
Citation: Fikry, E.; Orfali, R.;

El-Sayed, S.S.; Perveen, S.; Ghafar, S.;

El-Shafae, A.M.; El-Domiaty, M.M.;

Tawfeek, N. Potential

Hepatoprotective Effects of

Chamaecyparis lawsoniana against

Methotrexate-Induced Liver Injury:

Integrated Phytochemical Profiling,

Target Network Analysis, and

Experimental Validation. Antioxidants

2023, 12, 2118. https://doi.org/

10.3390/antiox12122118

Academic Editors: Greg Barritt and

Eunus S. Ali

Received: 28 October 2023

Revised: 4 December 2023

Accepted: 5 December 2023

Published: 14 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

antioxidants

Article

Potential Hepatoprotective Effects of
Chamaecyparis lawsoniana against Methotrexate-Induced Liver
Injury: Integrated Phytochemical Profiling, Target Network
Analysis, and Experimental Validation
Eman Fikry 1 , Raha Orfali 2,*, Shaimaa S. El-Sayed 3, Shagufta Perveen 4 , Safina Ghafar 2, Azza M. El-Shafae 1,
Maher M. El-Domiaty 1,* and Nora Tawfeek 1

1 Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
efhassan@zu.edu.eg (E.F.); amelshafaey@pharmacy.zu.edu.eg (A.M.E.-S.); noratawfeek@zu.edu.eg (N.T.)

2 Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457,
Riyadh 11451, Saudi Arabia; sghafar.c@ksu.edu.sa

3 Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
ssothman@pharmacy.zu.edu.eg

4 Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University,
Baltimore, MD 21251, USA; shagufta.perveen@morgan.edu

* Correspondence: rorfali@ksu.edu.sa (R.O.); mmeldomyaty@pharmacy.zu.edu.eg (M.M.E.-D.)

Abstract: Methotrexate (MTX) therapy encounters significant limitations due to the significant
concern of drug-induced liver injury (DILI), which poses a significant challenge to its usage. To
mitigate the deleterious effects of MTX on hepatic function, researchers have explored plant sources
to discover potential hepatoprotective agents. This study investigated the hepatoprotective effects
of the ethanolic extract derived from the aerial parts of Chamaecyparis lawsoniana (CLAE) against
DILI, specifically focusing on MTX-induced hepatotoxicity. UPLC-ESI-MS/MS was used to identify
61 compounds in CLAE, with 31 potential bioactive compounds determined through pharmacokinetic
analysis. Network pharmacology analysis revealed 195 potential DILI targets for the bioactive
compounds, including TP53, IL6, TNF, HSP90AA1, EGFR, IL1B, BCL2, and CASP3 as top targets.
In vivo experiments conducted on rats with acute MTX-hepatotoxicity revealed that administering
CLAE orally at 200 and 400 mg/kg/day for ten days dose-dependently improved liver function,
attenuated hepatic oxidative stress, inflammation, and apoptosis, and reversed the disarrayed hepatic
histological features induced by MTX. In general, the findings of the present study provide evidence
in favor of the hepatoprotective capabilities of CLAE in DILI, thereby justifying the need for additional
preclinical and clinical investigations.

Keywords: Chamaecyparis lawsoniana; UPLC-ESI-MS/MS; acute liver injury; network pharmacology;
docking

1. Introduction

The liver, being the primary organ responsible for metabolism, plays a crucial role in
various physiological processes such as storing liver sugar, synthesizing secretory proteins,
and detoxifying harmful substances. Any dysfunction or injury to the liver can lead to
adverse effects on the body, and in severe cases, it can even result in death. Consequently,
liver-related issues have become a significant concern in public health. One of the common
problems associated with liver function is drug-induced liver injury (DILI), which refers to
the side effects caused by medications and is often the leading cause of acute liver failure.
This condition can not only impede therapeutic progress but also restrict drug development
and result in the discontinuation of specific medications from the market [1,2].
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Methotrexate (MTX), also known as amethopterin, is a versatile medication that has
been proven effective in treating a wide range of medical conditions. It is commonly
prescribed for skin disorders such as psoriasis and refractory atopic dermatitis, as well as
inflammatory and autoimmune diseases like rheumatoid arthritis, vasculitis, and Crohn’s
disease. In addition, it is also used to treat various malignant disorders such as leukemia,
lung, breast, and uterine cancers, as well as ectopic pregnancy [3–6].

Despite its effectiveness, methotrexate has a high efficacy/toxicity ratio, which can
lead to multiorgan toxicities due to its lack of selective cytotoxicity [7]. This has raised
concerns about its use, particularly in high doses or long-term treatments. Liver-related
adverse effects are among the most important complications associated with methotrexate,
with liver abnormalities ranging from asymptomatic elevations in liver enzymes to fibrosis
and even fatal hepatic necrosis [8]. Oxidative stress is undeniably a significant factor in
the development of methotrexate-related abnormalities and its cytotoxic effects [9–12]. The
excessive production of reactive oxygen species (ROS) during methotrexate therapy can
impair the antioxidant capacity of the liver and cause damage to cell membranes through
lipid peroxidation. This ultimately leads to tissue damage [13–15]. Additionally, apoptosis,
which is a crucial process for maintaining cellular homeostasis, becomes overactivated
in adverse conditions [16]. The anticancer properties of methotrexate are attributed to
its ability to induce apoptosis [17,18]. Regrettably, methotrexate-induced apoptosis can
also affect healthy liver tissues [10]. ROS signaling can further contribute to methotrexate-
induced apoptosis, thereby enhancing its cytotoxic effects [19].

