate or produced in simulation pathways of stress
response derived from primary metabolites [68]. Although the mechanisms of secondary
metabolites have not been fully understood, an increased scientific interest in phytochemicals
was demonstrated in the past two decades [69]. Phytochemical studies are helpful in the
research and development of potential drugs or products, such as pharmaceuticals (drugs,
poisons, or stimulants), food (dairy products, additives, colours, or spices), horticultural
(pesticides or nutrient additions), and manufacturing industries (fuels or colouring additives).
Generally, phytochemicals are classified into six main types including carbohydrates, lipids,
alkaloids, quinones, phenolic compounds, and terpenoids [70], which not only play important
roles in plant growth but also provide benefits for human beings.

Currently, only 30% of Proteaceae species have been investigated for phytochemical
profiling, of which less than 10% of species have had their compounds isolated and purified.
The Grevillea and Protea genera have the widest use and study [71] with 362 species in
Grevillea and 112 species in Protea described in previous studies [11]. There are fewer
than 400 compounds identified in the family Proteaceae, including three main categories:
phenolic compounds (69%), quinones (8%), and alkaloids (13%) [71,72]. The Proteaceae
species have high potential bioactive properties attributed to the high proportion of phenols
and polyphenols, including antioxidant, anti-inflammatory, antibacterial, antiallergic, anti-
cancer, and antiviral activities. Phenolic glucosides, alkylresorcinols, and their derivatives,
and tropane alkaloids are the three biggest phytochemical groups found in the family
Proteaceae [71].

Only the novel discovered phytochemicals in the previous studies were listed until 2023,
except for compounds (15, 36–39: Icariside B1, Kaur-16-ene, and Farnesylacetone) that were not
included in the previously reviewed studies [71,72]. There are 39 novel compounds first iden-
tified in Protea cynaroides, Grevillea robusta, Heliciopsis terminalis, Stenocarpus sinuatus, M. integri-
folia, and Roupala montana. The majority of them are phenolic compounds. Compounds 1–4
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(3,4-bis(4-hydroxybenzoyl)-1,5-anhydro-D-glucitol, 4-hydroxybenzoyl-1,5-anhydro-D-glucitol,
2-(hydroxymethyl)-4-oxo-4H-pyran-3-yl-6-O-benzoate-β-D-glucopyranoside, and 3-hydroxy-
7,8-dihydro-β-ionone-3-O-β-D-glucopyranoside) identified in the leaves of P. cynaroides exhib-
ited weak inhibitory activity against the tyrosinase enzyme and can be used as an inhibition
agent for the reduction of melanin pigments, but compounds 5–6 (3,4-dihydroxybenzoic acid
and 3-hydroxykojic acid) have inhibitory activity with the IC50 value of 149.2 ± 1.06 and
274.5 ± 2.12 µg/mL, respectively [57]. The stable activity of tyrosinase inhibition could be
due to free 3-OH or 5-OH groups found in both compound 3 (2-(hydroxymethyl)-4-oxo-4H-
pyran-3-yl-6-O-benzoate-β-D-glucopyranoside) and kojic acid [57]. Some bioactive properties
have been found in compounds 7–8, 10–12, and 14 (B-type Procyanidin, Diosmetin, 6-hydroxy
coumarin, p-hydroxybenzeldahyde, Methyl gallate, and Ethyl gallate) including antimicrobial
activity (compounds 7, 8, 12, and 14: B-type Procyanidin, Diosmetin, Methyl gallate, and
Ethyl gallate), antioxidant activity (compounds 8, 14: Diosmetin and Ethyl gallate), anti-
cancer capacity (compound 10: 6-hydroxy coumarin), and antimalarial activity (compound 11:
p-hydroxybenzeldahyde) [73–77]. Compound 15 (Icariside B1) is a good inhibitor of breast
cancer against estrogen receptor alpha [78]. Compounds 16–23 (Heliciopside A, Heliciopside B,
Heliciopside C, Heliciopside D, Heliciopside E, Clemochinenoside D, 3,4,5-trimethoxyphenyl-
β-D-glucopyranoside, and Kusukuenol B1) have been investigated for antidiabetic activity, of
which compounds 18 and 20 (Heliciopside C, and Heliciopside E) have the highest potential
stimulatory effects for type 2 diabetes mellitus [79]. Compound 24 (Ursolic acid) extracted
from the trunk of H. terminalis has an anti-elastase activity (IC50 = 34.3 ± 0.6 µmol/L) [80].
Compounds 25–35 showed potential antiaging activity when applied in skin care or skin-
whitening products [81,82]. Generally, most phytochemicals were identified in the leaves,
followed by barks, fruits, flowers, and roots in the Proteaceae family. Only 10% of the phy-
tochemical studies investigated the fruits of the Proteaceae family, contributing to a gap in
understanding the constituents of Proteaceae plants. Thus, the family still has huge potential
in applications to meet human needs and for the exploration of more useful plants to reduce
food insecurity or even climate change [83].

A summary of the phytochemicals of the family Proteaceae was presented in Table 2.

Table 2. Summary of phytochemicals isolated from the family Proteaceae.

No Compounds Molecular Formula Accurate Mass (m/z) Species References

1 3,4-bis(4-hydroxybenzoyl)-1,
5-anhydro-D-glucitol C20H20O9 404.37

P. cynaroides

[57]

2 4-hydroxybenzoyl-1,5-
anhydro-D-glucitol C13H16O7 284.26

3

2-(hydroxymethyl)-4-
oxo-4H-pyran-3-yl-
6-O-benzoate-β-D-
glucopyranoside

C19H20O11 424.36

4
3-hydroxy-7,8-dihydro

-β-ionone-3-O-β
-D-glucopyranoside

C19H32O8 388.46

5 3,4-dihydroxybenzoic acid C7H6O4 154.12

6 3-hydroxykojic acid C6H6O5 158.11

7 B-type Procyanidin C30H26O12 578.53
[84]

8 Diosmetin C16H12O6 300.27
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Table 2. Cont.

No Compounds Molecular Formula Accurate Mass (m/z) Species References

9 3,5-dihydroxy cinnamate C10H10O4 194.19

G. robusta
[85]

10 6-hydroxy coumarin C9H6O3 162.14

11 p-hydroxybenzeldahyde C7H6O2 112.12

12 Methyl gallate C8H8O5 184.15

13 Arbutin 6′′-O-3,5-
dihydroxycinnamic acid C21H22O10 434.40

14 Ethyl gallate C9H10O5 198.17

15 Icariside B1 C19H30O8 386.44 [78]

16 Heliciopside A C26H28O14 564.50

H. terminalis

[79]

17 Heliciopside B C26H28O14 564.50

18 Heliciopside C C28H31O16 624.55

19 Heliciopside D C28H36O16 628.58

20 Heliciopside E C42H42O22 898.78

21 Clemochinenoside D C27H30O15 594.52

22 3,4,5-trimethoxyphenyl-β
-D-glucopyranoside C15H22O9 346.33

23 Kusukuenol B1 C30H44O4 468.68

24 Ursolic acid C30H48O3 456.71 [80]

25 3,7,11,15-Tetramethyl-2-
hexadecene C20H40 280.54

Stenocarpus
sinuatus

[81]

26 Neophytadiene C20H38 278.52

27 Phytol C20H40O 296.54

28 α-Tocospiro A C29H50O4 462.71

29 2-Methyloctacosane C29H60 408.8

30 β-tocopherol C28H48O2 416.69

31 Hentriacontane C31H64 436.85

32 γ-sitosterol C29H50O 414.72

33 β-sitosterol C29H50O 414.72

M. integrifolia [82]34 Monogalactosyl diacylglycerol C38H72O10 688.51

35 Protochatechuic acid C7H6O4 154.12

36 Kaur-16-ene C20H32 272.48

R. montana [86]
37 Kaur-15-ene C20H32 272.48

38 Nerolidol C15H26O 222.37

39 Farnesylacetone C18H30O 262.44

6. Bioactive Properties

Fruits are an important source of nutrients and dietary energy, providing fibre, minerals,
vitamins, and phytochemicals, and have been consumed for their nutritional and health value.
Many fruits have proven their potential protective effects against different types of diseases,
such as cardiovascular diseases, cancers, eye diseases, chronic diseases, and obesity [87,88].
Currently, over 25,000 plants have been found in Australia, of which around 2000 edible
plants have been consumed by people and some exported worldwide [89]. Australian native
fruits are seasonal and distributed widely in arid and non-arid regions of Australia [6],
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which can satisfy the needs of customers throughout the year. Numerous indigenous fruits
have emerged in the Australian market and made an economic contribution, such as bush
tomato, Davidson’s plum, Kakadu plum, lemon aspen, pepper berries, quandong, and riberry.
The Australian native food industry continues to develop slowly due to the challenges to
commercialize and meet market demands both domestic and international [90]. However,
these plants constitute a promising source of edible fruits with bioactive properties, such as
anti-inflammatory, antidiabetic, antioxidant, and antimicrobial activities [91].

