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Abstract: Exposure to phoxim at low levels caused bioaccumulation with neurotoxicity but also
induced oxidative stress, tissue damage, and abnormal nutrient metabolism. This study described that
vitamin E ameliorates phoxim-induced nephrotoxicity via inhibiting mitochondrial apoptosis. In vivo,
24 healthy piglets were treated with phoxim (0 mg/kg and 500 mg/kg) and vitamin E + phoxim
(vitamin E + phoxim: 200 mg/kg + 500 mg/kg). In vitro, PK15 cells were treated with phoxim (0 mg/L
and 1 mg/L) and vitamin E + phoxim (phoxim + vitamin E: 1 mg/L + 1 mg/L) for 12 h and 24 h. Our
results indicated that accumulation of ROS, oxidative stress, and renal cell injury through stimulation
of mitochondrial apoptosis resulted in phoxim-induced nephrotoxicity. Phoxim resulted in swollen
mitochondria, blurred internal cristae, renal glomerular atrophy, and renal interstitial fibrosis. Vitamin
E alleviated the adverse effects of phoxim by reducing ROS and improving antioxidant capacity
in vivo and in vitro. Vitamin E significantly increased SDH in vitro (p < 0.01), while it decreased
ROS, Bad, and cyto-c in vitro and SOD and CAT in vivo (p < 0.05). Vitamin E ameliorated phoxim-
induced renal histopathologic changes, and mitochondria swelled. In addition, vitamin E regulates
phoxim-induced apoptosis by alleviating oxidative damage to the mitochondria.
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1. Introduction

Phoxim, an organophosphorus pesticide (OP), is frequently utilized in agricultural and
veterinary fields, resulting in environmental pollution and food safety upon flowing into
the food chain [1]. Phoxim accumulated in the respiratory tract and gastrointestinal tract is
absorbed into the blood and circulated to target organs to exert its toxic effects in animals.
Phoxim not only exerts its neurotoxicity through the cholinergic system but also induces
oxidative stress, tissue damage, and abnormal nutrient metabolism [2]. It was found that
chronic exposure to low doses of phoxim did not induce cholinergic neurotoxicity [3] but
instead promoted the accumulation of reactive oxygen species (ROS) [4]. Phoxim not
only inhibits cholinesterase activity but also induces a large amount of ROS [5]. Jin et al.
found that ROS is an important apoptotic signal [6]. As a free radical scavenger, vitamin
E (α-tocopherol) prevents the spread of free radical reactions by scavenging peroxy and
alkoxy intermediates, and it protects cell membranes, mitochondria, and lipoproteins from
oxidative damage [7]. Vitamin E has also been shown to regulate apoptotic regulators
such as Bcl-2 and caspase-3 [8]. Recent studies have found that vitamin E alleviates the
toxicity that is induced by exogenous pollutants in vivo and in vitro [9,10]. Mitochondria
is the regulatory center of cells, plays a key role in regulating apoptosis, and is vulnerable
to attack by heterogenous substances [11]. Mitochondria not only induce apoptosis but
also enlarge the apoptotic signal. Four complexes form the mitochondrial respiratory
chain on the mitochondrial inner membrane, including NADH dehydrogenase, succinate
dehydrogenase, CoQH2-cytochrome C reductase, and cytochrome C oxidase. In the normal
physiological state, the NADH dehydrogenase and CoQH2-cytochrome C reductase in
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the mitochondria produce a small amount of ROS when the mitochondrial respiratory
chain transmits electrons [12]. The ROS is cleared by SOD in the mitochondria to maintain
intracellular balance. A large number of ROS accumulate in cells under oxidative stress
and lead to mitochondrial dysfunction. Mitochondrial dysfunction includes the leaking of
electrons when the mitochondrial respiratory chain transmits electrons [13]. The leaked
electrons react with oxygen to produce more ROS, which aggravates the vicious circle of
mitochondrial dysfunction [14]. Van found that the accumulation of ROS could induce
mitochondrial damage through mechanisms such as changing the membrane potential
and structure of mitochondria and increasing the total amount of electron leakage and
ROS production [15]. ROS has been described as an inducer of renal dysfunction [16].
The kidney is a key target organ that is involved in metabolism and has immunological
and vital metabolic functions. The kidney has the highest mitochondrial number and
oxygen consumption [17]. Previous research found phoxim-induced intestinal toxicity and
hepatotoxicity, and vitamin E minimized intestinal and hepatic oxidative stress damage
significantly [2,5]. At present, knowledge of the mechanism by which vitamin E alleviates
phoxim-induced toxicity is rare. Based on previous research, this experiment was to
evaluate vitamin E-regulated phoxim-induced renal oxidative stress injury and apoptosis
by alleviating mitochondrial oxidative damage in vivo and in vitro.

2. Materials and Methods
2.1. Chemicals

In vivo experiments, phoxim (purity ≥ 92%) was supplied by Hubei Dixin Chemical
Manufacturing Co., Ltd. (Wuhan, China). Vitamin E (α-tocopherol, purity ≥ 50%) was
purchased from the Vitamin Factory of Zhejiang Medicine Co., Ltd. (Hangzhou, China).
In vitro experiments, phoxim and vitamin E (α-tocopherol) were purchased from Sigma
(St. Louis, MO, USA).