Despite these potential toxicities and adverse effects, methotrexate remains a widely
used and preferred first-line antirheumatic drug in many countries due to its affordability
and effectiveness in treating various medical conditions. Its inclusion in the “World Health
Organization’s List of Essential Medicines” highlights its importance in healthcare systems
worldwide. Although concerns exist regarding its impact on the liver and potential tissue
damage, the benefits of methotrexate outweigh these risks, making it a valuable treatment
option for many patients [4,20,21]. Additionally, scientific reports and meta-analyses have
emphasized its superior efficacy compared to other available drugs, further emphasizing
its significance in medical treatments [21]. Consequently, efforts are underway to develop
strategies that can protect the liver and enhance the overall safety profile of methotrexate
in order to address its associated hepatotoxicity [22,23].

The therapeutic properties of medicinal herbs have garnered significant attention in
recent years for treating a range of human ailments. These herbs have a broad safety profile
and can effectively mitigate the cytotoxic effects of more hazardous drugs. As a result,
it has become common practice to combine these compounds with methotrexate-based
therapeutic approaches [24].

Chamaecyparis lawsoniana (Murr.) Parl., commonly referred to as Lawson’s cypress, is
a popular ornamental plant belonging to the Cupressaceae family. It is native to North
America and can also be found in several other countries, including Germany, France, the
United Kingdom, Australia, and South Africa. This versatile plant has various applications,
including in construction and railway sleeper production [25]. It also has a long history of
traditional use in treating ailments such as stomach pain, tumors, and lipoma [26]. Previous
studies have indicated that extracts from the leaves and bark of this plant have antibacterial,
fungicidal, and antioxidant characteristics [27,28]. Nevertheless, until now, no research
has been conducted to examine the phytochemical composition of the aerial parts of C.
lawsoniana or its potential hepatoprotective effects.

Therefore, the main objectives of this study were to determine the chemical profile of
the ethanolic extract of C. lawsoniana aerial parts (CLAE) and to investigate its potential
efficacy in protecting against DILI, specifically an acute methotrexate hepatotoxicity model
in rats. Further, its antioxidant, anti-inflammatory, and antiapoptotic properties were
also investigated. This was achieved through an in silico approach followed by in vivo
validation experiments.
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2. Materials and Methods
2.1. Plant Material and Extraction

The aerial parts of Chamaecyparis lawsoniana (A. Murray) Parl. were collected in March
2023 from El-Orman Botanical Garden, located in Giza, Egypt. The taxonomic validation
of the plant species was conducted by Eng. Therese Labib, a Plant Taxonomy Consultant
at the Ministry of Agriculture and former director of the El-Orman Botanical Garden in
Giza, Egypt. At the Herbarium of the Pharmacognosy Department, Faculty of Pharmacy,
Zagazig University, a voucher specimen with the code ZU-Ph-Cog-0311 was preserved.

The dried powdered aerial parts (400 g) were macerated with 70% ethanol (3 × 1 L)
for extraction. Under reduced pressure, the extract was evaporated to yield 65 g of vis-
cous residue.

2.2. Analysis of CLAE Using UPLC-ESI-MS/MS Technique

CLAE (50 mg) was dissolved in a 1 mL solution containing water, methanol, and
acetonitrile in a ratio of 50:25:25. The resulting mixture was subjected to vortexing for
2 min, followed by ultrasonication for 10 min. Subsequently, the mixture was centrifuged
at 1000 rpm for 10 min. A volume of 50 µL of the sample solution was diluted with
reconstitution solvent to a final volume of 1000 µL. From this diluted solution, 10 µL with
a concentration of 2.5 µg/µL was prepared for UPLC-ESI-MS/MS analysis in negative
mode. The analysis was performed using the ExionLCTM AD UPLC instrument and a
TripleTOF 5600+ Time-of-Flight Tandem Mass Spectrometer (AB SCIEX) following the
previously described method [29]. As a pre-column, in-line filter disks (0.5 µm × 3.0 mm,
Phenomenex®, Torrance, CA, USA) were used, while the analytical column was X select
HSS T3 (2.5 µm, 2.1 × 150 mm, Waters®, 40 ◦C, Milford, MA, USA). The temperature of the
column and the flow rate were set at 40 ◦C and 0.3 mL/min, respectively. As mobile phases,
buffers A and B were used; buffer A is a 5 mM ammonium format buffer, pH 8, containing
1% methanol, and buffer B is composed of 100% acetonitrile. Gradient elution was applied
as follows: for 20 min, 90% solvent A and 10% solvent B were used, then for the next 5 min,
a mixture of 10% solvent A and 90% solvent B was run, and for the last 3 min, the starting
elution mixture was used. The tentative identification of the compounds was carried out
based on their retention times (RTs), molecular weight, m/z of molecular ion [M−H]−,
and by comparing the accurate mass information from their mass spectrometry (MS) and
MS/MS spectra with the MS spectral data generated by the PeakViewTM software version
2.1. The peak area values were estimated using the Extracted Ion Chromatogram Manager
in the PeakView software (AB SCIEX, version 1.2.0.3).

2.3. Network Pharmacology
2.3.1. Selection of the Bioactive Compounds of CLAE and Associated Targets

The Canonical SMILES formulas of CLAE constituents, identified by LC-MS, were col-
lected from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/, accessed on 3 July
2023) or using ChemDraw v22.0.0.22 (PerkinElmer Informatics, Inc., Buckinghamshire,
UK) and were then submitted to the SwissADME web tool (http://www.swissadme.ch/,
accessed on 7 July 2023) [30] to retrieve their pharmacokinetic parameters. The selection of
compounds was based on the Lipinski’s rule of five and a bioavailability score of ≥0.55.

The molecular targets associated with the bioactive constituents of CLAE were explored
using the PharmMapper (https://www.lilab-ecust.cn/pharmmapper/, accessed on 11 July
2023) [31] and SwissTargetPrediction databases (http://www.swisstargetprediction.ch/, ac-
cessed on 11 July 2023) [32] and then authenticated in the UniProt database (https://www.
uniprot.org/, accessed on 11 July 2023) [33]. The protein names were standardized, and the
duplicate targets were eliminated.

