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Abstract: COVID-19, caused by the SARS-CoV-2 coronavirus, emerged as a global pandemic in late
2019, resulting in significant global public health challenges. The emerging evidence suggests that
diminished high-density lipoprotein (HDL) cholesterol levels are associated with the severity of
COVID-19, beyond inflammation and oxidative stress. Here, we used nuclear magnetic resonance
spectroscopy to compare the lipoprotein and metabolic profiles of COVID-19-infected patients with
non-COVID-19 pneumonia. We compared the control group and the COVID-19 group using inflam-
matory markers to ensure that the differences in lipoprotein levels were due to COVID-19 infection.
Our analyses revealed supramolecular phospholipid composite (SPC), phenylalanine, and HDL-
related parameters as key discriminators between COVID-19-positive and non-COVID-19 pneumonia
patients. More specifically, the levels of HDL parameters, including apolipoprotein A-I (ApoA-I),
ApoA-II, HDL cholesterol, and HDL phospholipids, were significantly different. These findings
underscore the potential impact of HDL-related factors in patients with COVID-19. Significantly,
among the HDL-related metrics, the cholesterol efflux capacity (CEC) displayed the strongest negative
association with COVID-19 mortality. CEC is a measure of how well HDL removes cholesterol from
cells, which may affect the way SARS-CoV-2 enters cells. In summary, this study validates previously
established markers of COVID-19 infection and further highlights the potential significance of HDL
functionality in the context of COVID-19 mortality.
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1. Introduction

COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
emerged as a global pandemic in late 2019 [1]. The disease exhibits several clinical manifes-
tations, ranging from mild respiratory symptoms to severe respiratory distress and multi-
organ failure [1,2]. Although the primary target of SARS-CoV-2 infection is the respiratory
system, the accumulating evidence suggests that COVID-19 is a systemic disease affecting
multiple organs and biological processes, and many patients require intensive care unit
admission [3–5]. Our understanding of the etiology of COVID-19, triggered by the SARS-
CoV-2 virus, has seen significant advancement, unveiling intricate molecular pathways and
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associated metabolic shifts. Notably, COVID-19 is characterized by a profound alteration in
metabolism, with distinctive features such as perturbations in the kynurenate/tryptophan
pathway and markedly elevated glucose levels [6–8]. Furthermore, changes in serum fatty
acids [9], carnitines [10], ceramides [11,12] and phospholipids [13–15] have been observed.
In addition, the metabolism of serum lipoproteins is notably dysregulated, resulting in a
pathogenic alteration of both lipoprotein particle size and composition. Low HDL choles-
terol and high triglyceride concentrations measured before or during hospitalization are
strong predictors of a severe course of the disease [16] and may consequently contribute to
an elevated cardiovascular risk [17–21].

Several studies have investigated the relationship between HDL cholesterol levels
and COVID-19 outcomes [22–27]. Specifically, low levels of plasma HDL cholesterol and
alterations in HDL composition have been associated with increased disease severity and
worse clinical outcomes in COVID-19 patients [28,29]. Patients with severe COVID-19
symptoms tend to exhibit lower levels of HDL cholesterol than those with milder disease
manifestations [24,30,31]. Moreover, individuals with higher antecedent levels of HDL
cholesterol have a reduced risk of SARS-CoV-2 infection [27,32]. Our previous findings
have established a noteworthy association between the cholesterol efflux capacity (CEC) of
HDL and the risk of mortality among patients with COVID-19 [33].

The application of nuclear magnetic resonance (NMR) spectroscopy to COVID-19-
positive serum samples has recently revealed significant changes in specific NMR signals,
which were identified as glycoprotein moieties (designated as GlycA and GlycB, or Glyc
as the sum of both) [34] and supramolecular phospholipid composite signal (SPC) [19].
Both are altered upon COVID-19 infection, but since at least GlyA and GlycB signals
primarily arise from acute-phase glycoproteins, among them haptoglobin, α-1-antitrypsin,
ceruloplasmin, complement factors C3 and H, and transferrin, they are probably related to
various other infectious diseases as well [35]. SPC represents the total NMR signal from the
choline head groups of all lipoproteins. The intensity of this signal is proportional to the
total amount of SPC in the sample.