Plant-based products have been widely accepted and commercialized. This is because
more and more active compounds from natural sources have been found to be beneficial
for human health. These compounds normally contain a series of properties to prevent
the invasion of pathogens and bacteria from plants, contributing to the health benefits in
the human body as well. Numerous known and novel compounds were discovered from
the family Proteaceae with potential bioactive values. Five main bioactive properties of the
family Proteaceae have been summarized including antioxidant activity, antimicrobial activity,
cytotoxicity, anti-inflammatory, and antiviral activity—only quantitative studies are listed
in Tables 3–6. Generally, the leaves have been a frequently used study material among four
bioactive assays, followed by barks, stems, flowers, and other tissues of the plants.

6.1. Antioxidant Activity

The fact that unbalances between free radicals and antioxidants leads to oxidative
stress in the human body possibly causes respiratory diseases, cancers, aging, and multiple
disorders [92]. Many free radicals produced from the metabolizing oxygen of cells can lead
to this unbalance, including hydroxyl, superoxide, nitric oxide, hydroperoxyl, nitrogen
dioxide, and lipid peroxyl radicals [93]. However, the uptake of antioxidants can reduce
the presence of free radicals to prevent diseases. Thus, the determination of the antioxidant
activity in plants and derived (food) products is useful. The methods of antioxidant activity
have been remarkably developed in recent decades. Except for chromatographical and
electrochemical methods, the determination of antioxidant activity is mainly divided into
two categories using spectrometry: hydrogen atom transfer (HAT) and single electron
transfer (SET) assays (Figure 1). The mechanism of HAT is to measure the ability of hydro-
gen donation of antioxidants transferred to free radicals, while the mechanism of SET is to
determine the capacity of antioxidants to reduce metals, carbonyls, and radicals by dona-
tion of an electron [93]. Typical methods of HAT assays are the oxygen radical absorbance
capacity (ORAC), the total peroxyl radical-trapping antioxidant parameter (TRAP), and the
total oxyradical scavenging capacity (TOSC) assays, whereas the common examples of SET
assays include the total phenolic content (TPC) using Folin–Ciocalteu reagent, the ferric
reducing antioxidant power (FRAP), and the cupric antioxidant capacity (CUPRACA) [92].
Moreover, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity assay and
the Trolox equivalent antioxidant capacity (TEAC) are two combined mechanisms of SET
and HAT [92]. Currently, TPC, FRAP, and DPPH are widely used to measure the antioxi-
dant activity of plants, although these methods cannot detect lipophilic compounds [92,93].
According to Chaves’s study, it is recommended that at least two different methods should
be considered to measure antioxidant activity during the study [94].

Most studies on the antioxidant activity of Proteaceae species used TPC, FRAP, and
DPPH, rather than ORAC and TEAC, as with a few publications (Table 3). This could
be because TPC, DPPH, and FRAP assays are simple to run, cost-effective and rapid,
although these methods are unable to analyse both hydrophilic and lipophilic compounds.
According to Table 3, a wide range of studied plant materials has been reviewed from
shoot system to root system, which means the Proteaceae species have potential bioactive
values on each part of the plant. It has also been found that some studies focused on the
same species, and generally presented varying results, which could be attributed to the
choice of extraction solvents, plant locations, and extraction methods. For example, the
aqueous ethanol extract of O. grandiflora leaves collected from Ecuador, South America,
has a radical scavenging capacity with an IC50 value of 6.69 ± 1.39 µg/mL, while an IC50
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value of 292.37 ± 9.37 µg/mL was analysed in the absolute ethanol extract of O. grandiflora
leaves collected from Ecuador, South America [38,95]. Thus, the extraction solvent has a
crucial impact on the quantification analysis, which could be attributed to the solubility of
these chemicals. The different methods used are another factor that influences the results.
O. grandiflora flowers collected from the same location but using the different procedure
of a DPPH assay exhibited different values of radical scavenging activity at IC50 values
of 14.39 ± 1.43 µg/mL and 955.23 ± 0.25 µg/mL, respectively [38,96]. Roupala paulensis
(aerial parts) has the highest TP content (24.27 ± 0.76 g GAE/100 g) compared to other
Proteaceae species, but the DPPH value of R. paulensis was not promising, which could
be due to the sensitivity of the DPPH radical scavenging capacity assay, such as Lewis
bases, light, oxygen, and solvent types [97]. This contributes to the influence of quantitative
analysis. H. terminalis was the only species focusing on the trunk and it showed a promising
antioxidant value (IC50: 156.9 mg/mL) using the DPPH assay [98]. However, measuring
other antioxidant methods is necessary to provide a more comprehensive result.

Figure 1. The mechanism of hydrogen atom transfer (HAT) and single electron transfer (SET) assays.

Table 3. Summary of the antioxidant activity of the family Proteaceae.

Species TP FRAP DPPH (IC50) ORAC TEAC References

G. avellana (nut) 1.9–4.6
g GAE/100 g

51.2–352.8
mM TE/g

8.9–93.8% inhibition
at 100 µg/mL

273.9–2157.5 µM
TE/g

207.3–1012.8 µM
TE/g [99]

Macadamia (nut) - - - 14.43 ± 2.31
µM TE/g - [100]

M. integrifolia (nut) 52.9–108.6
µg GAE/g 4.7–51.9 µM Fe2+/g 0–57.0% inhibition

(without conc.) - 13.3–118.8 mg TE/g [101]

H. terminalis (trunk) - - 156.9 mg/mL - - [98]

Faurea. Speciosa
(leaf)

65.4 ± 0.5
mg AAE/g - 499.4 ± 5.8 µg/mL - - [102]

Protea Susara
(aerial part) - 4.4 ± 0.1 µM

Fe2+/g
41 ± 2% inhibition

at 0.5 mg/mL - - [103]

B. menziesii (floral) 26.1 ± 4.1
mg GAE/100 g

2.90 ± 0.55
mM Fe2+/kg

1095 ± 497
µM TE/kg - -

[104]

B. sessilis (floral) 31.8 ± 5.5
mg GAE/100 g

3.12 ± 0.61
mM Fe2+/kg

1093 ± 263
µM TE/kg - -
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Table 3. Cont.