2.3.2. Identification of DILI-Associated Targets

GeneCards (https://www.genecards.org/, accessed on 17 July 2023) [34,35], Dis-
GeNeT (https://www.disgenet.org/search, accessed on 17 July 2023) [36], and Online

https://pubchem.ncbi.nlm.nih.gov/
http://www.swissadme.ch/
https://www.lilab-ecust.cn/pharmmapper/
http://www.swisstargetprediction.ch/
https://www.uniprot.org/
https://www.uniprot.org/
https://www.genecards.org/
https://www.disgenet.org/search


Antioxidants 2023, 12, 2118 4 of 36

Mendelian Inheritance in Man (OMIM, https://www.omim.org/, accessed on 17 July
2023) [37] were used for the collection of the DILI-related targets using “Drug-induced
hepatotoxicity” as the keyword, then the UniProt IDs and gene symbols of the collected
targets were obtained from UniProt and the duplicate targets were removed.

2.3.3. The Establishment of the Protein–Protein Interaction (PPI) and
Compound–Target Networks

In Microsoft Excel, the overlaps between the bioactive CLAE components and DILI
targets were determined and then illustrated as a Venn diagram. The STRING database
v12.0 (https://string-db.org/, accessed on 27 July 2023) [38] was used to construct a PPI
network of the overlapped targets at a confidence level of >0.7. Following the construction
of the PPI network, a compound–target network was also established connecting the
bioactive compounds of CLAE with the overlapping targets. The Cytoscape 3.9.1 software
program (NIGMS, Bethesda, MD, USA) [39] was employed to display the networks. The
targets and compounds were ranked based on the Degree value using the CytoHubba
plugin in Cytoscape [40].

2.3.4. Analysis of Gene Ontology and KEGGs Pathway Enrichment

The Database for Annotation, Visualization, and Integrated Discovery (DAVID) (https:
//david.ncifcrf.gov/tools.jsp, accessed on 28 July 2023) [41] was employed to conduct the
Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGGs)
pathway enrichment. A significance level of p < 0.05 was employed as a cutoff. Homo
sapiens (Human) was selected as the organism, and the data sources GO biological process,
GO cellular component, GO molecular function, and KEGGs were chosen. The findings
were presented in the form of horizontal bar plots using the SRPlot online toolkit (http:
//www.bioinformatics.com.cn/en, accessed on 28 July 2023).

2.4. Molecular Docking

To further validate the results obtained from the network analysis, molecular docking
analysis was performed to evaluate the potential binding activity and interaction between
the three highly ranked compounds, namely sequoiaflavone, 3-hydroxysandaracopimaric
acid, and 3,7-dimethylquercetin, and the top eight core targets.

2.4.1. Protein and Ligand Preparation

The three-dimensional (3D) crystal structures of the proteins, including cellular tumor
antigen p53 (TP53; PDB ID: 8DC4/2.40 Å) [42], interleukin-6 (IL6; PDB ID: 4NI9/2.55 Å) [43],
tumor necrosis factor (TNF-α; PDB ID: 2AZ5/2.10 Å) [44], heat shock protein 90-alpha
(HSP90AA1; PDB ID: 8AGI/2.10 Å) [45], epidermal growth factor receptor (EGFR; PDB ID:
7T4I/2.61 Å) [46], interleukin-1 beta (IL1B; PDB ID: 1T4Q/2.10 Å) [47], apoptosis regulator
Bcl-2 (BCL2; PDB ID: 7LHB/2.07 Å) [48], and caspase-3 (CASP3; PDB ID: 3KJF/2.00 Å) [49],
were attained from the Protein Data Bank (http://www.rcsb.org, accessed on 29 July
2023) [50]. The Biovia Discovery Studio visualizer v21.1.0.20298 [51] was employed to
eliminate the co-crystallized ligands, water molecules, ions, and repeated chains. Then, the
Dock Prep module in the USCF Chimera 1.17.3 software [52] was used to modify the protein
structures by adding polar hydrogens and Gasteiger charges. The modified structures were
saved as PDBQT protein receptor files.

The 3D structures of the selected bioactive compounds of CLAE were retrieved from
the PubChem database and subsequently converted to dockable pdbqt formats using
OpenBabel 2.4.1 [53].

2.4.2. Determination of the Grid Coordinates of the Active Sites

For each protein, a grid box was placed on the active site to determine the corre-
sponding grid coordinates using the Auto Dock Vina suite in the USCF Chimera soft-
ware v.1.17.3. However, for proteins IL6 and IL1B, no co-crystallized ligands were avail-

https://www.omim.org/
https://string-db.org/
https://david.ncifcrf.gov/tools.jsp
https://david.ncifcrf.gov/tools.jsp
http://www.bioinformatics.com.cn/en
http://www.bioinformatics.com.cn/en
http://www.rcsb.org
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able. As a result, the Computed Atlas for Surface Topography of Proteins server (CASTp;
http://sts.bioe.uic.edu/castp/index.html, accessed on 29 July 2023) [54] was used first to
predict the active pocket, followed by the determination of the respective coordinates. The
centers and sizes of the grid boxes, as well as the amino acid residues of the active sites, are
revealed in Table S1.

2.4.3. Docking Simulation and Visualization

The molecular docking of the key components onto target proteins was processed
using AutoDock Vina 1.1.2. The default docking parameters were set with an energy range
of 4 and an exhaustiveness of 8 in order to generate 10 distinct poses of ligand molecules.
The docking scores were expressed in kcal/mol, with a lower score indicating a stronger
binding affinity. For each ligand, the docked pose with the best score and least root mean
square deviation (RMSD) value was selected. Additionally, for the confirmation process of
the active site, the co-crystallized ligands for TNF, HSP90AA1, EGFR, Bcl-2, and CASP3
were also re-docked. The visualization of the molecular interactions between proteins
and ligands was achieved using Maestro v13.6.122 software (Schrödinger Release 2023-3:
Maestro, Schrödinger, LLC, New York, NY, USA, 2023) and the Biovia Discovery Studio
Visualizer v21.1.0.20298 (BIOVIA Dassault Systemes, San Diego, CA, USA).