By analyzing metabolomics, lipoprotein profiles, GlycA, GlycB, and SPC using NMR
spectroscopy, we aimed to gain deeper insights into the complex metabolic changes induced
by COVID-19 infection. In our study, we compared the metabolic profiles of COVID-19-
infected individuals with individuals with non-COVID-19 pneumonia to identify specific
metabolic alterations that are unique to COVID-19 and COVID-19-related mortality.

2. Materials and Methods
2.1. Study Population and Study Design

We initiated the Alpe_Adria_Coronavirus_Cohort, abbreviated as the ALDOCOV
biobank, by collecting residual blood samples from COVID-19 patients whenever these
samples were directed to the central laboratory of our university hospital between April
and December 2020. After completing all routine laboratory tests, the remaining material
was stored at −80 ◦C until batched analysis. In this retrospective study, we specifically
measured the plasma concentrations of interleukin-6 (IL-6), C-reactive protein (CRP), and
creatinine. The levels of serum amyloid A (SAA) were quantified using a commercially
available kit (Invitrogen, Carlsbad, CA, USA), according to the manufacturer’s instructions.

The database captured essential clinical characteristics, such as antecedent diseases
(cardiovascular, oncologic, renal, hypertension, pulmonary, and metabolic conditions like
diabetes and obesity), which were recorded for each patient. In addition, anthropometric
and clinical data, as well as outcome data, were obtained from the laboratory and hospital
information systems. The primary endpoint of the study was death within 90 days after
admission, whereas the secondary endpoint was the use of respiratory support with oxygen.
This study was conducted with the approval of the institutional ethics committee of the
Medical University of Graz (EK 32-475 ex 19/20).
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2.2. Sample Preparation and NMR Spectroscopy Measurements

Blood serum samples for NMR spectroscopy analysis were prepared as described previ-
ously [36]. Briefly, after thawing, 330 µL of the sample was immediately mixed with 330 µL
of Bruker’s IVDr NMR buffer for plasma, amongst others containing 3-(trimethylsilyl)
propionic acid-2,2,3,3-d4 sodium salt (TSP) (Bruker, Rheinstetten, Germany). Thereof,
600 µL was transferred into 5 mm NMR tubes and measured on the same day. Therefore,
tubes were placed into a SampleJet rack (Bruker, Rheinstetten, Germany) holding 96 tubes
and placed into the SampleJet (Bruker, Rheinstetten, Germany), where they were stored at
4 ◦C until further processing. NMR spectra were recorded on a Bruker 600 MHz Avance
Neo NMR spectrometer (Bruker, Rheinstetten, Germany). To obtain proton spectra, the
measurements were conducted at a constant temperature of 310 K using a standard nu-
clear Overhauser effect spectroscopy (NOESY) pulse sequence (Bruker: noesygppr1d), a
Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence with presaturation during the relax-
ation delay (Bruker: cpmgpr1d) to achieve water suppression, a standard 2D J-resolved
(JRES) pulse sequence (Bruker: jresgpprqf) [37], and a J-edited diffusion and relaxation
(JEDI) NMR spectra [38].

2.3. Quantification of Analytes Measured by NMR Spectroscopy

Data analysis for lipoprotein quantification was carried out using the Bruker IVDr
Lipoprotein Subclass Analysis (B.I.LISATM) method, and small molecular metabolites
were quantified using the Bruker IVDr Quantification in Plasma/Serum B.I.Quant-PSTM

method. The recently developed PhenoRisk PACS™ RuO method was used to quantify
glycoprotein (GlycA, GlycB) and supramolecular phospholipid composite (SPC) signals.
This is conducted by sending raw NMR spectrum data to a Bruker online server, which
returns 112 lipoprotein parameters (e.g., free and total cholesterol, triglyceride, and total
phospholipid content of main classes and subclasses of VLDL, IDL, LDL, and LDL, as well
as ApoA-I, ApoA-II, and ApoB protein concentrations), 41 small molecular metabolites
(among them amino acids, acids, amines, ketone bodies, glucose, and creatine, as well as
potential contaminants/additives like ethanol or EDTA), and GlycA, GlycB, and SPC.

2.4. Statistical Analyses

Comparisons between groups were performed using the Mann–Whitney U test. Con-
tinuous variables are summarized as medians with interquartile ranges (Q1–Q3), and
categorical variables are expressed as absolute frequencies and percentages (%).