2.2. Experimental Design
2.2.1. Animal Experiments

Twenty-four healthy 5-week-old male piglets of similar weights (16.5 ± 1.5 kg) were
divided into 3 groups, including the control group, phoxim group (phoxim: 500 mg/kg),
and vitamin E + phoxim group (vitamin E + phoxim: 200 mg/kg + 500 mg/kg), respec-
tively. The sample size determined by the piglets’ model experiment is mainly based
on the previous article [18]. After one week of pre-feeding, all the piglets were fed their
corresponding diet for 30 consecutive days. Phoxim and vitamin E were dissolved in
soybean oil immediately before use. The control group was given the same soybean oil.
The composition and nutrient levels of the basal diet are presented in Table 1. All the piglets
were fed the basal diet and were maintained according to the National Research Council
Guide (1996) in metabolic cages. This study was approved by the Ethical and Animal
Welfare Committee of Heilongjiang Province, China (2008). Animal care and treatment
were in strict accordance with the standards of the Experimental Animal Care and Use
Guide of the Northeast Agricultural University (NEAU-(2011)-9).

2.2.2. Cell Experiments

PK15 cells were treated with phoxim (0 mg/L and 1 mg/L) and vitamin E + phoxim
(phoxim + vitamin E: 1 mg/L + 1 mg/L). Eight replicates were used for each group, and
the groups were incubated for 12 h and 24 h.

2.2.3. Sample Collection

Piglets were fasted for 12 h and then sacrificed on the 30th day of the experiment. The
tissues were immediately separated, frozen in liquid nitrogen, and stored in a cryogenic
refrigerator at −80 ◦C. The remaining samples were stored at −20 ◦C. The blood was
centrifuged for 15 min at 3000× g at 4 ◦C, and the serum samples were stored at −20 ◦C.
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Table 1. Composition and nutrient levels of basal diet.

Components (%) Componsition 3 (%)

Corn 71.56 DE (MJ/kg) 14.12
Soybean meal 15.65 Crude protein 16.80
Fishmeal 3.00 Calcium 0.67
Soybean oil 2.00 Phosphorus 0.56
Wheat bran 5.00 Lysine 0.98
CaHPO4 0.80 Methionine 0.28
Limestone 0.78
Salt 0.35
Lysine 0.26
Premix 1 0.50
Choline chloride 2 0.10
Total 100.00

Note: 1 Provided the following per kilogram of diet: Cu 20 mg; Zn 80 mg; Se 0.2 mg; Mn 25 mg; Fe 100 mg;
I 0.3 mg; vitamin A 8000 IU; vitamin D 2000 IU; vitamin E 30 IU; vitamin K3 1.5 mg; vitamin B1 1.6 mg; vitamin
B6 1.5 mg; vitamin B12 12 µg; niacin 20 mg; D-pantothenic acid 15 mg. 2 The effective concentration of choline
chloride is 50%. 3 Nutrient contents were calculated values.

2.2.4. Serum Biochemical Analysis

In vivo, the serum creatinine (CRE) and blood urea nitrogen (BUN) levels of piglets
were tested using an automatic biochemical analyzer (Fully, Italy).

2.2.5. Oxidation–Antioxidant Parameters

In vivo, the serum ROS levels were determined in the piglets by an enzyme-linked
immunosorbent assay (ELISA), which was operated strictly according to the instructions
of the kit (Shanghai Jinma Co., Ltd., Shanghai, China) on a Labsystems Multiskan MS
(Finland). The antioxidant enzyme parameters were tested using an ultraviolet spectropho-
tometer (UV-2410PC model, Shimadzu Corp., Kyoto, Japan) according to the instructions of
the commercial diagnostics kit (Nanjing Jiancheng Biotechnology Co., Ltd., Nanjing, China).
The parameters that were evaluated in the kidney were malondialdehyde (MDA), total
antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione (GSH), catalase
(CAT), and glutathione peroxidase (GSH-Px).

In vitro, the oxidation–antioxidant were ROS, SOD activity, and MDA content were
determined according to the manufacturer’s instructions. The protein concentration was
determined by a BCA protein detection kit. A model 680 enzyme labeling instrument
(Bio-Rad, Hercules, CA, USA) was used for the detection.

2.2.6. Histopathological Examinations

The kidney samples of piglets were fixed in 10% buffered formalin. Fixed samples
were dehydrated through graded alcohols hyalinized by xylene and then embedded in
paraffin blocks. Stained kidney sections with hematoxylin–eosin (H&E) at 5 µm. The
sections were observed under an optical microscope.