2.5. In Vivo Experiments
2.5.1. Animals

Twenty-four adult male Wistar rats, weighing 210 ± 20 g, were purchased from the
animal unit in the Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
Throughout the adaptation period and the experiment, the rats were housed in the animal
house unit in the Faculty of Pharmacy, Zagazig University, Zagazig, Egypt, and maintained
under optimal conditions of temperature (22 ± 3 ◦C), humidity (60 ± 10%), and a 12/12 h
light/dark cycle. Water and a normal chow diet were accessible ad libitum.

2.5.2. Ethical Statement

The followed research protocol here was approved by the Institutional Animal Care
and Use Committee at Zagazig University, Egypt, and given the approval number ZU-
IACUC/3/F/207/2023. The recommendations of the Weather All report and the National
Institutes of Health Guide for the care and use of laboratory animals were strictly followed.

2.5.3. Drugs and Vehicles

MTX was obtained from MYLAN (Haupt Pharma GmbH, Münster, Germany), and
tween 80 was purchased from Sigma–Aldrich (St Louis, MO, USA). CLAE was prepared
in commercially available corn oil with 10% tween 80. All other used chemicals are of
analytical grade.

2.5.4. Experimental Protocol
Induction of MTX-Hepatotoxicity

Following two weeks of acclimatization, the experiment was launched. Hepatotoxicity
was developed in all groups (except for the control one) by a single i.p injection of 20 mg/kg
MTX [11] on the fifth day of the experiment. For the control, the rats received a single i.p
injection of saline as an MTX vehicle.

Study Groups

The animals were randomly assigned into four groups (n = 6 rats each) as follows;
the control group (animals received a single i.p injection of saline on the fifth day of the
experiment plus 10% tween 80 in corn oil, as the extract vehicle, by gavage throughout
the experiment), the MTX vehicle group (animals received a single i.p injection of MTX
on the fifth day of the experiment plus 10% tween 80 in corn oil by gavage throughout
the experiment), and the CLAE 200 and CLAE 400 groups (animals received a single i.p

http://sts.bioe.uic.edu/castp/index.html
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injection of MTX on the fifth day of the experiment plus CLAE in 10% tween 80/corn oil
throughout the experiment at 200 and 400 mg/kg/day, gavage, respectively). CLAE or
vehicle administration began from the start of the experiment and continued for five days
after the MTX injection (for a total experiment period of 10 days).

2.5.5. Blood and Tissue Samples Preparation

At the closure of the experiment, blood samples were withdrawn from retro-orbital
plexus by means of heparinized microcapillary tubes and under light anesthesia with
sodium pentobarbital (50 mg/kg, i.p) [55]. The collected blood samples were allowed
to stand and clot for 30 min at 4 ◦C and were then centrifuged at 3000× g at 4 ◦C for
another 20 min. Serum was aspirated, aliquoted, and immediately stored at −80 ◦C for
later biochemical analysis. Euthanasia was ensured by cervical dislocation, liver was then
excised immediately, rinsed with ice cold saline, and blotted dry on tissue paper. Each
collected liver was divided into two portions: one of them was fixed 10% formalin for
histopathological examination, while the other was flash-frozen using liquid nitrogen and
then stored at −80 ◦C for later assays.

2.5.6. Assessment of Serum Biomarkers
Liver Function Biomarkers

To assess liver function, alanine transaminase (ALT), aspartate transaminase (AST),
and alkaline phosphatase (ALP) were measured in serum using commercially available
colorimetric kits from Spinreact Co. (Girona, Spain). The manufacturer’s instructions were
followed precisely, and measurements were carried out in duplicate.

2.5.7. Assessment of Hepatic Biomarkers
Oxidative Stress Biomarkers

The hepatic malondialdehyde (MDA) level, as an index of lipid peroxidation, as well
as the hepatic reduced glutathione (GSH) level and superoxide dismutase (SOD) activity, as
indicators of the hepatic antioxidant capacity, were measured in liver homogenates using
Bio-Diagnostic Co. (Giza, Egypt) colorimetric kits. The measurements were performed in
duplicates and in accordance with the manufacturer’s instructions.

Proinflammatory Cytokines

Proinflammatory cytokine, TNF-α, was measured in liver homogenates using a rat
TNF-α ELISA kit purchased from BT LAB (Shanghai, China). The measurements were
conducted in duplicates, following the instructions provided by the manufacturer.

Apoptotic Biomarkers

For the hepatic apoptosis assessment, apoptotic regulators Bcl-2 and Bax, as well as
the proapoptotic caspase-3 content, were measured in liver homogenates using rat ELISA
kits (BCL2L1, BAX, and CASP3, respectively) BT LAB (Shanghai, China). All assays were
conducted in duplicate as per the manufacturers’ instructions.