To detect alterations in lipoprotein and metabolic profiles, we conducted multivari-
ate statistical analyses, including principal component analysis (PCA) and orthogonal
partial least squares discriminant analysis (O-PLS-DA) [39], with associated data consis-
tency checks and 7-fold cross-validation expressed by Q2 [40,41] using MetaboAnalyst [42].
Forestplots were created using R.Studio and the forestplot package. All other statistical anal-
yses were performed using GraphPad Prism 8.0 (GraphPad Software, San Diego, CA, USA)
and SPSS 26 (SPSS Inc., Chicago, IL, USA). Spearman’s rank-based correlation coefficient
was employed for correlation analyses and corrected according to Bonferroni to adjust for
multiple testing. Cox regression models were used to find associations between measured
parameters and mortality. Information regarding the time of death within 90 days was
available for 46 COVID-19 patients. The primary endpoint of death occurred in 28% of the
study cohort.

3. Results
3.1. Baseline Characteristics and Laboratory Results of the Study Cohort

In our study, 47 COVID-19 patients and 31 non-COVID-19 pneumonia patients were
included (Table 1). Patient age and the distribution of sex were comparable between the
COVID-19 patients and the non-COVID-19 pneumonia control patients. Importantly, the
two groups were well matched in terms of inflammatory marker levels of C-reactive protein
(CRP), interleukin-6 (IL-6), and serum amyloid A (SAA), thereby ensuring that observed
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changes were not merely a consequence of varying inflammatory states. Additionally,
COVID-19 patients did not exhibit significant differences in levels of the kidney function
marker creatinine when compared with the control patients.

Table 1. Baseline characteristics of the study cohort. Values are expressed as median (Q1–Q3). CRP,
c-reactive protein; IL-6, interleukin-6; SAA, serum amyloid A; ICU, intensive care unit.

COVID-19 Patients (n = 47) Non-COVID-19 Pneumonia Patients (n = 31) p-Value

Age (years) 68 (56–80) 73 (51–81) 0.716

Female sex 24 (51%) 17 (55%) 0.818

CRP (mg/L) 34.5 (12.2–78.6) 46.3 (4.2–95.2) 0.915

IL-6 (pg/mL) 39.4 (14.5–120) 27.9 (6.7–84.5) 0.309

SAA (µg/mL) 600 (81–3506) 404 (52–1359) 0.124

Creatinine (mg/dL) 0.12 (0.07–0.14) 0.11 (0.09–0.13) 0.927

Hypertension 23 (50%) 14 (45%) 0.203

ICU 19 (40%) -

Exitus 13 (28%) -

Among the COVID-19 patients included in our study, 40% required treatment in the
intensive care unit (ICU), reflecting the severity of their condition. Twenty-eight percent of
the COVID-19 patients died within 90 days after hospital admission.

3.2. Assessment of Metabolites and Lipoproteins in COVID-19

Univariate analyses of the parameters measured by NMR spectroscopy (full list:
Supplementary Table S1) revealed significant differences between COVID-19 and non-
COVID-19 pneumonia patients (Figure 1A). Specifically, phenylalanine, acetoacetic acid,
supramolecular phospholipid composite (SPC), HDL cholesterol, HDL-free cholesterol,
and HDL-1-free cholesterol (the largest HDL subclass quantified by NMR) were found to
be distinct between the two groups (Figure 1B).

Next, we performed multivariate data analyses using orthogonal partial least squares
discriminant analyses (OPLS-DA), which allowed clustering for COVID-19 and non-
COVID-19 pneumonia patients (Figure 2A) with strong to moderate goodness of fit (corre-
lation coefficient R2Y = 0.413 (p = 0.003)) and cross-validation score Q2 of 0.134 (p = 0.008)
(Figure 2B). The model reveals some differentiation between groups but not complete
separation, which, amongst others, might be due to confounding factors like age, sex,
etc. VIP (“variable of importance”) scores of NMR-measured parameters were assessed to
obtain the contribution to class separation (Figure 2C). Metabolites with high VIP scores
are more important in providing class separation, while those with small VIP scores pro-
vide less contribution [43]. The most prominent changes in the measured parameters are
shown in Figure 2D, with significant changes in SPC, Glyc/SPC ratio, and phenylalanine.
Moreover, HDL-associated phospholipids, total cholesterol, and ApoA-I protein levels
are important determinants in discriminating between COVID-19 and non-COVID-19
pneumonia controls.