2.2.7. Ultrastructure of the Mitochondria

In vivo, the kidneys of piglets were collected, and 2.5% glutaraldehyde was used to
fix the tissues to avoid light. In vitro, the PK15 cells were collected at 1000× g for 5 min,
and then 2.5% glutaraldehyde was fixed in the cells. After they were fixed, the tissues were
washed 4 times (15 min/wash) with 4 ◦C PBS (0.1 M, pH 7.2). The samples were immersed
in 1% osmium tetroxide for 1 h (4 ◦C) and dehydrated in different concentrations of ethanol
(50%, 70%, 90%, and 100%). After their dehydration, the samples were immersed in a
mixture of acetone and acetone and embedded in epoxy resin. Finally, the samples were
stained with uranium acetate and lead citrate and cut into ultrathin sections for observation
under transmission electron microscopy.
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2.2.8. Mitochondrial Function

For mitochondrial function, the activities of succinate dehydrogenase (SDH), cy-
tochrome c oxidase (COX), and Ca2+-Mg2+-ATPase in the PK15 cells were determined
by ELISA. The enzyme activity was detected by a Labsystems Multiskan MS (Finland)
system in strict accordance with the instructions of the kit (Shanghai Jinma Co., Ltd.,
Shanghai, China).

2.2.9. Flow Cytometer Analysis of Apoptosis

In vitro, 1–5 × 105 cells were collected and centrifuged at 1000× g for 5 min. Then,
195 L Annexin V-FITC was added to the cell precipitate, and 5 L Annexin V-FITC was
added after mixing, which was then followed by the addition of a 10 L propidium iodide
staining solution. After incubation at room temperature in the dark for 15 min, the samples
were filtered through a 200-mesh filter (before adding PI) and analyzed by flow cytometry
(Becton-Dickinson, San Jose, CA, USA) within 1 h. The excitation wavelength was 488 nm,
and the emission wavelength was 530 nm. The green fluorescence of Annexin V-FITC was
detected by FITC (FL-1, 530 nm), and the red fluorescence of the PI was detected by PI
channel (FL-2, 585 nm).

2.2.10. Mitochondrial Membrane Potential

1 mL of JC-1 dye solution was added to the PK15 cells and mixed well for 20 min in
a carbon dioxide incubator (Thermo, Waltham, MA, USA). The 5X JC-1 dye buffer was
diluted to 1X and placed on ice for 20 min. The cells were washed with the JC-1 staining
buffer (1X), and the instructions of the kit were followed (JC-1 Biyun Tian, Shanghai, China).

2.2.11. Quantitative Real-Time PCR (qRT-PCR)

Total RNA in tissues and cells was isolated using the TRIzol reagent kit, which was
obtained from TaKaRa® Bio Catalog (Dalian, China). All procedures were performed
following the manufacturer’s instructions. The expression of genes, including GAPDH
(NM_001206359.1; F: ATGCTTCTAGGCGGACTGT; R: CCATCCAACCGACTGCT), Bcl-2
(EF681866.1; F: CATGTGTGTGGAGAGCGTCA; R: GCATCCCAGCCTCCGTTATC), Bad
(XM_005660745; F: TGAAGGGACTGAGGATGAGG; R: GAAGGAACCCTGGAACTCGT),
Bax (XM_005664710; F: ATGGAGCTGCAGAGGATGAT; R: AAAGTAGAAAAGCGC-
GACCA), Caspase-3 (NM_214131; F: CGGACAGTGGGACTGAAGAT; R: GATCCGTC-
CTTTGAATTTCG), Caspase-8 (NM_001031779; F: TTGGGGAACATTTGGACAGT; R:
TTTTCTTGGAGCCTCTGGAA), Caspase-9 (XM_003127618.3; F: TGAACTTCTGCCAT-
GAGTCG, R: ATTTGCTTGGCAGTCAGGTT), Cyto-C (NM_001129970; F: AAAGGGAG-
GCAAACACAAGA; R: CCAGGTGATGCCTTTGTTCT), FAS (NM_213839; F: CCACGT-
GTGAACATGGAGTC; R: GAGGGCCCATAACCAGTGTA) were determined by Sangon
Biological Engineering Co., Ltd. (Shanghai, China) and analyzed on the ABI PRISM 7500
SDS thermal cycler apparatus (Applied Biosystems, Foster City, CA, USA). The expression
level of genes was measured by the 2−∆∆Ct method.

2.3. Statistical Analysis

All data were analyzed using an analysis of variance (ANOVA) test and the least
significant difference (LSD) procedure in SPSS (version 22.0; IBM-SPSS Inc., Chicago, IL,
USA). Duncan’s multiple range test determined the differences between groups. All the
data were presented as the mean ± SEM. p < 0.05 was a significant difference and was
denoted by different lowercase letters, while with different capital letters, it means p < 0.01.

3. Results
3.1. Serum Biochemical Analysis

Regarding serum biochemical parameters, they are shown in Table 2. For renal
function, phoxim induction significantly increased the content of serum BUN (p < 0.05) and



Antioxidants 2023, 12, 2000 5 of 18

CRE (p < 0.01). The supplementation of 200 mg/kg vitamin E significantly suppressed the
phoxim-induced increase of the CRE (p < 0.01).

Table 2. Vitamin E affects phoxim-induced renal function parameters in piglets.