2.5.8. Immunohistochemical Staining

Serial sections of 4 µm thicknesses were cut from paraffin blocks of livers and then
further processed for immunohistochemical staining as follows: (1) Sections were immersed
into a 10 mM citrate buffer (pH 6.0) and heated at 98 ◦C in a water bath for 30 min and
then washed with water, (2) 3% hydrogen peroxide in methanol was added to sections
for 15 min to block the endogenous peroxidase activity, (3) Sections were incubated with
horse serum for 10 min at room temperature to block non-specific binding, (4) Sections
were incubated overnight at 4 ◦C with anti-p53 polyclonal antibody (Invitrogen, Carlsbad,
CA, USA) at 1:100 dilution as a proapoptotic biomarker, or with anti-Bcl-2 (Santa Cruz
Biotechnology Inc., Paso Robles, CA, USA) at 1:50 dilution as an antiapoptotic biomarker,
(5) Sections were incubated with secondary biotinylated antibody and avidin–biotin com-
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plex (Vectastain®ABC-peroxidase kit, Vector Laboratories, Burlingame, CA, USA, (6) The
color was developed by adding 3,3-diaminobenzidine (DAB) solution, and, (7) Finally,
the images were captured using light microscopy (LEICA ICC50W) in the Anatomy and
Embryology department by an expert pathologist who screened the entire section and cap-
tured the most representative images for each group. The images were analyzed using the
Image J software plugin (version 1.53v), immunohistochemistry (IHC) profiler, to calculate
the percentage of positive areas (areas stained with brown color) according to the method
previously described [56].

2.5.9. Histopathological Examination

Paraffinized livers were sectioned at 5 µm thickness using a microtome (Leica RM
2155, Newcastle upon Tyne, UK). Then, sections were deparaffinized in xylene, gradually
hydrated, and then stained with hematoxylin and eosin (H&E). An expert pathologist,
blinded to the study groups, screened the entire section and captured the most representa-
tive images for each group using light microscopy (LEICA ICC50W) in the Anatomy and
Embryology department. Portal tract inflammation was graded as none, mild, moderate,
and severe (0–3), where 0 = no portal inflammation, 1 = sprinkling of inflammatory cells
in 1/3 of portal tracts, 2 = increased inflammatory cells in 1/3–2/3 of portal tracts, and
3 = dense packing of inflammatory cells in 0.2/3 of portal tracts [57].

2.5.10. Statistical Analysis

All data were represented as mean ± standard error of the mean (SEM). Statistical
analysis was conducted using Graph pad prism software version 9.4.1 (681) (Graph Pad
Software Inc., La Jolla, CA, USA). The statistical significance of differences between the
groups was performed using a one-way analysis of variance (ANOVA) followed by Tukey’s
Post hoc test. A significant difference was assumed for values of p less than 0.05. For
histology scoring, the statistical significance of differences between groups was performed
using the Kruskal–Wallis test followed by Dunn’s multiple comparisons test.

3. Results

The present investigation implemented a systematic experimental approach (Figure 1) to
reveal the chemical composition of CLAE, utilizing ultra-performance liquid chromatography–
electrospray tandem mass spectrometry (UPLC-ESI-MS/MS). The identified compounds
were further analyzed through in silico techniques, including network pharmacology and
molecular docking analysis, to investigate their interactions with the DILI molecular targets.
To validate the findings in vivo, a rat model of liver injury induced by MTX was employed,
followed by subsequent functional and immunohistochemical assessments.

3.1. UPLC-ESI-MS/MS Profiling

According to MS mass, MS2 fragmentation data and patterns, and literature reports,
61 chemical constituents were identified, categorized into flavonoids and glycosides, pheno-
lic, diterpene, carboxylic, sugar acids, fatty acids, lignans, and other compounds. Retention
time, pseuomolecular ion peak [M-H]−, MS2, and the related literature of the identified
metabolites of CLAE are listed in Table 1. Figure S1 shows the total ion chromatogram
(TIC) of CLAE in negative mode.
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Figure 1. A flowchart depicting the experimental design of this study, encompassing phytochemical,
network pharmacological, molecular docking, and in vivo experimental studies to explore the impact
of CLAE in DILI.

Table 1. Phytochemical profiling of the ethanolic extract of Chamaecyparis lawsoniana aerial parts by
LC-ESI-MS/MS in negative mode.

No. Rt. [M-H]− MS2 Fragments (m/z) Tentative Identification Class Ref.

1. 1.068 133.014 115, 71 Malic acid Carboxylic acid [58]

2. 1.119 173.045 155, 111, 137, 73, 93 Shikimic acid Carboxylic acid [59]

3. 1.158 135.030 117, 99, 73, 75 L-Threonic acid Sugar acid [59]

4. 1.163 329.091 167 Vanillic acid glucoside Phenolic acid glycoside [60]

5. 1.183 191.056 173, 85 Quinic acid Carboxylic acid [29]

6. 1.211 335.054 299, 191, 137 Caffeoylshikimic acid Phenolic acid derivatives [61]

7. 1.237 377.086 341 Disaccharid adduct Disaccharid [62]

8. 1.275 315.071 153 Protocatechuic acid hexoside Phenolic acid glycoside [29]

9. 1.301 355.116 193, 149, 175, 134 Ferulic acid-O-glucoside Phenolic acid glycoside [63]

10. 1.379 341.109 59, 71, 89, 101, 113, 143 Sucrose Disaccharid [62]

11. 1.405 337.092 191, 163, 119 Coumaroylquinic acid Phenolic acid derivatives [64]

12. 1.458 357.119 195 Dihydro-ferulic acid hexoside Phenolic acid glycoside [65]
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Table 1. Cont.

No. Rt. [M-H]− MS2 Fragments (m/z) Tentative Identification Class Ref.