To provide a comprehensive overview of the differences in all measured lipoprotein
parameters of COVID-19 patients compared with non-COVID-19 pneumonia controls, we
calculated the respective fold changes and confidence intervals as depicted in Figure 3.
The parameters that remain significant after correcting for multiple testing according to
the Benjamini–Hochberg method [44] are highlighted in red. Among the main classes,
total cholesterol (fold change 0.83, p = 0.024), total HDL cholesterol (fold change 0.76,
p = 0.009), ApoA-I protein (fold change 0.80, p = 0.009), and ApoA-II protein (fold change
0.85, p = 0.036) exhibited significant differences after correction. However, triglycerides,
ApoB-100, and the LDL-to-HDL ratio remained unchanged. Although levels of LDL
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cholesterol and the ApoB-100 to ApoA-I ratio initially showed significant differences,
significance was lost after correction.
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Figure 1. Univariate statistics of NMR-measured parameters in COVID-19 patients compared to
non-COVID-19 pneumonia patients. (A) shows a volcano plot with significant parameters, which are
lower or higher compared to non-COVID-19 pneumonia patients. In (B), the individual comparisons
of the parameters are shown. HDCH, HDL cholesterol; HDFC, HDL-free cholesterol; H1FC, HDL1-
free cholesterol; SPC, supramolecular phospholipid composite; p.d.u., procedure defined units.
** p < 0. 01, *** p < 0.001.

Interestingly, we did not observe any differences in the particle number of lipoproteins
after correcting for multiple testing (Figure 3B). It must be noted that the online platform
we employed for results analysis does not calculate the total particle number of HDL.
Triglycerides in the LDL-1 and LDL-6 subclasses initially showed significant differences,
but after correction, the significance was lost (Figure 3C). The amount of total cholesterol
of HDL, HDL-1 (fold change: 0.71, p = 0.032), and HDL-3 subclasses (fold change: 0.78,
p = 0.019) was significantly lower in COVID-19 patients (Figure 3D). Furthermore, the free
cholesterol of HDL (fold change: 0.72, p = 0.029) and the HDL-1 subclass (fold change:
0.61, p = 0.019) were also significantly lower (Figure 3E). After correction for multiple tests,
the phospholipid content of total HDL (fold change: 0.79, p = 0.038) was also significantly
lower (Figure 3F).

In our analysis, no significant differences were observed in ApoB-100 levels (Figure 3G).
However, we did find significant differences in the total ApoA-I (fold change: 0.80,
p = 0.012), HDL-associated ApoA-I protein (fold change: 0.78, p = 0.041), HDL-1 ApoA-
I protein (fold change: 0.68, p = 0.012), and HDL-3 ApoA-I protein (fold change: 0.86,
p = 0.016). Additionally, ApoA-II protein levels were significantly different in total HDL
(fold change: 0.90, p = 0.041) (Figure 3H).

These results highlight the substantial differences in lipoprotein composition in
COVID-19-infected patients, particularly lower concentrations of HDL-related parameters.

3.3. Correlations between Lipoprotein Parameters and Clinical Data in the COVID-19 Patients

Recent studies have revealed a promising development in the field of COVID-19
prediction. These studies have identified specific signals, currently only detectable by
NMR spectroscopy, associated with inflammatory glycoproteins (referred to as Glyc) and
their ratio to supramolecular phospholipid composite (known as SPC). Remarkably, these
signals are as predictive as established laboratory markers such as ferritin and CRP. This
breakthrough has significant potential to improve our ability to predict COVID-19 out-



Antioxidants 2023, 12, 2009 6 of 15

comes [19,20,34,38,45]. Furthermore, we could show that HDL-mediated CEC is inversely
linked to mortality risk in COVID-19 patients [33].

We conducted correlation analyses of HDL-related parameters with CEC and inflam-
matory markers, such as CRP and interleukin-6. Moreover, we included the inflammatory
glycoproteins Glyc and SPC in our analyses to study possible associations.