Items Control Phoxim Vitamin E + Phoxim

BUN (mmol/L) 2.73 ± 0.04 b 3.68 ± 0.35 a 3.17 ± 0.09 ab

CRE (µmol/L) 92.08 ± 2.62 C 121.82 ± 3.57 A 106.20 ± 2.13 B

Note: In the same row, different lowercase letter superscripts mean notable differences (p < 0.05), while different
capital letters show significant differences (p < 0.01). Values with the same or no letters mean no significant
difference (p > 0.05).

3.2. Oxidant-Antioxidant Parameters

Data on oxidative-antioxidant parameters are shown in Tables 3 and 4. In vivo
(Table 3), phoxim significantly increased serum ROS and MDA (p < 0.01), while it signifi-
cantly decreased SOD, T-AOC, GPx, CAT, and GSH (p < 0.05). Compared with the phoxim
group, SOD and CAT were significantly decreased in the kidneys of the piglets in the
vitamin E + phoxim group (p < 0.01).

Table 3. Vitamin E affects phoxim-induced oxidative-antioxidant parameters in vivo.

Items Control Phoxim Vitamin E + Phoxim

ROS in serum (IU/mL) 166.09 ± 8.69 C 289.60 ± 3.84 A 265.01 ± 1.35 B

Kidney
MDA (nmol/mg protein) 1.33 ± 0.09 B 1.96 ± 0.16 A 1.69 ± 0.08 AB

SOD (U/mg protein) 254.39 ± 4.08 A 203.06 ± 1.11 C 228.06 ± 540 B

T-AOC (U/mg protein) 0.43 ± 0.01 A 0.31 ± 0.02 B 0.36 ± 0.01 B

GPx (nmol/mg protein) 31.18 ± 1.06 A 21.8 ± 0.75 B 26.10 ± 2.24 AB

CAT (U/mg protein) 36.60 ± 2.78 A 7.41 ± 1.55 C 15.81 ± 0.79 B

GSH (U/mg protein) 37.27 ± 3.36 A 24.04 ± 1.10 B 31.95 ± 1.60 AB

Note: In the same row, different capital letters show significant differences (p < 0.01).

Table 4. Vitamin E affects phoxim-induced oxidative-antioxidant parameters in vitro.

Items Control Phoxim Vitamin E + Phoxim

12 h
ROS (%) 100.00 ± 5.70 B 114.13 ± 2.72 A 102.98 ± 2.05 B

SOD (U/mgprot) 29.16 ± 0.22 25.26 ± 0.32 26.28 ± 1.87
MDA (µmol/mg) 9.82 ± 0.14 B 11.38 ± 0.18 A 11.02 ± 0.15 A

24 h
ROS (%) 100.00 ± 2.75 B 121.83 ± 2.17 A 107.62 ± 1.88 B

SOD (U/mgprot) 26.81 ± 0.72 a 21.94 ± 0.96 b 23.42 ± 1.56 ab

MDA(µmol/mg) 11.51 ± 0.1 B 15.42 ± 0.59 A 14.11 ± 0.48 A

Note: In the same row, different lowercase letter superscripts mean notable differences (p < 0.05), while different
capital letters show significant differences (p < 0.01). Values with the same or no letters mean no significant
difference (p > 0.05).

In vitro (Table 4), phoxim increased ROS and MDA significantly in 12 and 24 h
(p < 0.05, p < 0.01), while SOD was decreased by phoxim induction (p < 0.05). Compared
with the phoxim group, vitamin E decreased ROS significantly in 24 h (p < 0.05). Vitamin E
declined the phoxim induction elevated in ROS, and there was no significant difference in
ROS and SOD between the control group and the vitamin E + phoxim group (p > 0.05).

3.3. Histopathological Findings

Histopathologic sections of piglets’ kidneys were observed in Figure 1. (a) The control
group showed the normal appearance of renal glomeruli (thick arrow) and renal tubule
(thin arrow). (b) Phoxim-exposed piglets showed renal glomerular atrophy (thick arrow)
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and renal interstitial fibrosis (thin arrow). (c) The group of vitamin E + phoxim showed
normal glomeruli (thick arrow) and tubules in the kidney (thin arrow).
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Figure 1. Histopathologic sections of piglets’ kidneys (H&E, 400×): In vivo, (a) Control group showed
the normal appearance of renal glomeruli (thick arrow) and renal tubule (thin arrow). (b) Phoxim-
exposed piglets showed renal glomerular atrophy (thick arrow) and renal interstitial fibrosis (thin
arrow). (c) The group of vitamin E + phoxim showed normal glomeruli (thick arrow) and tubules in
the kidney (thin arrow).

3.4. Ultrastructure of the Mitochondria

Transmission electron microscopy of piglets’ kidneys and pk15 cells is shown in
Figures 2 and 3.

In vivo (Figure 2), (a) the Control group showed the normal appearance of nephrocytes.
(b) After exposure to phoxim, the mitochondria gradually become swollen, and the number
of mitochondria decreases. (c) The mitochondria were slightly swollen in the vitamin E +
phoxim group.