Species TP FRAP DPPH (IC50) ORAC TEAC References

M. tetraphylla (peel) 168.22 ± 0.77
mg GAE/g

1607.82 ± 7.89
µM TE/g

1128.76
µM TE/g - - [105]

O. grandiflora
(flower) - - 14.39 ± 1.43 µg/mL - -

[38]
O. grandiflora (leaf) - - 6.69 ± 1.39 µg/mL - -

Roupala paulensis
(aerial parts)

24.27 ± 0.76
g GAE/100 g - 37.50 ± 0.46 µg/mL - - [106]

Adenanthos sericeus
(stem) - - 57.3–82.8 µg/mL - - [107]

H. sericea (fruit) 186.3 mg GAE/g 3.4 mM Fe2+/g 11.6 µg/mL - - [108]

O. grandiflora (leaf) 13.97 ± 0.31
GAE mg/100 g - 292.37 ± 9.37

µg/mL - - [95]

F. saligna (leaf) - - 1.17 ± 0.04 µg/mL - - [109]

F. saligna
(stem and bark) - - 13 ± 1 µg/mL - - [110]

O. grandiflora
(flower) - - 955.23 ± 0.25

µg/mL - - [96]

Embothrium
coccineum (leaf) - 0.40–0.53

mM Fe2+/g 5.27–21.78 mg/mL 270.61–405.21
µM TE/g - [111]

H. sericea (stem) 267.6 ± 5.9
mg GAE/g - 9.5 ± 0.1 mg/L - -

[112]H. sericea (leaf) 217.0 ± 2.7
mg GAE/g - 13.4 ± 0.4 mg/L - -

H. sericea (fruit) 110.1 ± 2.7
mg GAE/g - 28.3 ± 1.8 mg/L - -

Currently, only three Proteaceae fruits have been studied for their antioxidant and
antimicrobial activities: H. sericea, H. salicifolia, and P. linearis. The fruit of H. sericea is the only
species in the Proteaceae family studied for its antioxidant activity [108,112]. Figure 2 shows
the antioxidant activity of the fruits of H. sericea and Australian native fruits. Ellagic acid is
the main compound found in the fruit of H. sericea [112]. Compared with other Australian
native species, the ellagic acid content in the fruit of H. sericea (3700 ± 60 mg/100 g DW) is
higher than Davidson’s plum (15–3640 mg/100 g DW), Kakadu plum (8–880 mg/100 g DW),
quandong (9 mg/100 g DW), and muntries (16 mg/100 g DW) [113–118]. The TPC and FRAP
in the fruit of H. sericea are higher than that of bush tomato, desert lime, finger lime, riberry,
pepper berry, lemon aspen, and Illawarra plum, respectively (Figure 2). Thus, the ellagic
acid content is consistent with the antioxidant activity in the fruits and it could be the major
contributor to its antioxidant properties. However, the fruit of H. sericea in DPPH radical
scavenging activity is lower than that of pepper berry, which could be mainly because pepper
berry was collected from different locations: Brisbane [119] and Tasmania [120]. It proved that
the fruits from different locations with variable growth conditions contribute to the difference
in functional and nutritional values. Moreover, there is a variation in the antioxidant activity
of some Australian native species (Figure 2). This could be attributed to different sample
locations, sample extractions, and sample growth conditions.
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Figure 2. Comparison of the antioxidant activity of Proteaceae species and Australian native fruits in
different assays [6,108,112,113,115,119–125].

6.2. Antimicrobial Activity

Foodborne microorganisms are harmful to human health, which could lead to some
illnesses. There are several predominant foodborne pathogens listed by the New South
Wales Food Authority including Bacillus, Salmonella, Campylobacter, Escherichia, Staphylococ-
cus, and Listeria spp. [126]. For example, people who are infected with Staphylococcus aureus
could have symptoms of vomiting and stomach cramps within 0.5 to 8 h. Furthermore, the
discovery of antibiotics contributes to the treatment of human illnesses, but it also leads
to the drug resistance of microorganisms. Therefore, the discovery of new antibiotic com-
pounds is an important objective for future medicines. Many studies have illustrated that
natural sources provide many compounds with potential antimicrobial properties, such as
Terminalia carpentariae [127], Terminalia ferdinandiana [128], Acacia floribunda [129], Macadamia
integriflora [130], and Hakea sericea [131]. Currently, there are several standardized methods
to analyse antimicrobial activity including the diffusion assay, dilution assay, bioautography,
time-kill test, ATP bioluminescence assay, and flow cytofluorometric method, of which the
diffusion and dilution assays are the most common methods [132]. This is mainly because
the methods other than the diffusion and dilution assays require special techniques and
further complex statistical analysis. Agar disk and the well diffusion method are the official
and approved standards to test antimicrobial susceptibility, although they have no ability
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to distinguish bactericidal and bacteriostatic impacts [132]. Therefore, dilution methods, as
the quantitative measurement, can be used to determine the minimum concentration of
antimicrobial drugs to visibly inhibit the growth of microorganisms, which is also called
the minimum inhibitory concentration (MIC). The minimum bactericidal and fungicidal
concentration (MBC/MFC) can determine the minimum concentration of antimicrobial
agents that kill 99% of microorganisms. To enhance the accuracy of visible results, some dye
reagents, as the indicator, have been researched, such as 2,3,5-triphenyltetrazolium chlo-
ride (TTC) [133], resazurin [134], and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium
bromide (MTT) [132].

Protea, Grevillea, and Hakea are three popular interest genera in bioactive studies
of the Proteaceae family. Antimicrobial activity was the highest quantified assay in the
Proteaceae plant studies compared to others. Five microbes are mostly studied to assess the
antimicrobial activity of the family Proteaceae: E. coli (20 studies), S. aureus (19), P. aeruginosa
(11), C. albicans (9), and B. cereus (9). The fruit of M. integrifolia has been studied against
E. coli with the highest microbial activity at a MIC value of 5.3 µg/mL [130], compared to
>100 µg/mL MIC value in Roupala brasiliensis stem [135], 31.125 ± 0.2 µg/mL in leaves of
Embothrium coccineum [136], 156 µg/mL in Darlingia darlingiana bark [137], and other species.
In S. aureus studies, Roupala brasiliensis stem has the highest antimicrobial activity at a MIC
value of 15.6 µg/mL [138], whilst aerial tissues of G. avellana showed antibacterial activity
against P. aeruginosa with a MIC value of 64 µg/mL [139]. M. integriflora (leaf) exhibited
the highest MIC values at 6.5 µg/mL and 5.8 µg/mL, respectively [130], compared to other
C. albicans and B. cereus studies.

Solvent selection can influence extract yield and antimicrobial activity, which has been
demonstrated by several studies [130,136,140]. For example, the leaves of E. coccineum
extracted by hexane, dichloromethane, ethyl acetate, and ethanol have different MIC values
against E. coli at 250, 31.125, 125, and 250 µg/mL, respectively [136]. However, M. integriflora
leaves have different MIC values by using the same methanol extract: 2790 µg/mL in Mt
Coo-tha from the Botanical Gardens (Brisbane, Australia) [141] and 2.4 µg/mL in the Logan
campus of Griffith University (Brisbane, Australia) [130], due to the different location of
the collection. Thus, the environmental conditions of plant growth also have an impact on
the bioactive properties of the plants.

Numerous in vitro studies have been conducted on the antimicrobial activity of Pro-
teaceae species (Table 4).

Table 4. Summary of antimicrobial activity of the family Proteaceae.

Species Bacterium Type MIC References

H. salicifolia (leaf)

Staphylococcus aureus, S. epidermidis,
Enterococcus faecalis Mycobacterium

smegmatis, Candida albicans

15–250 µg/mL

[140]
H. salicifolia (bark) 7.5–250 µg/mL

H. salicifolia (fruit) 15–250 µg/mL

H. sericeae (leaf) 62–250 µg/mL

Banksia genus (leaf) Phytophthora cinnamom 1–6 mg/mL [142]

Roupala brasiliensis (stem)

C. albicans, C. glabrata, C. krusei,
C. parapsilosis, C. tropicalis, Cryptococcus

neoformans, Escherichia coli, E. faecalis,
Klebsiella pneumoniae, Pseudomonas

aeruginosa, S. aureus

15.6–>1000 µg/mL [138]

D. thouarsii (leaf)

Bacillus cereus, B. megaterium, S. aureus,
E. faecalis, Vibrio harveyi, V. fisheri,

Salmonella enterica, S. antarctica,
E. coli, K. pneumoniae

12.5–>100 mg/mL [135]
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Table 4. Cont.