13. 4.162 507.164 345 Syringetin-3-O-glucoside Flavonol glycoside [66]

14. 5.339 489.143 313, 283 5,7-Dihydroxy-8,2’-dimethoxyflavone
7-glucuronide Flavone glucuronide [67]

15. 5.537 385.186 223, 153 Roseoside Norisoprenoid glucoside [64]

16. 5.564 385.186 223, 179 Sinapoyl D-glucoside Phenolic acid glycoside [68]

17. 5.645 431.192 385, 223, 153 Roseoside (formate adduct) Norisoprenoid glucoside [64]

18. 5.648 593.153 447, 431, 285 kaempferol-3-O-glucoside-7-O-rhamnoside Flavonol glycoside [69]

19. 5.751 623.158 487, 477, 461, 443, 315, 297 Verbascoside Phenylethanoid glycosides [70]

20. 5.775 525.197 329, 507 Tricin-4′-O-(erythro-β-guaiacylglyceryl) ether
(Salcolin A) Flavone derv. [71]

21. 5.777 623.160 477, 315 Isorhamnetin-3-O-rutinoside Flavonol glycoside [72]

22. 5.777 623.160 461, 477 Isorhamnetin 3-O-glucoside-7-O-rhamnoside Flavonol glycoside [73]

23. 6.110 373.149 327 Pinopalustrin (Nortrachelogenin) Dibenzylbutyrolactone lignan [74]

24. 6.433 609.146 463, 447, 301 Quercetin 3-rhamnoglucoside Flavonol glycoside [75]

25. 6.615 463.088 301, 300, 179, 271, 255, 151 Quercetin-3-O-glucoside Flavonol glycoside [64]

26. 6.633 609.111 447, 285 kaempferol dihexoside Flavonol glycoside [76]

27. 6.860 593.152 431, 385, 311, 269 Apigenin diglucoside Flavone glycoside [77]

28. 6.882 363.144 315, 179, 167 (7R,8R)-3-Methoxy-3’,4,7,9,9’-pentahydroxy-8,4’-
oxyneolignan

Lignan [78]

29. 7.264 447.092 301, 179, 151, 271 Quercitrin (Quercetin -3-O-rhamnoside) Flavonol glycoside [64]

30. 7.316 477.103 315, 314, 285 Isorhamnetin 3-O-Glucoside Flavonol glycoside [79]

31. 7.416 327.217 327, 229, 211, 171, 113 9,12,13-trihydroxyoctadeca-10,15-dienoic acid
(Malyngic acid) Fatty Acid [80]

32. 7.518 287.056 259, 151 Dihydrokaempferol (Aromadendrin) Flavanonol [72]

33. 7.538 699.135 Agathisflavone -O-hexoside Biflavonoid glycoside [81]

34. 7.586 577.156 269, 225, 201, 149 Apigenin 7-O-neohesperidoside (rhoifolin) Flavone glycoside [82]

35. 7.861 329.138 314, 299 3,7-dimethylquercetin Flavonol [83]

36. 7.862 341.141 311, 283, 257 4’,5,6,7-Tetramethoxyflavone (Scutellarein
tetramethyl ether) Flavone [84]

37. 7.887 435.149 273, 167 Phlorizin (phloretin glucoside) Dihydrochalcone glycoside [29]

38. 7.976 461.107 461, 299, 284 Dihydro-methoxyisoflavone O-hexoside
(Tectoridin) Flavone glycoside [85]

39. 8.052 461.108 315, 314 Isorhamnetin-O-rhamnoside Flavonol glycoside [86]

40. 8.220 519.187 459, 357, 315, 314, 299, 285 Hexosyl-acyl-isorhamnetin Flavonol glycoside [87]

41. 8.283 417.082 285, 284, 255 Kaempferol-3-O-arabinoside Flavonol glycoside [88]

42. 8.692 557.244 539, 509, 361 Secoisolariciresinol guaiacylglyceryl ether Butanediol lignan [89]

43. 8.865 555.224 525, 507, 329,195, 165 Lariciresinol-4’-guaiacylglyceryl ether Tetrahydrofuranolignan [89]

44. 9.366 537.273 417, 375, 399 Agathisflavone Biflavonoid [81]

45. 9.639 543.276 335 Pharboside C Diterpene acid glycoside [90]

46. 9.948 271.062 151 Naringenin Flavanone [72]

47. 10.454 137.024 93 Protocatechualdehyde Phenolic aldehyde [91]

48. 10.955 521.087 329, 359 Lariciresinol glucoside Tetrahydrofuranolignan
glycoside [92]

49. 11.580 551.096 457, 431, 413, 389, 345 7-O-methylamentoflavone (Sequoiaflavone) Biflavonoid [93]

50. 11.629 551.097 457, 431, 413, 389, 390, 345 4′-O-methylamentoflavone (Bilobetin) Biflavonoid [94]

51. 14.081 333.258 315 8alpha-8-Hydroxy-12-oxo-13-abieten-18-oic acid Diterpene acid [95]

52. 14.433 302.911 259, 219 Copalic acid Diterpene acid [74]

53. 16.038 565.115 533, 389, 374 Isoginkgetin (4′ ,4′′ dimethylamentoflavone) Biflavonoid [94]

54. 16.416 564.773 471, 445, 403 Robustaflavone 7,4′-dimethyl ether Biflavonoid [94]

55. 16.715 357.099 342, 313 Matairesinol Dibenzylbutyrolactone lignans [96]

56. 17.152 359.222 344, 313 Cyclolariciresinol Aryltetralin diol lignan [89]

57. 18.682 329.175 285, 313, 311 Carnosol Phenolic diterpene [74]
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Table 1. Cont.

No. Rt. [M-H]− MS2 Fragments (m/z) Tentative Identification Class Ref.

58. 21.153 317.212 299, 205 3-Hydroxysandaracopimaric acid Diterpene acid [97]

59. 21.191 317.212 299 12alpha-hydroxy-8,15-isopimaradien-18-oic acid Diterpene acid [98]

60. 21.202 301.218 253, 205 ent-kaurenoic acid Diterpene acid [99]

61. 21.269 715.328 641, 375, 301 Ganoleucoin J lanostane triterpenoid [100]

3.1.1. Identification of Phenolic, Carboxylic, Sugar, Diterpene Acid and Fatty Acids

According to the UPLC-ESI-MS/MS analysis conducted in negative mode, CLAE
displayed a diverse range of acids that were classified into various categories, including
phenolic acid conjugates, carboxylic acids, sugar acids, diterpene acids, and fatty acids.