In vitro, phoxim induced the mitochondria to swell, the internal crest blurred and
fractured, and a small amount of vacuolation appeared for 12 h. For 24 h, phoxim induced
the deformation and disappearance of mitochondrial membranes. There were a large
number of vacuoles that appeared in mitochondria with the addition of phoxim for 24 h.
The mitochondria were slightly swollen in the vitamin E + phoxim group.
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of 12 h and 24 h. (c) The mitochondria were slightly swollen (thin arrow) in the vitamin E + phoxim
group of 12 h and 24 h.

3.5. Mitochondrial Function

As for mitochondrial function enzymes (Table 5), phoxim induction significantly
declined COX (p < 0.05), Ca2+-Mg2+-ATPase, and SDH (p < 0.01) for 24 h. Vitamin E
elevated the phoxim-inducted decline in SDH (p < 0.01), COX, and Ca2+-Mg2+-ATPase.
There was no significant difference in COX and SDH activity between the control and
vitamin E + phoxim (p > 0.05).

Table 5. Vitamin E affects phoxim-induced mitochondrial function enzyme activity in vitro.

Items Control Phoxim Vitamin E + Phoxim

12 h
COX (IU/L) 360.24 ± 32.66 354.54 ± 7.51 326.82 ± 8.90
Ca2+-Mg2+-ATPase (ng/L) 338.34 ± 13.20 310.80 ± 11.90 361.36 ± 29.94
SDH (U/L) 597.06 ± 12.61 580.26 ± 27.89 589.03 ± 6.64
24 h
COX (IU/L) 363.74 ± 14.00 a 315.29 ± 14.09 b 334.33 ± 3.76 ab

Ca2+-Mg2+-ATPase (ng/L) 389.42 ± 4.09 A 320.88 ± 9.41 B 333.17 ± 16.59 AB

SDH (U/L) 637.77 ± 3.83 A 475.46 ± 11.54 B 592.68 ± 18.03 A

Note: In the same row, different lowercase letter superscripts mean notable differences (p < 0.05), while different
capital letters show significant differences (p < 0.01). Values with the same or no letters mean no significant
difference (p > 0.05).

3.6. Cell Apoptosis Assay

Regarding cell apoptosis rate (Table 6 and Figure 4), phoxim significantly increased the
apoptotic rate of the PK15 cells for 24 h (p < 0.01), and there was no significant difference
between the control group and vitamin E + phoxim group (p > 0.05).
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Table 6. Vitamin E affects phoxim-induced cell apoptosis rate in vitro.

Items Control Phoxim Vitamin E + Phoxim

12 h (%)
Cells apoptosis rate 4.50 ± 0.12 8.16 ± 0.68 7.03 ± 1.70
24 h (%)
Cells apoptosis rate 10.15 ± 0.49 B 19.90 ±1.38 A 15.24 ± 1.40 AB

Note: In the same row, different capital letters show significant differences (p < 0.01). Values with the same or no
letters mean no significant difference (p > 0.05).
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3.7. Mitochondrial Membrane Potential

For mitochondrial membrane potential (Table 7), the decrease (p < 0.05) caused by
phoxim induction in the mitochondrial membrane potential relative to the control was re-
duced by vitamin E, and there was no significant difference between the vitamin E + phoxim
group and the control group.

Table 7. Vitamin E affects phoxim-induced mitochondrial membrane potential in vitro.

Items Control Phoxim Vitamin E + Phoxim

12 h (%)
Mitochondrial membrane potential 100.00 ± 5.18 a 84.45 ± 3.02 b 92.88 ± 3.97 ab

24 h (%)
Mitochondrial membrane potential 100.00 ± 5.44 A 82.64 ± 2.44 B 87.98 ± 4.20 AB

Note: In the same row, different lowercase letter superscripts mean notable differences (p < 0.05), while different
capital letters show significant differences (p < 0.01).
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3.8. Quantitative Real-Time PCR (qRT-PCR)

As for the mRNA expressions of apoptosis signaling factors (Tables 8 and 9), phoxim
significantly elevated the expression of Bad, Bax, caspase-3, and caspase-9 in vivo and
in vitro (p < 0.05), while the expression of Bcl-2 was firmly lower than the control group
(p < 0.01). There was no significant difference in Bad, Bax, caspase-3, Bcl-2, and caspase-9
between the control group and the vitamin E + phoxim group (p > 0.05). In vitro, phoxim
increased the mRNA expression of cyto-c (p< 0.05) relative to the phoxim group, which
was reduced (p< 0.05) by vitamin E.

Table 8. Vitamin E affects phoxim-induced mRNA expressions of apoptosis factors in piglets.