Species Bacterium Type MIC References

Hakea sericea (fruit) S. aureus, Methicillin-resistant S. aureus 0.31 mg/mL [131]

M. integriflora (flower)

Aeromonas hydrophilia, Citrobacter freundi,
E. coli, Proteus mirabilis, Pseudomonas

flurosecens, Serratia marcenscens,
C. albicans, Saccharomyces cerevisiae

2.9–19.9 µg/mL

[130]

M. integriflora (leaf)
A. hydrophilia, C. freundi, E. coli, P.

mirabilis, S. marcenscens,
C. albicans, S. cerevisiae, B. cereus.

2.4–22.1 µg/mL

M. integrifolia (nut)
P. mirabilis

15 µg/mL
[141]

M. integrifolia (leaf) 2790 µg/mL

E. coccineum (leaf)
E. coli, K. pneumoniae, Proteus mirabilis,

P. aeruginosa, S. aureus,
Streptococcus pyogenes

31.125–500 µg/mL [136]

E. coccineum (bark, leaf)
P. aeruginosa, E. coli

No inhibition
[139]

G. avellana (aerial parts) 64–>512 µg/mL

Banksia integrifolia (bark)

P. aeruginosa, E. coli, B. cereus, S. aureus,
Streptococcus pneumoniae, C. albicans

78–1250 µg/mL

[143]

Bleasdalia bleasdalei (bark) 78–624 µg/mL

Buckinghamia celsissima (bark) 312–624 µg/mL

Cardwellia sublimis (bark) <19.5–>2500 µg/mL

Darlingia darlingiana (bark) 39–312 µg/mL

D. thouarsii (bark)
S. pyogenes, S. aureus, Clostridium
perfringens, Listeria monocytogenes,

P. mirabilis
0.197–0.31 mg/mL [144]

Knightia excelsa (honey) E. coli 22.0 ± 4.1 mg/mL [145]

Lomatia hirsute (leaf) C. albicans 8 µg/mL [146]

O. grandiflora (aerial parts) S. aureus 2 mg/mL [147]

Roupala sp. (stem) S. aureus, E. faecalis 60–100 µg/mL [148]

B. celsissima (leaf)
A. hydrophilia, B. cereus, B. subtilis,

Citrobacter freundii, E. coli, C. albicans,
S. cerevisiae

8.3–13.6 mm inhibition zone at
0.02 mg/mL [149]

Protea rotundifolia (herb) S. aureus, Micrococcus luteus 20.5–30.0 µM [150]

Toronia toru (leaf and stem) B. subtilis, E. coli, P. aeruginosa,
T. mentagrophytes

Inhibition zone of
4-hydroxyphenyl

6-O-[(3R)-3,4-dihydroxy-2-
methylenebutanoyl]-β

-D-glucopyranoside: 3–5 mm

[151]

P. linearis (fruit) B. subtilis, P. cinnamomic, E. coli

4-hydroxyphenyl
6-O-[(3R)-3,4-dihydroxy-2-
methylenebutanoyl]-β-D-

glucopyranoside:
6.25–12.5 µg/disk

[25]
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Table 4. Cont.

Species Bacterium Type MIC References

M. integrifolia (kernel)

Alternariu heliarzthi, Botrytis cinerea,
Ceratocystis purodoxa, Colletotrichum

falcutum, Fusurium oxysporum,
Leptosphaeria maculans, Macrophomina

phaseolinu, Phytophthoru cryptogeu,
Pyrhium grunzinicolu, Sclerotinia

sclerotiorum, Sclerotinia sclerotiorum,
Sclerotium rolfsii, Verticilium dahlia,

Clavibacter michigunensis, P. yeudomonus
rubrilineans, Aspergillus fumigatus,

Candidu nlhicuns, Microsyorum gypseum,
E. coli, Saccharonzyces cerevisiae,

Colletotrichum gloeosporioides.

MiAMPl peptide:
2–>100 µg/mL

[152]

MiAMP2c peptide:
5–>50 µg/mL

[153]

G. pteridifolia (stem)

B. anthraci, S. simulans, Enterococcus faecali,
Enterococcus faecium, L. monocytogenes,

Shigella dysenteriae, S. epidermidis,
S. aureus, S. pneumoniae.

<0.0325–4.0 µg/mL in
Kakadumycin A

<0.0325–8.0 µg/mL in
Echinomycin

0.125–4.0 µg/mL in
Vancomycin

[154]

D. thouarsii (leaf)

P. aeruginosa; V. harveyi; V. fischeri;
Salmonella enterica; S. antarctica; E. coli;

K. pneumoniae; B. rcereus; B. megaterium;
E. faecalis; S. aureus.

7–19 mm inhibition zone at 1
mg/disc [155]

F. saligna Propionibacterium acnes 500 µg/mL [109]

G. juncifolia (leaf)

Alcaligenes faecalis, Pseudomonas
fluorescens, Yersinia entercolitica, B. cereus,

B. subtilis, S. aureus, S. epiedermidis,
Artemia nauplii

62–1387 µg/mL

[156]
G. juncifolia (flower)

A. hydrophilia, P. fluorescens, Y.
entercolitica, B. cereus, B. subtilis, S. aureus,

S. epiedermidis, A. nauplii
226–1055 µg/mL

G. robusta (leaf)

A. hydrophilia, A. faecalis, P. fluorescens, Y.
entercolitica, B. cereus, B. subtilis, S. aureus,

S. epiedermidis, A. nauplii,
S. Salford, K. pneumoniae

83–1788 µg/mL

G. robusta (flower) B. cereus, A. nauplii 880–2360 µg/mL

G. banksia (inflorescence) E. coli 5.0 ± 0.1% inhibition at 250
µg/mL [157]

Hakea spp. (leaf) L. monocytogenes, M. luteus, S. aureus, E.
coli, K. pneumoniae, P. aeruginosa Neutral to very inhibitory [129]

G. avellana (aerial parts)

MRSA, Methicillin-Sensitive S. aureus

>512 µg/mL

[158]E. coccineum
(cortex and folium) >512 µg/mL

F. saligna (leaf) M. tuberculosis >1000 µg/mL [159]

H. sericea (stem) S. aureus, B. cereus, L. monocytogenes,
E. coli, P. aeruginosa, K. pneumoniae,

methicillin-resistant S. aureus,
C. albicans, C. tropicalis

0.315–2.5 mg/mL

[160]H. sericea (leaf) 0.315–2.5 mg/mL

H. sericea (fruit) 0.04–2.5 mg/mL
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Table 4. Cont.

Species Bacterium Type MIC References

B. menziesii (floral)
S. aureus, E. faecalis, E. coli, P. aeruginosa

26.8% w/v
[104]

B. sessilis (floral) 23.4% w/v

A. sericeus (stem) B. subtilis, S. aureus, E. coli, Salmonella sp. 10–16 mm inhibition zone at
100 mg/mL [107]

Alloxylon flammeum (bark)

B. cereus, S. aureus, P. aeruginosa,
E. coli, C. albicans, A. niger

78–1250 µg/mL

[137]

Athertonia diversifolia (bark) 312–1250 µg/mL

Austromuelleria trinervia (bark) 156–1250 µg/mL

Carnrvonia araliifolia (bark) <19.5–1250 µg/mL

Darlingia ferruginea (bark) 156–1250 µg/mL

G. baileyanna (bark) 78–1250 µg/mL

G. hilliang (bark) <19.5–625 µg/mL

Helicia australasica (bark) 312–1250 µg/mL

Lomatia fraxinifolia (bark) 39–625 µg/mL

M. grandis (bark) 156–625 µg/mL

Opisthiolepis heterophylla (bark) 78–1250 µg/mL

Placospermum coriaceum (bark) 156–1250 µg/mL

Stenocarpus sinuatus (bark) 78–1250 µg/mL

Triunia erythrocarpa (bark) 39–1250 µg/mL

E. coccineum (leaf and bark)

E. coli, P. aeruginosa

No activity

[139]G. avellana
(leaf, stem, and fruit) >512 µg/mL

L. hirsuta (leaf and stem) No activity

Protea caffra E. coli, E. faecalis, K. pneumoniae, S. aureus,
Penicillin-resistant S. aureus. 0.31–>2.5 mg/mL [161]