Phenolic acid conjugates were predominantly observed as phenolic acid hexosides,
such as compounds 4, 8, 9, and 12, which released hexosyl (162 Da) to produce correspond-
ing phenolic acids, including vanillic, protocatechuic, ferulic, and dihydroferulic acids.
Other phenolic acid conjugates, such as caffeoylshikimic acid 6 and coumaroylquinic acid
11, were also identified.

In addition to these, carboxylic acids, such as malic and shikimic acids, sugar acid
as L-threonic acid, diterpene acids, including 8alpha-8-Hydroxy-12-oxo-13-abieten-18-oic
acid, copalic acid, 3-hydroxysandaracopimaric acid, 12alpha-hydroxy-8,15-isopimaradien-
18-oic acid, and ent-kaurenoic acid, and diterpene acid glycoside pharboside C, as well as
fatty acids, such as 9,12,13-trihydroxyoctadeca-10,15-dienoic acid, were also characterized.
Generally, the primary fragmentation pathway for these acids involved the loss of CO
(28 Da), CO2 (44 Da), and H2O from the deprotonated peak [M-H]−.

3.1.2. Identification of Flavonoid and Glycosides

Flavonoid aglycones and glycosides are considered the major compounds detected in
CLAE; these compounds belong to different subclasses such as flavonol, flavone, flavanonol,
biflavonoid, dihydrochalcone, and flavanone.

Biflavonoids represent the majority of the subclasses in the extract, where six biflavonoids
were tentatively identified, including three 3′, 8′′ biapigenin-type biflavones (IC3′–IIC8′′) as
7-O-methylamentoflavone 49, 4′-O-methylamentoflavone 50, and Isoginkgetin 53, one 3′,
6′′ biapigenin-type biflavone (IC3′–IIC6′′) as robustaflavone 7,4′-dimethyl ether 54, and
two 6, 8′′ biapigenin-type biflavones (IC6–IIC8′′) as agathisflavone-O-hexoside 33 and
agathisflavone 44. Compounds 49, 50, and 53 are amentoflavone-type biflavones, and they
underwent a similar fragmentation pathway. The [M-H]− ion of compound 49 at m/z 551
produced several characteristic daughter ions, such as the [M-H-C6H6O]− ion at m/z 457,
which is coming from the neutral loss of phenol on flavonoid part II, [M-H-C7H4O2]− ion
at m/z 431, which was attributed to the 0,2IIA-ion, [M-H-C7H6O3]− ion at m/z 413 which
corresponded to the 0,2IIA−-H2O ion, [M-H-C9H6O3]− ion at m/z 389 ion which corre-
sponded to the base peak, which illustrated that the product ion passed a retro cyclization
fragmentation, including the 0 and 4 bonds on flavonoid part II, and [M-H-C10H6O5]− ion
at m/z 345 which corresponded to the 0,4IIA−-CO2 ion. Compounds 50 and 53 also yielded
diagnostic fragments for this type of biflavone. Basically, the most important diagnostic
fragmentation -ve ESI mode of amentoflavone-type biflavones is that involving the cleav-
age of the C–ring of flavonoid part II at position 0/4. The MS2 fragmentation pathways
of IC3′–IIC6′′ linked biflavones, such as robustaflavone 7,4′-dimethyl ether 54, displayed
similarities and differences in comparison with amentoflavone-type biflavones. Compound
54 produced fragments at m/z 471, 445, and 403 in a similar way as amentoflavone-type
biflavones. But the chances are greater in the case of robustaflavone type for the cleavage
of C–ring to occur on flavonoid part I, such as at position 1/4 and 1/3, and after retro
cyclization, which produced the 1,4IB-ion at m/z 427, 1,3IB- ion at m/z 401.

Other flavonoid aglycones were tentatively identified as flavanonol (dihydrokaempferol
32), flavonol (3,7-dimethylquercetin 35), flavone (scutellarein tetramethyl ether 36), and
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flavanone (naringenin 46). The identification of these aglycones was established by the
corresponding [M-H]− as well as the MS2 fragmentation pattern for each compound.

Flavonoids are mostly present in the form of glycosides, which are easily cleaved
in MS2 fragmentation, producing the corresponding aglycone. Three peaks related to
Kaempferol were detected at [M-H]− at m/z 593, 609, and 417, they gave a fragment
at m/z 285, corresponding to the aglycone Kaempferol, which attributed to the elimi-
nation of glucose and rhamnose (compound 18), two molecules of glucose (compound
26), and arabinose (compound 41). Peaks 21, 22, 30, 39, and 40 exhibited the same base
peak at m/z 315 corresponding to the isorhamnetin aglycone through the neutral loss of
rutinosyl (308 Da), indicating the presence of isorhamnetin-3-O-rutinoside 23, glucosyl,
and rhamnosyl (162, 146 Da), indicating the presence of isorhamnetin 3-O-glucoside-7-
O-rhamnoside 24, glucosyl (162 Da), confirming isorhamnetin 3-O-glucoside, the loss of
rhamnosyl (146 Da) in the case of isorhamnetin-O-rhamnoside 41, and the loss of acyl-
hexosyl (204 Da) in hexosyl-acyl-isorhamnetin 40. In a similar way, quercetin glycosides
(compounds 24, 25, and 29), apigenin glycosides (compounds 27 and 34), syringetin-3-O-
glucoside 13, 5,7-Dihydroxy-8,2’-dimethoxyflavone 7-glucuronide 14, phloretin glucoside
37, and diosmetin 7-O-glucoside were tentatively identified.

Other flavonoid conjugates were detected as compound 20 of the molecular ion peak
[M-H]− at m/z 525, and MS2 fragmentation produced a characteristic peak for the aglycone
tricin and identified as salcolin A (tricin-4′-O-(erythro-β-guaiacylglyceryl) ether).