Items Control Phoxim Vitamin E + Phoxim

Bcl-2 1.25 ± 0.08 A 0.74 ± 0.09 B 1.19 ± 0.14 AB

Bad 0.82 ± 0.12 b 1.35 ± 0.16 a 1.12 ± 0.11 ab

Bax 0.65 ± 0.07 b 1.18 ± 0.17 a 1.00 ± 0.14 ab

Caspase-3 0.78 ± 0.08 B 1.22 ± 0.11 A 1.02 ± 0.06 AB

Caspase-8 0.66 ± 0.22 b 1.32 ± 0.05 a 0.92 ± 0.12 ab

Caspase-9 0.80 ± 0.02 b 1.34 ± 0.15 a 1.32 ± 0.23 a

Cyto-C 0.85 ± 0.08 1.16 ± 0.06 0.94 ± 0.16
FAS 1.13 ± 0.25 0.87 ± 0.09 0.85 ± 0.10

Note: In the same row, different lowercase letter superscripts mean notable differences (p < 0.05), while different
capital letters show significant differences (p < 0.01). Values with the same or no letters mean no significant
difference (p > 0.05).

Table 9. Vitamin E affects phoxim-induced mRNA expressions of apoptosis factors in PK15 cells.

Items Control Phoxim Vitamin E + Phoxim

12 h
Bad 0.79 ± 0.13 B 1.64 ± 0.14 A 1.09 ± 0.04 B

Bax 0.74 ± 0.08 B 1.13 ± 0.05 A 0.98 ± 0.07 AB

Bcl-2 1.38 ± 0.20 a 0.81 ± 0.07 b 1.07 ± 0.09 ab

Caspase-3 0.72 ± 0.25 b 1.40 ± 0.12 a 1.18 ± 0.10 ab

Caspase-8 1.32 ± 0.21 1.35 ± 0.17 1.02 ± 0.08
Caspase-9 0.76 ± 0.10 B 1.48 ± 0.23 A 1.06 ± 0.06 AB

Cyto-C 0.86 ± 0.04 b 1.16 ± 0.08 a 0.92 ± 0.06 b

24 h
Bad 0.90 ± 0.07 b 1.68 ± 0.47 a 1.01 ± 0.06 b

Bax 0.72 ± 0.10 b 1.09 ± 0.02 a 0.97 ± 0.09 ab

Bcl-2 1.25 ± 0.05 A 0.76 ± 0.12 B 1.02 ± 0.05 AB

Caspase-3 0.86 ± 0.40 b 1.75 ± 0.07 a 1.08 ± 0.22 ab

Caspase-8 0.81 ± 0.27 1.82 ± 0.65 1.30 ± 0.23
Caspase-9 0.79 ± 0.12 B 2.24 ± 1.00 A 1.05 ± 0.10 AB

Cyto-C 0.88 ± 0.10 B 1.35 ± 0.10 A 0.97 ± 0.07 B

Note: In the same row, different lowercase letter superscripts mean notable differences (p < 0.05), while different
capital letters show significant differences (p < 0.01). Values with the same or no letters mean no significant
difference (p > 0.05).

4. Discussion

Phoxim is widely utilized in agriculture and veterinary fields and accumulates in
tissues to cause adverse effects on farm animals and human health. The toxic mechanism
is related to impaired oxidative homeostasis, including the overproduction of ROS and
oxidative stress [18–20]. As an effective lipid-soluble antioxidant, vitamin E alleviates the
toxic effects of many organophosphorus pesticides in vivo and in vitro [9,10].
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4.1. Serum Biochemical Analysis

The content of BUN and CRE in serum was an evaluation of renal function, which
accurately reflected the renal injury. BUN is related to the glomerular filtration function,
protein absorption, and urea excretion rate [21]. CRE is a product of muscle metabolism,
which depends on the ability of glomerular filtration [22]. The overproduction of ROS
impaired renal function with increasing serum BUN and CRE [16]. It is well known
that vitamin E regulates oxidative stress and creatine metabolism and improves protein
utilization. Our study found that phoxim significantly increased the content of BUN and
CRE in the serum of piglets, indicating that phoxim-induced nephrotoxicity, which is
attributed to renal oxidative damage, is well in line with the histological changes. The
supplementation of 200 mg/kg vitamin E suppressed the phoxim-induced increase in
serum CRE significantly, while serum BUN increased insignificantly. In addition to phoxim,
these effects might be related to the dosage and duration of vitamin E, and the mechanism
of action needs further study.