CEC was strongly associated with total ApoA-I protein (rs = 0.693, p < 0.001) and
HDL-ApoA-I protein (rs = 0.737, p < 0.001), but also with HDL cholesterol (rs = 0.559,
p < 0.001), total ApoA-II protein (rs = 0.583, p < 0.001), HDL-free cholesterol (rs = 0.613,
p < 0.001), and HDL phospholipids (rs = 0.596, p < 0.001). Remarkably, there was a strong
positive correlation observed between SPC and CEC (rs = 0.661, p < 0.001). In contrast, Glyc
displayed a notable negative association with CEC (rs = −0.500, p < 0.001) (Figure 4).

Antioxidants 2023, 12, x FOR PEER REVIEW 6 of 17 
 

 
Figure 2. Metabolomic assessment of metabolites in COVID-19. (A) Multivariate data analyses of all 
parameters measured by NMR spectroscopy with orthogonal partial least squares discriminant 
analyses (OPLS-DA) for differentiation between COVID-19 (red) and non-COVID-19 pneumonia 
patients (green). (B) Permutation validity test: correlation coefficient R2Y = 0.413 (p = 0.003) and 
cross-validation score Q2 of 0.134 (p = 0.008). (C) Variable of importance projection scores to obtain 
the contribution of the parameters to the model. (D) Comparison of the most prominent changes 
between the two groups. SPC, supramolecular phospholipid composite; Glyc, glycoprotein; HDPL, 
HDL phospholipids; HDCH, HDL cholesterol; HDA1, HDL apolipoprotein A-I; p.d.u., procedure 
defined units. ** p < 0. 01, *** p < 0.001. 

To provide a comprehensive overview of the differences in all measured lipoprotein 
parameters of COVID-19 patients compared with non-COVID-19 pneumonia controls, we 
calculated the respective fold changes and confidence intervals as depicted in Figure 3. 
The parameters that remain significant after correcting for multiple testing according to 
the Benjamini–Hochberg method [44] are highlighted in red. Among the main classes, to-
tal cholesterol (fold change 0.83, p = 0.024), total HDL cholesterol (fold change 0.76, p = 

Figure 2. Metabolomic assessment of metabolites in COVID-19. (A) Multivariate data analyses of
all parameters measured by NMR spectroscopy with orthogonal partial least squares discriminant
analyses (OPLS-DA) for differentiation between COVID-19 (red) and non-COVID-19 pneumonia
patients (green). (B) Permutation validity test: correlation coefficient R2Y = 0.413 (p = 0.003) and
cross-validation score Q2 of 0.134 (p = 0.008). (C) Variable of importance projection scores to obtain
the contribution of the parameters to the model. (D) Comparison of the most prominent changes
between the two groups. SPC, supramolecular phospholipid composite; Glyc, glycoprotein; HDPL,
HDL phospholipids; HDCH, HDL cholesterol; HDA1, HDL apolipoprotein A-I; p.d.u., procedure
defined units. ** p < 0. 01, *** p < 0.001.
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Figure 3. Forest plots showing the alterations observed in lipoprotein parameters between the COVID-
19 and non-COVID-19 pneumonia control groups. (A) Main classes of lipoproteins. (B) Lipoprotein
particle numbers. (C) Triglyceride distribution in lipoprotein classes. (D) Total cholesterol distribution
in lipoprotein classes. (E) Free cholesterol distribution in lipoprotein classes. (F) Phospholipid
distribution in lipoprotein classes. (G) Apo-B protein distribution in lipoprotein classes. (H) ApoA
protein distribution in HDL classes. The fold changes to non-COVID-19 pneumonia controls and the
corresponding confidence intervals were calculated. Mann–Whitney-U-test-derived p-values were
corrected according to Benjamini–Hochberg’s procedure. Parameters that remained significant after
correction are shown in red.

As anticipated, our results demonstrated a robust positive correlation between CRP
levels and inflammatory glycoproteins (rs = 0.722, p < 0.001). Conversely, SPC and most
HDL-related parameters, except for HDL triglycerides, displayed negative associations.
Notably, no significant association was observed between interleukin-6 and the tested
variables. Furthermore, creatinine, patient age, and glucose levels were not significantly
associated with the selected variables.
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3.4. Survival Analyses of HDL-Related Parameters in COVID-19