Three Proteaceae species have investigated the antimicrobial activity of their fruits in-
cluding Gram-positive bacteria, Gram-negative bacteria, and yeast, whilst some Australian
native fruits also studied the antimicrobial activity summarized in Figure 3. The fruit of
H. sericea exhibited higher antibacterial activity against Gram-positive bacteria (Staphy-
lococcus aureus, MRSA, Bacillus cereus, and Listeria monocytogenes) than that of Kakadu
plum. However, the antibacterial activity against Gram-negative bacteria (K. pneumoniae,
P. aeruginosa, and E. coli) in the fruit of H. sericea is weaker than that of Kakadu plum.
The fruit of H. salicifolia has stronger antimicrobial activity against Staphylococcus aureus
and MRSA compared with the fruit of Kakadu plum and H. sericea. K. pneumoniae as one
of the important nosocomial pathogens in paediatric wards is increasing in the number
of outbreaks due to drug resistance [162,163]. Podocarpus elatus (Illawarra plum) has the
strongest activity at an IC50 value of 187 µg/mL against K. pneumoniae, followed by Desert
lime (265 µg/mL), Kakadu plum (902 µg/mL), H. sericea (2500 µg/mL), and Muntries
(8231 µg/mL), respectively (Figure 3). Thus, Australian native fruits have promising po-
tential applications in the treatment of K. pneumoniae infections. Furthermore, Candida spp.
is one of the major and few fungal species that cause human diseases living in the healthy
human body without pathogenicity, but it could cause serious infections in immunocom-
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promised individuals [164]. Candida spp. is still a serious medical problem leading to a
high death rate and frequently a nosocomial infection [165]. One of the reasons is drug
resistance. H. salicifolia fruit has higher antifungal activity against C. albicans compared to
Kakadu plum, riberry, muntries, and H. sericea (Figure 3). Thus, it is a good opportunity to
develop plant-based antifungal agents using Australian native species. However, there is
still a lack of information on the antimicrobial activity of Australian native fruits, which
need to be further investigated to potentially develop new antimicrobial agents.

Figure 3. Comparison of antimicrobial activity (MIC; µg/mL) between Proteaceae species and
Australian native fruits [124,140,160,166–168].

6.3. Cytotoxicity

Cancer is one of the major health problems worldwide. According to the World
Health Organization (WHO), an increase in the number of deaths caused by cancer was
presented from about 4 million in 2014 to 10 million in 2018 [169]. Also, in excess of
60% of natural products (more than 3000 plants) were considered as being the source
of value-added anticancer medicines [170]. Thus, interest in the discovery of anticancer
agents has increased and developed further. Cytotoxicity research is an in vitro study to
screen the cell growth/damage and its reproduction treated by medical agents. There are
four main cytotoxicity assays commonly used today: dye exclusion, colorimetric assays,
fluorometric assays, and luminometric assays [171]. The methyl thiazolyl tetrazolium
(MTT) assay, as one of the colorimetric cell proliferation assays, is the most performed in
studies. However, the MTT assay is too sensitive, leading to application problems. For
example, (-)-epigallocatechin-3-gallate and kaempferol can reduce the MTT to formazan
interfering with the results [172].

Different types of assays were used in the cytotoxic analysis of the Proteaceae species,
including trypan blue dye [173], the MTT assay [98,151,155,174–179], XTT assay [159], MTS
assay [143,180–182], WST-1 assay [38], brine shrimp lethality assay [138,183,184], resazurin
reduction assay [185], and fluorescein diacetate assay [152]. Most of the studies chose
HepG2, the isolation of hepatocellular carcinoma, to be considered as the cell line. This
might be because liver cancer (20.3%) is one of the urgent health issues, third only to the
pancreas (11.5%) and esophagus (20.6%) cancers in survival rate globally [186]. The bark
of Buckinghamia celsissima has the notably highest anti-proliferative effect at an IC50 value
of 4.43 µg/mL [143] compared to other Proteaceae species against the HepG2 cell line as
published before. There are only four studies investigating breast tumours (MCF-7 and
MDA-MB-231) in G. robusta, B. bleasdalei, Cardwellia sublimis, C. araliifolia, M. grandis, and O.
heterophylla, although breast cancer has the highest incidence rate worldwide compared to
other cancers [169]. According to the current published studies of the Proteaceae family, the
inner stem of K. excelsa exhibited excellent anticancer activity against P388 at an IC50 value
lower than 1 µg/mL [187]. Moreover, the leaves and barks were chosen as study materials
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in most anticancer studies of the Proteaceae family rather than the fruits, contributing to a
gap in cytotoxic studies.

Overall, around half of the cytotoxicity studies in the family Proteaceae investi-
gated the activity of their compounds, of which some compounds have been investi-
gated previously in other families. 2-methoxyjuglone has been found in approximately
20 species of the Juglandaceae, Sterculiaceae, and Proteaceae families as summarized pre-
viously [188]. This compound showed a cytotoxicity against HepG2 cells with an IC50
value of 3.8 µg/mL in leaves of L. hirsute [174], which was weaker than the study with an
IC50 value of 2.2 µg/mL [189]. Besides that, 2-methoxyjuglone showed in vitro antitumor
activity against a range of human cancer cells, mainly studied in breast cancer cells, colon
adenocarcinoma cells, and hepatocellular carcinoma cells [188]. Graviquinone is another
cytotoxic compound found in G. robusta against MCF-7 (IC50: 15.0 ± 3.0 µM), NCI-H460
(10.8 ± 2.3 µM), and SF-268 cell lines (5.9 ± 0.1 µM) [189]. It also has cytotoxic abilities
against other cell lines, including thymic lymphoma, lung tumour, immortalized cells,
and squamous cell carcinoma ranging from IC50 values of 0.03 to 11.83 µM [190]. Thus,
graviquinone could be a remarkable cytotoxic compound in the treatment of many tumours.
Methyl 2,5-dihydroxycinnamate, as one of the compounds in G. robusta, has previously
been reported in the leaves and branches of Philadelphus coronaries [191] and the leaves
of Murraya paniculate [192] with potential cytotoxic effects against a range of tumours.
Hydroquinone, from the leaves of H. lobata, inhibited the MGC-803 and HEEC cell lines at
11.3 ± 2.1 and 19.4 ± 1.9 µg/mL, respectively [176]. This compound has been reviewed
and found in land and marine plants summarized in studies of cytotoxicity and antioxidant
activity [193–195].

Table 5 summarized the cytotoxicity of the family Proteaceae and only 24 species have
been studied, which makes up approximately 1% of the whole Proteaceae species.

Table 5. Summary of cytotoxicity of the family Proteaceae.

Species:
Compounds/Extract Cell Line IC50 References

B. bleasdalei (bark): (24E)-3β-hydroxy-
7,24-euphadien-26-oic acid P388 About 80% of viable cells

at 25 µM [173]

L. hirsute (leaf): 2-methoxyjuglone HepG2 3.8 µg/mL [174]

F. saligna (leaf) U937 202.4 µg/mL [159]

Kermadecia elliptica (bark):
Kermadecin A–D

L1210 4.1–18.5 µM
[175]

KB 3.6–>10 µM

T. toru (leaf): 4-hydroxyphenyl 6-O-(4-hydroxy-
2-methylenebutanoyl)-β-D-glucopyranoside, 4-hydroxyphenyl

6-O-[(3R)-3,4-dihydroxy-2-methylenebutanoyl]-β-D-
glucopyranoside, arbutin

P388 50–100 µg/mL
[151]

BSC 3–>25 µg/mL

G. robusta (leaf): Graviquinone,
cis-3-hydroxy-5-pentadecylcyclohexanone, methyl

5-ethoxy-2-hydroxycinnamate, methyl 2,5-dihydroxycinnamate

MCF-7 15.0–>50 µM

[180]NCI-H460 10.8–>50 µM

SF-268 5.9–>50 µM

B. integrifolia (bark) HepG2 20.66 µg/mL

[143]

B. bleasdalei (bark)
HepG2 46.20 µg/mL

MDA-MB-231 61.23 µg/mL

B. celsissima (bark) HepG2 4.43 µg/mL

Cardwellia sublimis (bark)

HepG2 94.62 µg/mL

MDA-MB-231 100 µg/mL

Human 5637 32.57 µg/mL

D. darlingiana (bark)
HepG2 42.20 µg/mL

5637 12.40 µg/mL
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Table 5. Cont.