4.2. Oxidation-Antioxidation

In an environmental risk assessment, oxidation-induced changes are considered
biomarkers of environmental pollution [23]. The oxidative process and accumulation
of ROS in cells cause mitochondrial dysfunction [15], which in turn alters the mitochondrial
membrane potential and structure, increases the total amount of ROS, and forms a vicious
cycle. Studies reported that Ops-induced increases in ROS led to significant changes in
mitochondrial transmembrane potential and resulted in mitochondrial dysfunction un-
der oxidative stress [24]. The toxic mechanism of OPs is related to the overproduction
of ROS [25]. MDA is a metabolite of lipid peroxidation and is generally considered to
be the most representative end product of oxidative stress [26,27]. It is used to evaluate
lipid peroxidation and oxidative damage. Our results of the animal and cell experiments
showed that phoxim significantly increased ROS and MDA, which means oxidative stress,
which is consistent with other findings [28–30]. The antioxidant enzyme system (SOD,
GPX, GST, and CAT) and the non-enzymatic antioxidant system (vitamin E, vitamin C,
and GSH) consist of an antioxidant system that protects the body from oxidative stress
damage [31,32]. SOD is a first-line defense mechanism that converts ROS into hydrogen
peroxide [33]. GPx and CAT are the second lines of the antioxidant defense mechanism,
which act by converting hydrogen peroxide into hydrogen peroxide and oxygen perox-
ide [34]. As a non-enzymatic antioxidant, GSH is a tripeptide that contains cysteine, which
directly scavenges ROS, participates in the GPx catalytic reaction, and protects the body
from lipid peroxidation toxicity [10,26]. GSH prevents the release of cytochrome C from
the mitochondria. We found that phoxim-induced excessive ROS resulted in abnormal
lipid peroxidation, increased MDA, and decreased SOD in vivo and in vitro. Phoxim sig-
nificantly reduced GPx, T-AOC, GSH, and CAT in the kidneys of piglets, and these findings
are similar to those of previous reports [25,32,35]. The results showed that phoxim induced
lipid peroxidation and oxidative stress. As a member of the non-enzymatic antioxidant
system, vitamin E inhibited the accumulation of ROS by health-related physiological pro-
cesses and alleviated oxidative stress [36–38]. Many studies have suggested that vitamin E
supplementation is a potential strategy for improving oxidative stress damage [39,40]. Our
study found that vitamin E alleviates OP-induced oxidative stress by lowering the ROS and
increasing the CAT in vivo and in vitro, which were similar to previous reports [33,41,42].
In summary, phoxim impaired oxidative homeostasis through the accumulation of ROS
and MDA while decreasing SOD, GPx, GSH, and CAT in vivo and in vitro. Vitamin E
scavenged ROS by increasing SOD and improved the antioxidant capacity by elevating
GPx, GSH, and CAT, which alleviated phoxim-induced mitochondrial oxidative stress
injury and led to hepatotoxicity.
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4.3. Histopathological Findings

Histopathological examination is not only a standard method for assessing the de-
gree of tissue damage but is also used as an index to evaluate the effect of exogenous
pollutants [43]. The kidney is an important detoxification and excretory organ in animals.
The results of the present study showed renal tubular epithelium and glomerulus lumen
swelling, vacuolization, and vacuolization-necrosis in OPs-treated animals’ kidneys [44,45].
Our study found that phoxim-exposed piglets showed injuries in the kidney structure,
such as renal glomerular atrophy and renal interstitial fibrosis. Vitamin E ameliorated
phoxim-induced renal histopathologic changes, showing normal glomeruli and tubules in
the kidney. Also, histological findings supported the results of serum biochemical analysis,
which were similar to previous studies [44,46].

4.4. Ultrastructure of the Mitochondria

As an active metabolic organ, the kidney has plenty of mitochondria, which reg-
ulate cellular metabolism and apoptosis [16,47]. Intracellular ROS are mainly derived
from mitochondria [48]. ROS overproduction causes mitochondrial oxidative damage
and kidney epithelial cell apoptosis, which results in mitochondrial fragmentation [49]. It
is reported that mitochondrial fragmentation may accelerate kidney epithelial cell apop-
tosis and inhibit kidney recovery from kidney injury [50]. Dirican and Kalender found
that subacute and subchronic dichlorvos exposure results in vacuolation and swelling of
mitochondria [51]. Li found that as the trichlorfon dosage increases, the mitochondria
become blurred, and the degree of mitochondrial swelling gradually increases until the
mitochondria rupture or defect [52]. We demonstrated phoxim-induced nuclear atrophy
and mitochondrial swelling, which were the typical apoptotic characteristics. Phoxim
caused the mitochondria of the PK15 cells to gradually become swollen, a large degree of
vacuolation appeared, and the internal cristae became blurred; this deformation seriously
altered the mitochondria and eventually caused them to disintegrate, which caused the
number of mitochondria to decrease. Cell damage triggered the mitochondrial pathways
to participate in the caspase-dependent apoptotic response [53]. Vitamin E treatment
alleviated phoxim-induced mitochondrial changes and noted renoprotection.

4.5. Mitochondrial Enzyme Activity

The mitochondria are the energy centers of cells [54]. The mitochondrial function
includes cell energy metabolism, electron transport in the respiratory chain, and Ca2+