We previously demonstrated a significant inverse association between HDL function,
measured as the cholesterol efflux capacity (CEC) of COVID-19 patients on hospital admis-
sion, and mortality risk in the same study cohort [33]. In this study, we performed Cox
regression analyses on the most prominent COVID-19 discriminatory parameters. These
included phenylalanine, acetoacetic acid, the Glyc/SPC ratio, SPC, and lipoprotein param-
eters, all of which exhibited differences between COVID-19 patients and non-COVID-19
pneumonia controls. The analyses were adjusted for age and sex (and additionally for
levels of HDL-C in the case of CEC), and the results are presented as hazard ratios with their
corresponding 95% confidence intervals (Figure 5). While we did identify notable correla-
tions between CEC and HDL-related parameters measured by NMR, it is important to note
that only CEC exhibited a significant association with mortality risk. Consequently, our
findings strongly suggest that CEC stands out as the most promising predictor of mortality
when compared to other HDL-related parameters within this particular study cohort.
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4. Discussion

In this study, we used NMR spectroscopy to assess the metabolomic profile, lipopro-
tein parameters, and inflammatory markers in COVID-19 patients compared with non-
COVID-19 pneumonia patients. Careful matching of the control and COVID-19 groups
for inflammatory markers was essential to ensure that differences in lipoprotein levels
were specifically attributable to COVID-19 infection, independent of inflammation. Recent
research has highlighted disturbances in metabolic pathways associated with COVID-19,
particularly in severe cases of the disease. These abnormalities include disturbances in both
amino acid and lipid metabolism [15,17,46–48]. In addition, the excessive inflammatory
response induced by the virus can disrupt the balance of energy homeostasis [49–51].

In our initial data analyses employing univariate statistics (with criteria of fold
change > 1.33 and FDR-adjusted p-value < 0.05), we noted a significant increase in the
levels of the amino acid phenylalanine and the ketone body acetoacetic acid in COVID-19
patients when compared to non-COVID-19 pneumonia patients. Previous studies have con-
sistently reported elevated levels of phenylalanine in COVID-19 patients when compared
to healthy controls [52–54]. Moreover, these increased phenylalanine levels have been
associated with disease severity, underlining its potential role as a significant metabolic
biomarker for COVID-19 [52–54]. It has been suggested that the COVID-19-related in-
crease in pro-inflammatory cytokines triggers muscle breakdown, releasing phenylalanine
for gluconeogenesis to meet the increased metabolic demands during infection [52]. The
observed increase in the ketone body acetoacetic acid in COVID-19 patients compared
with the control group further highlights the presence of an altered metabolic state during
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infection [17]. In addition to the elevated levels of phenylalanine and acetoacetic acid, our
observations revealed a reduction in total HDL free cholesterol, free cholesterol within
the largest HDL subclass (HDL-1), and total HDL cholesterol levels in COVID-19 patients
compared to non-COVID-19 pneumonia controls. Our data are in good agreement with the
results of other studies [16,27,55–57].

We developed a classification model employing orthogonal partial least squares dis-
criminant analysis (OPLS-DA) to effectively differentiate between COVID-19 patients and
the control group. This model utilized a combination of metabolites, lipoprotein data, and
inflammatory parameters as variables. Notably, among the highly discriminative factors,
we identified HDL-related parameters such as HDL phospholipids, HDL cholesterol, and
ApoA-I. In addition, we observed that SPC levels were significantly lower in the serum of
COVID-19 patients than in non-COVID-19 pneumonia patients and were highly indicative
of the disease. Consistent with previous research, our results support the notion that SPC
and phenylalanine are highly discriminatory biomarkers for COVID-19 [52–54]. Moreover,
our findings of changes in lipid profiles in COVID-19 patients are in line with previous
studies [26,27,58]. Specifically, we observed that total cholesterol, HDL cholesterol, ApoA-I,
and LDL cholesterol were all reduced in COVID-19 patients, while the levels of triglyc-
erides were unaffected. After adjusting for multiple testing using the Benjamini–Hochberg
correction method, the decrease in LDL cholesterol was no longer statistically significant.