Species:
Compounds/Extract Cell Line IC50 References

H. lobata (leaf): 6′-((E)2-methoxy-5-hydroxycinnamoyl) arbutin,
2′-((E)2, 5-dihydroxycinnamoyl) arbutin,

6′-[(E)-2′′-hydroxymethyl-2′′-butenylacyl] arbutin,
6′-[(E)-4′′-hydroxycinnamoyl] arbutin, 6′-[(E)-2′′,

5′′-dihydroxycinnamoyl] arbutin, grevillic acid, hydroquinone.

MGC-803 11.3 ± 2.1–>50 µg/mL

[176]

HEEC 19.4 ± 1.9–>50 µg/mL

K. elliptica (bark): kermadecin A, 17-methoxykermadecin A,
22-methoxykermadecin A, 17,22-methoxykermadecin A,

17,19,22-trimethoxykermadecin A, (±)-cis-27,28-dihydroxy-
17,19,22-trimethoxy-27,28-dihydrokermadecin A,
(±)-28-hydroxy-17,19,22-trimethoxy-27-oxo-27,28-

dihydrokermadecin A,
(±)-cis-27,28-diacetoxy-17,19,22-trimethoxy-27,28-

dihydrokermadecin A, 27,28-dihydrokermadecin A,
17,19,22-trimethoxy-27,28-dihydrokermadecin A

U937 3.86–>100 µM

[181]HL60 2.29–100 µM

KB 2.78–100 µM

D. thouarsii (leaf):
Dilobenol A–G

FcB1 15.8 ± 1.4–34.3 ± 0.6 µM
[155]

L-6 58.8 ± 0.4–>137 µM

G. robusta (leaf): Gravicycle, Dehydrogravicycle, Bisgravillol,
Dehydrobisgravillol, Dehydrograviphane,

Methyldehydrograviphane, Graviphane, Methylgraviphane,
Robustol, dehydrorobustol A, bis-norstriatol,

5-[14′-(3′′,5′′-dihydroxyphenyl)-cis-tetradec-6′-en-1-yl]
resorcinol, cis-5-n-pentadecylresorcinol,

cis-5-n-pentadec-8′-enylresorcinol

MCF-7 28.6 ± 3.2–37.1 ± 1.9 µM

[182]NCI-H460 22.8 ± 1.3–35.4 ± 1.7 µM

SF-268 27.7 ± 1.5–39.2 ± 0.7 µM

O. grandiflora (leaf)
HL-60

3.12–6.25 µg/mL
[38]

O. grandiflora (flower) 50–100 µg/mL

Protea madiensis (root and bark)
LOCE-MM001 10.0–>500 µg/mL

[177]
LOCE-MM028 10.0–>500 µg/mL

R. brasiliensis (stem) BS 197.7–>1000 µg/mL [138]

G. robusta (leaf) BS 0.45 ± 0.04–
191.14 ± 0.19 µg/mL [183]

K. excelsa (inner stem) P388 <1 µg/mL [187]

H. erratica (seed) BS >1000 µg/mL [184]

G. robusta (aerial part)

WI-38 249.5 ± 10.7 µg/mL

[178]MCF-7 89.5 ± 6.3 µg/mL

HepG2 199.1 ± 25.7 µg/mL

G. whiteana: NP-011694, NP-013296, NP-013330,
NP-013378, NP-014428 L6 15.5 ± 1.8–54.2 ± 0.5 µM [196]

H. salicifolia (leaf) RAW 264.7 >900 µg/mL
[185]

Telopea speciossissima (leaf) RAW 264.7 >900 µg/mL

C. teretifolium/C. brownie (root): 3-geranyllawsone

U373 48 µM

[179]

Hs683 12 µM

A549 11 µM

PC-3 28 µM

SKMEL-28 12 µM

LoVo 7 µM

H. terminalis (trunk) HepG2 99.6 ± 5.0% inhibition (b) [98]

M. integrifolia (nut): MiAMPl peptide Hela >1 mg/mL [152]
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Table 5. Cont.

Species:
Compounds/Extract Cell Line IC50 References

Bark

A. flammeum Hs578T 100% (a)

[137]

A. diversifolia SK-MEL-28 38.56% (a)

A. trinervia SK-MEL-28 58.58% (a)

C. araliifolia MDA-MB-231, 5637 100% (b)

D. ferruginea SK-MEL-28 19.86% (a)

G. baileyanna 5637 40.20% (b)

G. hilliang Hs578T 99.41% (a)

H. australasica HepG2 55.32% (a)

L. fraxinifolia Hs578T 99.47% (a)

M. grandis MDA-MB-231 44.50% (b)

O. heterophylla MDA-MB-231 45.03% (b)

P. coriaceum HepG2 35.61% (a)

S. sinuatus 5637 99.94% (b)

T. erythrocarpa HepG2 90.11% (a)

U937: human histiocytic lymphoma; L1210: mouse lymphocytic leukemia; KB: human epithelial carcinoma; P-388:
lymphoma; BSC: monkey kidney; NCI-H460: large-cell cancer of the lung; MCF-7: human breast adenocarcinoma;
NCI-H460: non-small-cell lung cancer; SF-268: glioblastoma; HepG2: hepatocellular carcinoma; MDA-MB-231:
breast adenocarcinoma; 5637: human primary bladder carcinoma; MGC-803: human gastric carcinoma; HEEC:
human endometrial epithelial; human histiocytic lymphoma; HL60: human promyelocytic leukemia; FcB1:
chloroquine-resistant strain FcB1 of Plasmodium falciparum; L-6: rat myoblast; LOCE-MM001: melanoma human
cell; LOCE-MM028: normal human melanocyte; BS: Brine shrimp; MRC-5: human lung; P388: murine leukemia;
WI-38: human lung fibroblast cell-line; RAW 264.7: monocyte/macrophage-like cells; U373: human glioblastoma;
Hs683: human brain tumour; A549: lung cancer; SKMEL-28: melanoma; LoVo: colon cancer; PC-3: prostate cancer;
Hela: immortal cancer; Hs578T: breast ductal carcinoma; SK-MEL-28: malignant melanoma; (a): 250 µg/mL of
extract; (b): 100 µg/mL of extract.

6.4. Anti-Inflammatory Activity

Inflammation is a biological process to defend against harmful stimuli leading to some
regular events, such as redness, diarrhea, swelling, pain, or even loss of function [197].
There are two types of inflammation: acute and chronic inflammation. Although inflam-
mation is the way to defend foreign organisms in the human body, more than 99% of
inflammation disorders are severe and serious or even contribute to death, for example,
asthma [197]. Currently, synthetic molecular drugs (steroidal and nonsteroidal) are used
in the treatment to reduce pain and inflammation but with regular toxic and adverse
effects [197,198]. For example, aspirin and mefenamic acid could lead to gastric effects,
like bleeding, diarrhea, and gastric erosion. Thus, plant-based anti-inflammatory agents
with fewer side effects have been explored in many modern pharmaceuticals, which are
also popularly used by Aboriginal peoples. For instance, Eucalyptus genus is one of the
plants used as anti-inflammation agents by the Dharawal Aboriginal people [199]. There
are ten inhibition mechanisms of cellular action applied in anti-inflammation activity:
hypothalamic–pituitary–adrenal (HPA)-dependent anti-inflammatory drugs, arachidonic
acid related enzymes, cytokines, signalling pathways, vasoactive mediators, nitric oxide
(NO), reactive oxygen species (ROS), inflammatory mediators, immunological regulation,
and gut microbiota [200,201].