storage, which is closely related to cell metabolism and determines the survival of cells.
Ca2+-Mg2+-ATPase, cytochrome c oxidase (COX), and succinate dehydrogenase (SDH) are
three enzymes that reflect mitochondrial function. Ca2+-Mg2+-ATPase is mainly distributed
on the cell membrane and plays an important role in maintaining the integrity and fluidity
of the cell membrane. The Ca2+-Mg2+-ATPase activity decreases when the cell membrane
is damaged. OPs significantly reduced the activity of Ca2+-Mg2+-ATPase [55]. COX is most
vulnerable to peroxides and plays an important role in regulating mitochondrial oxidation.
The activity of COX could accurately reflect the function of mitochondria. Studies have
shown that COX activity is inhibited when mitochondrial function is impaired. SDH is the
key enzyme of the TCA cycle, which is embedded in the mitochondrial inner membrane.
The activity of SDH reflects the extent of the TCA cycle and mitochondrial function. It
provides electrons for the mitochondrial respiratory chain and is the junction between the
respiratory electron transport chain and oxidized phosphoric acid. We demonstrated that
phoxim-induced COX, Ca2+-Mg2+-ATPase, and SDH significantly decreased for 24 h. Vita-
min E treatment increased phoxim-induced COX, Ca2+-Mg2+-ATPase, and SDH activities,
which were similar to Xiao’s results [56]. The results showed that phoxim had adverse
effects on mitochondrial function, and vitamin E alleviated phoxim-induced mitochondrial
dysfunction, which is linked to oxidative stress inseparably [48].
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4.6. Apoptosis
4.6.1. Mitochondrial Transmembrane Potential

Mitochondrial membrane potential (∆Ψm) is the difference in ion concentration be-
tween the two sides of the mitochondrial inner membrane, which is reflected in mitochon-
drial injury and linked to mitochondrial function [57]. Mitochondrial dysfunction, ∆Ψm,
and cell energy were decreased, leading to cell apoptosis. The reduction of ∆Ψm is the first
step in the apoptotic process. Studies have shown that OP significantly reduced ∆Ψm in a
dose-dependent manner [52,58]. This study found that phoxim-induced ∆Ψm decreased,
reflecting that the mitochondrial pathway was an important pathway for OPs-induced
apoptosis. Adding vitamin E could effectively inhibit this trend.

4.6.2. Apoptosis Rate

Apoptosis is a programmed form of cell death that is controlled by genes, and it
plays a key role in physiological and pathological processes. As a regulatory mechanism
to maintain the dynamic balance of the body’s internal environment, cellular apoptosis
removes redundant, aging, and even damaged cells in the body, which achieves the purpose
of maintaining the normal physiological activities of the body [59]. Abnormal mitochondrial
function induces apoptosis [60]. We found that phoxim increased the apoptosis rate of
the PK15 cells significantly for 24 h. It means that phoxim-induced apoptosis occurs in
the PK15 cells. Vitamin E supplementation effectively inhibits phoxim-induced apoptosis
rate increases.

4.6.3. Apoptotic Factor mRNA

ROS and oxidative stress are apoptotic signals that induce apoptosis by activating
apoptotic factors [61]. There were pro-apoptosis factors (Fas, FasL, Bax, and Caspase3)
and the anti-apoptosis factor (Bcl-2) to evaluate apoptosis [16]. Apoptosis involved in-
trinsic pathways (mitochondrial-mediated) and extrinsic pathways (Fas/FasL mediate),
and Caspase 3 was the executor [62,63]. Mitochondrial apoptosis is related to the Bcl-2
family, caspase-3, and caspase-9. Cytochrome c (cyto-c) is an electron transporter in the
mitochondrial respiratory chain. During apoptosis, mitochondrial cyto-c releases into the
cytoplasm and triggers caspases [64]. Caspase-9 activated caspase-3 and led to mitochon-
drial apoptosis. The death signal receptor protein pathway is mediated by a variety of
death receptor ligands, such as Fas, FasL. Overexpression of Bcl-2 prevents the decrease in
the mitochondrial membrane potential, the release of cyt c, and the activation of caspases to
regulate apoptosis, which causes Bax-induced changes. Caspase family proteins changed
cell morphology and induced apoptosis. Different studies demonstrated that OP induced
mitochondrial changes and oxidative stress and resulted in apoptosis [16,65]. In vitro and
in vivo experiments, we found that phoxim significantly increased the expression of Bad,
Bax, cyto-c, caspase-3, caspase-8, and caspase-9 but reduced Bcl-2 expression, which means
the apoptotic pathway was activated by phoxim. Combined with the previous results,
phoxim induced the accumulation of ROS and led to mitochondrial dysfunction. Mitochon-
dria were important targets for the toxic effects of phoxim. Phoxim exposure increased
mitochondrial membrane permeability, decreased ∆Ψm, released apoptotic factors into the
cytoplasm, activated caspase-3 to trigger the caspase cascade reaction, and induced mito-
chondrial apoptosis. Thus, phoxim-induced oxidative stress resulted in apoptosis, which
was one of the toxic mechanisms. Vitamin E significantly decreased phoxim-induced ex-
pression of caspase-8, Bad, and cyto-c. As an antioxidant, Vitamin E prevents the generation
of ROS, improves the antioxidant capacity, and alleviates mitochondrial apoptosis.

5. Conclusions

Mitochondrial irreversible damage and oxidative stress are crucial contributors to
phoxim-induced nephrotoxicity. Phoxim-induced mitochondrial oxidative injury acceler-
ates mitochondrial apoptosis. Vitamin E prevented the generation of ROS and improved the
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antioxidant capacity to alleviate the phoxim-induced nephrotoxicity. Vitamin E regulates
phoxim-induced apoptosis by alleviating oxidative damage to the mitochondria.
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