Previous studies reported an increase in VLDL (sub)-fractions in COVID-19 pa-
tients [17,18] and an increase in the number of VLDL and IDL particles compared to
healthy controls [57,59]. Our findings diverge from these studies, which employed healthy
participants as controls. This discrepancy represents a limitation since inflammation itself
can exert a substantial influence on plasma lipid levels [17,60,61]. In our study, we did not
find significant differences in triglyceride and ApoB levels within lipoprotein subclasses
between COVID-19 patients and non-COVID-19 pneumonia controls. Consequently, it is
tempting to hypothesize that the impact on VLDL and IDL levels may not be specific to
COVID-19 but rather associated with pneumonia or inflammation itself. Nonetheless, it is
worth noting that COVID-19 patients exhibited lower levels of ApoA-I, ApoA-II, HDL-1,
and HDL-3 cholesterol, which represent large- and medium-sized HDL particles. Consis-
tent with the existing literature, our findings demonstrated a strong correlation between
the levels of CRP and inflammatory glycoproteins (Glyc) and the Glyc/SPC ratio [19,62–65].
When we applied the Bonferroni correction for multiple testing, a robust inverse correlation
between CRP levels and HDL-associated parameters emerged. However, no significant
correlations were observed between NMR lipoprotein data and creatinine, glucose, or age.
This finding highlights the central role of inflammation in shaping both the composition
and function of HDL [66–68].

HDL particles mobilize plasma membrane cholesterol during cholesterol efflux, which
is essential for the proper trafficking and localization of ACE2 receptors, the main entry
point for SARS-CoV-2 into cells [69,69]. In a previous study, we evaluated HDL-mediated
CEC and found that low HDL-mediated CEC was independently associated with increased
mortality risk in COVID-19 patients [33].

It must be noted that macrophages, which play a critical role in cholesterol efflux,
probably do not contribute significantly to the cholesterol mass of HDL. For example,
transplanting wild-type bone marrow into ABCA1-knockout mice resulted in only a slight
increase in plasma HDL cholesterol levels [70]. Because extrahepatic cells require cholesterol
but cannot metabolize it, they must efflux it to HDL. The removal of cholesterol from
lipid rafts facilitated by HDL could potentially affect the entry of SARS-CoV-2 in several
cell types.

Interestingly, the level of ACE2 expression on macrophages varies depending on
the subtype and activation state. Importantly, alveolar macrophages have been shown
to express higher levels of ACE2 than other macrophage subtypes [71–73] and appear to
facilitate new viral synthesis.
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To elucidate the relationship between CEC and NMR-derived HDL-related parameters,
we performed correlation analyses and found the strongest correlation between CEC and
HDL-ApoA-I content. Other significantly correlated HDL-related markers included HDL
cholesterol, HDL phospholipids, HDL ApoA-II, and SPC.

Surprisingly, in our Cox regression survival analysis, we found no significant associ-
ation between NMR lipoprotein data and mortality. Therefore, our results highlight the
importance of HDL functionality, measured as cholesterol efflux capacity, in relation to
COVID-19. Interestingly, the established markers of COVID-19 severity and mortality, such
as phenylalanine and the Glyc/SPC ratio [19,45,52], did not show a significant associa-
tion with mortality in our COVID-19 study cohort, although there was a noticeable trend
for phenylalanine.

Our study has several limitations. The main limitation is the small sample size, which
may have limited our ability to detect smaller differences in serum metabolites and HDL
structure and composition between subjects with or without COVID-19. Furthermore, due
to the limited sample size, we were unable to divide the patients into subgroups and further
investigate potential confounding factors influencing our results. Another limitation is the
observational design, which precludes us from establishing causality.

A key strength of this study is the inclusion of a control cohort of patients with non-
COVID-19 pneumonia. This design ensures that differences in metabolites and several
HDL-related parameters were specifically attributable to COVID-19 infection, independent
of inflammation. In addition, we developed a classification model using orthogonal par-
tial least squares discriminant analysis to discriminate between COVID-19 patients and
controls using metabolites and several HDL-related parameters as variables. This model
allowed us to gain a deeper understanding of the impact of COVID-19 on HDL metabolism
and function.

5. Conclusions

Our analysis of lipoprotein parameters revealed the most significant changes in the
HDL class, with less pronounced or no changes in other lipoprotein classes. Our find-
ings highlight the importance of assessing HDL functionality rather than just its com-
ponents. In addition, our study validates established markers of COVID-19 infection
versus non-COVID-19 pneumonia, consistently identifying phenylalanine, SPC, and vari-
ous HDL-related parameters as discriminators. Consequently, the administration of syn-
thetic/recombinant HDL to improve cholesterol efflux capacity (CEC) may be a promising
strategy for severely affected COVID-19 patients [74–76].
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