The inhibitions of NO, COX-1/2, XO, LOX, and tumour necrosis factor-α (TNF-α) are
several mechanisms of action used in the analysis of the Proteaceae family (Table 6). Animals
as the study target were also applied to evaluate anti-inflammatory activity, which was usually
applied to the target cells directly. In NO expression, the roots of H. terminalis exhibited the
highest anti-inflammatory activity with an IC50 value of 11.98 ± 0.71 µg/mL among the
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published Proteaceae species (F. saligna, H. terminalis, H. salicifolia, and T. speciossissima). In
animal model studies, different animals were used in the anti-inflammatory activity of some
Proteaceae species (F. speciosa: chicks; L. hirsute and G. robusta: pigs; G. robusta and L. hieronymi:
rats). These animal models are commonly used in anti-inflammatory studies by inhibiting
animal edema [201]. However, there is no comparability of anti-inflammatory activity among
different Proteaceae species due to the different study models. Also, multiple study models
can contribute to a more persuasive result.

Different extraction methods, sample processing, solvent use, and sample location
have an influence on their bioactivity, which was also illustrated in the anti-inflammatory
activity. P. simplex extracted by different solvents and showing a range of inhibition at the
same concentration [202]. Additionally, different sample roasting processes in a G. avellana
study led to a variation in inhibition activity [99]. Thus, it is important to investigate the
effects of sample processing to provide a better understanding for further studies.

Only two studies of H. terminalis [98] and L. hieronymi [203], focused on the anti-
inflammation of phytochemicals. Bisresorcinol found in the trunk of H. terminalis has
anti-inflammatory activity in RAW 264.7 cells at an IC50 value of 71.15 ± 6.66 mg/mL and
anti-aging activity against collagenase, elastase, and tyrosinase at 156.7 ± 0.7, 33.2 ± 0.5,
and 22.8 µM/L, respectively [98]. The attractive forces of π-electrons and hydrogen bonds
between the bisresorcinol and enzyme could be the main responsibility for the anti-aging
activity. Bisresorcinol and its derivatives are also found in the stems of Grevillea glauca [204].
Oleanolic acid, another compound found in the Proteaceae species, has been investigated
and reviewed before with plenty of studies and patents to be considered as a potent anti-
inflammatory agent from 1980 to the present [205,206]. It is recommended that a further
in-depth investigation should be focused on the compounds of the plants to discover their
potential anti-inflammatory agents.

All anti-inflammatory activity studies of the Proteaceae family have selected the leaves,
flowers, stems, roots, nuts, honey, barks, and trunks to be the study materials, excluding
the fruits. Thus, further studies are necessary to include diverse study materials to obtain
comprehensive results to fill the knowledge gap.

Table 6. Summary of anti-inflammatory activity of the family Proteaceae.

Species Study Mode IC50 References

O. grandiflora (leaf)
ROS

4.1 ± 0.07 µg/mL
[38]

O. grandiflora (flower) 5.87 ± 1.48 µg/mL

F. speciosa (leaf) Animal 55.50 ± 0.78% inhibition at 100 mg/kg [102]

F. saligna (bark) NO 21.0 ± 0.7 µg/mL [110]

H. terminalis (trunk):
Bisresorcinol NO 71.15 ± 6.66 mg/mL [98]

P. simplex (bark)
COX-1 86.1–94.2% inhibition at 250 µg/mL

[202]COX-2 16.7–41.0% inhibition at 250 µg/mL

P. simplex (leaf)
COX-1 57.8–100.1% inhibition at 250 µg/mL

COX-2 20.9–72.4% inhibition at 250 µg/mL

L. hirsuta (leaf) Animal 17.1 ± 0.8% inhibition at 4.0 mg/kg [58]

G. robusta (leaf)
Animal

6.2 mm thickness at 400 mg/kg
[207]

G. robusta (bark) 6.8 mm thickness at 400 mg/kg
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Table 6. Cont.

Species Study Mode IC50 References

L. hieronymi (stem): oleanolic acid,
epi-oleanolic acid, epi-Maslinic acid,

p-Hydroxyacetophenone,
p-Hydroxyacetophenone-

β-glucoside

Animal 24–30% inhibition at 80 mg/kg [203]

P. falcata (leaf) XO 2.24 ± 1.72% inhibition at 100 µg/mL [208]

K. excelsa (honey) 15-LOX >2000 µg/mL [209]

H. salicifolia (leaf)
NO 195.9 ± 30.7 µg/mL

[185]TNF-α 697.7 ± 185.3 µg/mL

T. speciossissima (leaf)
NO 116.5 ± 20.1 µg/mL

TNF-α 555.1 ± 87.5 µg/mL

H. terminalis (root) NO 11.98 ± 0.71 µg/mL [210]

G. avellana (nut)
COX-1 50.1–79.9% inhibition at 100 µg/mL

[99]COX-2 15.7–33.8% inhibition at 100 µg/mL

LOX 9.1–26.0% inhibition at 100 µg/mL

NO: neutrophil oxidation; LOX: lipoxygenase; 15-LOX: 15-lipoxygenase; COX-1&2: cyclooxygenases-1&2; XO: xan-
thine oxidase; ROS: reactive oxygen species.

6.5. Antiviral Activity

Due to the genetic variation of viruses, a pandemic event usually occurs in a human
lifetime. Although people have developed several antiviral medicines in the past, many
drugs cannot effectively target viruses due to the poor properties of some conventional
drugs and viral resistance. Thus, there is an increased interest in the use of plant materials
for the treatment of viral infections. Around 100 species have been reviewed in previous
studies primarily focusing on the herpes simplex virus (HSV), human immunodeficiency
virus (HIV), influenza virus, and hepatitis C virus (HCV) [211].

Some Proteaceae species have been studied for their antiviral activity. Conospermun
incurvum can inhibit the influences of HIV-1RF to protect the T4-lymphoblastoid cell line,
especially a naphthoquinone derivative, conocurvone, found in C. incurvum [212]. The
barks of D. darlingiana and B. bleasdalei showed potential activity against HSV [143] and
plants without the roots of Hakea saligna against Ranikhet disease virus at the LD50 value
of >1000 mg/kg [213]. There is no antiviral activity found in the leaves of Lomatia ferrug-
inea against HSV and HIV, and the barks of Banksia integrifolia, Cardwellia sublimis, and
Buckinghamia celsissima against HSV. Currently, only HIV, HSV, and the Ranikhet disease
virus are known to be inhibited by some Proteaceae species, though studies are limited.
Compared with other in vitro bioactive studies, antiviral studies are very limited in the
family Proteaceae.

6.6. Other Bioactivities

There are other bioactive properties studied in the family Proteaceae, which also
could contribute to human health and benefits. Food safety is important for human health,
and many diseases originate from food sources due to the presence of parasites. Many
parasitic diseases are from the tropics, such as malaria, trypanosomiasis, leishmaniasis
and schistosomiasis, which can cause serious diseases and health disorders. Numerous
plant families have been used for parasitic treatment, such as Moraceae, Myrtaceae, Pa-
paveraceae, and Rutaceae [214]. The Proteaceae family is one of the potential plants in
parasitic treatment for human beings. Currently, only Schistosoma mansoni, Leishmania
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spp., and malaria have been selected in the antiparasitic study of the family Proteaceae.
The aerial parts of R. montana showed antiparasitic activity against S. mansoni as well
as botulin, quercetin-3-O-β-D-glucoside, and quercetin-3-O-β-D-rhamnoside have been
isolated from the plant [215]. The timber of G. robusta and O. grandiflora displayed in vitro
antiparasitic activity against Leishmania promastigotes at MIC values of 50 and 23.7 µg/mL,
respectively [38,216]. Malaria can cause extremely dangerous diseases and is one of the
major health problems worldwide. Two species from the family Proteaceae have been
studied in antimalarial studies. The leaves and twigs of Faurea speciosa exhibited promising
inhibitory activity against Plasmodium spp. [102,217,218]. Also, L. concinnum has been tradi-
tionally used in the treatment of malaria [219]. It has been indicated that the Proteaceae
species have the potential of application in antiparasitic activity to improve drug resistance
and develop novel plant-based products. Moreover, two studies focused on melanogenesis
inhibitory activity using G. robusta and Serruria furcellata, which could be due to the high
value of arbutin derivatives [220,221]. Thus, these two species have the potential of being
applied in skin-lightening and anti-chloasma agents. It has also been proved that the ar-
butin and its derivatives could be found in more potential native species and to be used as
skin-lightening agents. S. furcellata from the family Proteaceae showed tyrosinase inhibitory
activities to inhibit the biosynthesis of melanin [221] and could be used as a potential
inhibitor of freckles. Kermadecia rotundifolia was active against acetylcholinesterase [222]
and could be used as an acetylcholinesterase inhibitor to replace Western medicines and
reduce side effects from chemical medicines. The Proteaceae species also have the ability
to treat cardiovascular diseases. One study described striatal isolated from G. robusta and
G. striata as a potent inhibitor of plasma membrane Ca2+-ATPase, which can be used for
stimulating a failing heart [223]. Although many Proteaceae species exhibited plant-based
values in various aspects, preliminary studies on antiparasitic, melanogenesis inhibitory,
and potential medical applications are limited. Based on promising bioactivities in this
study, the discovery of novel plant-based food and pharmaceutical products from the
family Proteaceae is essential for human health consumption.

7. Bioactive Properties of the Persoonia Genus

Table 7 shows the previously published studies of the bioactive properties of Persoonia
spp., which demonstrate that Persoonia fruits have exhibited excellent antimicrobial activity
against a wide range of bacteria [25]. Only one study describing the toxicity of P. pinifolia
reported that the fruit extracted by chloroform led to the death of mice, which could
be because the compounds were unable to be completely purified [24]. A few studies
have reported novel chemical compounds in Persoonia spp. including arbutin, arbutin
derivatives, and (Z)-5-undec-3-enylresorcinol. Arbutin and its derivatives have been proven
to have antioxidant, antimicrobial, anti-aging, and anti-inflammatory activities [224–226].
For example, arbutin-rich Arbutus unedo leaves exhibited antioxidant properties in the
treatment of gastrointestinal complaints [227]. Moreover, anthocyanidin has also been
found in several Persoonia species [228]. It could have potential bioactive properties, such
as anti-inflammatory, antioxidant, and antimicrobial activity [229].

Table 7. Summary of bioactive properties of Persoonia spp.

Bioactive
Properties Findings References

Treatment Sore eyes, sore throats, colds, diarrhea, and chest
infections treated by leaves and wood of P. falcata [28,49,56]

Antimicrobial activity

Potential antimicrobial activity against a wide range of
bacteria found in the leaves of P. gunnii, the fruit of

P. pinifolia, and P. linearis
[24–26]

Antibiotic activity of P. juniperina against typhoid bacilli,
staphylococci, and Mycobacterium phlei [27]
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Table 7. Cont.

Bioactive
Properties Findings References

Toxicity
Mice died injected with the smallest dose of

500 milligrams per kilogram of body weight of
chloroform extract of P. pinifolia

[24]

Anti-inflammatory activity P. falcata leaves can against XO given 2.24 ± 1.72%
inhibition at 100 µg/mL [208]

Phytochemicals

Arbutin derivatives and pyroside found in the leaves of
P. gunnii and Arbutin derivatives found in the ripening

fruit of P. linearis × pinifolia and P. salicina
[25,26,230]

(Z)-5-undec-3-enylresorcinol compound extracted from
the wood of P. elliptica [231]

Anthocyanins found in P. linearis, P. pinifolia,
and P. myrtilloides [228]

Saponins and tannins screened in P. falcata [50]

8. Opportunities and Challenges

There are many potential economic, cultural, and social benefits to the development
of Australian indigenous species. From an economic aspect, Australian indigenous species
provide huge marketing value. The Aboriginal peoples rely on their plants to meet the
needs of their diet and medicines. For example, edible fruit, nut, gum, and honey from
numerous Proteaceae species have been eaten by Australian Aboriginal peoples and some
species have been commercialized. The Persoonia fruit is a favourite snack food during the
childhood of the Kambuwal people of southeastern Queensland. Also, as mentioned before,
over 50,000 tons of Macadamia nuts from Australia were exported in 2020 with an increased
export trend in the Australian Macadamia market from 2014 to 2020 [35]. They could
contribute to commercial opportunities for Australian native food. From a social aspect,
the development of Australian native species provides a connection to the country and
traditional food for Aboriginal people, as these species are normally harvested by remote
and rural communities. To develop Australian native value chains, further investigation
of harvesting, processing, and storage conditions of native fruit is required. Regulatory
approval is critical to meeting both domestic and international trade obligations. Although
some legislation has been documented about threatened species and the protection of
habitats, there are some ineffective regulations in the EPBC Act and the Biodiversity
Conservation Act 2016, leading to an increase in the extinction rate of Australian native
species. Thus, this area needs to be further assessed to improve the protection of Australian
native species and the prevention of biodiversity loss [232,233].

The development of Australian indigenous species can improve food insecurity. Cur-
rently, food and nutritional security are challenging issues and play a vital role in continuous
socioeconomic development in the world. Since the COVID-19 pandemic occurred, food
security has become a more serious issue in the world and native food is a good option to im-
prove food insecurity. For example, edible parts from the Proteaceae species can be applied
in value-added food sources or ingredients providing food and economic returns to the
relevant communities. Nevertheless, there is still limited information on the nutritional and
functional properties of Proteaceae fruit for it to be safe for consumption. So, more in vitro
and in vivo studies are necessary to further investigate its nutritional and health values.
Moreover, the Australian Food Composition Database (https://www.foodstandards.gov.au
(accessed on 4 August 2023)) is a comprehensive reference website to provide information
on the nutrient content of Australian food. Although numerous native fruits have been
studied and the results published, the food composition of native fruit including Proteaceae
fruit has not been included in the Australian Food Composition Database. Moreover,
different methods and units have been used in the analysis of the nutrient components

https://www.foodstandards.gov.au
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and bioactivities of indigenous fruit in the literature, which contributes to the difficulty
of comparing different fruits to obtain a better understanding of their nutritional and
bioactive properties. Also, a lack of reproducibility has been found in studies on the family
Proteaceae as their bioactive properties were determined in different botanic parts rather
than the same parts. Different maturity stages and fruit processing methods also influence
the nutritional level of indigenous fruits and need to be studied further.

9. Conclusions and Recommendations for the Future

The demand for herbal plants worldwide is on the rise due to their mineral side effects,
ease of local harvest, and lower prices. Various herbal plants are being used for the produc-
tion of new medicines, ensuring food security and providing diet diversity. Many species
of Proteaceae have potential applications in a wide range of industries. Traditionally, these
plants have been used as foods and medicines in Australian Aboriginal communities, but
pharmacokinetic studies and clinical studies are required to evaluate their safety, efficacy,
and bioavailability. In the Proteaceae family, phytochemical studies are still lacking, and
only a few species have been quantified. However, there is limited phytochemical infor-
mation available for the fruit parts of Proteaceae species. Several nutritional and bioactive
studies have been conducted on Proteaceae species, however, sample location, harvest
period, extraction method, and solvent choice affect plant bioactivity. Further investigation
of these influences is necessary in order to maximize the production of bioactive properties
from natural plant sources. Different tissues of plants in the Proteaceae family could be
further explored for potential application in functional foods and as indigenous prod-
ucts. Persoonia spp. has shown promising antimicrobial and anti-inflammatory properties,
which could be exploited in the future as functional ingredients or nutraceuticals. It is
recommended to conduct additional nutrition and bioactivity tests on Persoonia species.
Overall, Proteaceae fruit is promising as a food that can contribute to food consumption,
environmental sustainability, and socioeconomic development, but further studies are
needed to provide safety information.
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