3.1.3. Identification of Lignans and Their Glycosides

Different classes of lignans and glycosides were identified in the extract as dibenzylbu-
tyrolactones (23, 55), butanediol (42), tetrahydrofurano (43, 48), aryltetralin diol lignans (56),
and neolignan (28); they exhibited different fragmentation patterns which were compared
with the reported data.

3.1.4. Identification of Miscellaneous Compounds

Disaccharide (sucrose), norisoprenoid glucoside (roseoside), phenylethanoid gly-
cosides (verbascoside), phenolic aldehyde (protocatechualdehyde), phenolic diterpene
(carnosol), and lanostane triterpenoid (ganoleucoin J) were also identified.

3.2. Network Pharmacology-Based Analysis
3.2.1. Identification of Bioactive Constituents of CLAE

In order to identify the potential bioactive components, a total of 54 secondary metabo-
lites of CLAE were subjected to screening for their pharmacokinetic and drug-likeness
properties, as detailed in Table S2. Among these compounds, 31 exhibited high bioavail-
ability scores (OB ≥ 0.55) and satisfied Lipinski’s rule of five, a widely accepted criterion
for assessing drug likeness. Consequently, these 31 compounds were selected for further
investigation, outlined in Table S3.

3.2.2. Determination of the Overlapping Molecular Targets of CLAE Bioactive Compounds
and DILI

In order to ascertain the molecular targets related to the bioactive components of
CLAE, the databases PharmMapper and SwissTargetPrediction were employed. Following
the elimination of duplicates, a total of 958 targets were yielded (Table S4). Subsequently,
the DILI-associated molecular targets were identified from three disease-related databases:
DisGeNeT, GeneCards, and OMIM. After removing duplicates, 801 targets were obtained
from an initial 1114 (Table S5). Of these targets, 195 (Table S6) were found to overlap with
the 958 targets associated with CLAE bioactive compounds (Figure 2).
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3.2.3. PPI Network of the Common Targets

To comprehend the hepatoprotective mechanism of CLAE against DILI, the interac-
tions between the common target proteins were analyzed. The 195 overlapping targets
were submitted into the STRING database to generate an interconnected network that
shows the correlations among these targets. After removing the disconnected nodes, the
entire network displayed a total of 185 targets (Figure 3A).

A Degree value-based ranking was performed on the core targets in the PPI network,
which was determined by the number of connecting edges. The complete ranking of all the
genes can be found in Table S7, whereas the top 20 targets are presented in Figure 3B and
Table 2. TP53, IL6, TNF-α, HSP90AA1, EGFR, IL1B, BCL2, and CASP3 are among the top
eight targets.

Table 2. Top common targets ranked by the Degree method.

Rank Target Name Score

1 TP53 59
2 IL6 50
3 TNF 46
3 HSP90AA1 46
5 EGFR 44
6 IL1B 43
7 BCL2 42
8 CASP3 37
8 JUN 37
10 ALB 36
11 MMP9 35
12 HIF1A 34
13 ESR1 30
14 PTGS2 29
15 STAT1 28
16 MAPK3 26
17 ERBB2 25
18 MAPK1 24
19 MAPK8 23
19 JAK2 23
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3.2.4. Top CLAE Compounds Associated with DILI Targets

In Cytoscape, a compound–target network (Figure S2) was constructed to find out the
most significant CLAE compounds related to the 195 DILI targets. These compounds were
subsequently arranged by their Degree value (Table 3). The top three compounds were
sequoiaflavone, 3-hydroxysandaracopimaric acid, and 3,7-dimethylquercetin.
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Table 3. Bioactive compounds of CLAE ranked by the Degree method.

Rank Compound Score

1 Sequoiaflavone 105
2 3-Hydroxysandaracopimaric acid 104
2 3,7-Dimethylquercetin 104
4 12α-hydroxy-8,15-isopimaradien-18-oic acid 103
5 Robustaflavone 7,4′-dimethyl ether 102
6 Bilobetin 100
6 4′,5,6,7-Tetramethoxyflavone (Scutellarein tetramethyl ether) 100
8 8alpha-8-Hydroxy-12-oxo-13-abieten-18-oic acid 99
8 Carnosol 99

10 Isoginkgetin 97
11 Matairesinol 94
12 Caffeoylshikimic acid 93
13 secoisolariciresinol guaiacylglyceryl ether 92
14 ent-Kaurenoic acid 90
15 Ferulic acid O-glucoside 89
15 Roseoside 89
17 lariciresinol-4′-guaiacylglyceryl ether 88
17 cyclolariciresinol 88
19 Sinapoyl D-glucoside 87
19 Malyngic Acid 87
21 Copalic acid 86
21 Naringenin 86
23 Coumaroylquinic acid 82
24 Pinopalustrin (Nortrachelogenin) 80
24 Kaempferol-3-O-arabinoside 80
26 Aromadendrin 77
27 Quinic acid 76
28 Phlorizin 74
29 Vanillic acid glucoside 68
30 L-Threonic acid 59
31 Protocatechualdehyde 42

3.2.5. Enrichment Analysis of the Common Targets

The present study conducted an enrichment analysis to confirm the relevant charac-
teristics of the 195 disease–compound common targets on biological and functional levels.
The GO analysis yielded a total of 722 GO items, comprising biological processes (BPs),
cellular components (CCs), and molecular functions (MFs) with p < 0.05. Bar graphs were
generated for the top 10 GO items, as illustrated in Figure 4a. The most prominent BP
involved the response to xenobiotic stimulus, negative regulation of the apoptotic process,
and the xenobiotic metabolic process. The top CC categories were cytosol, extracellular
exosome, and macromolecular complex, while the top MF categories comprised enzyme
binding, identical protein binding, and protein homodimerization activity. Supplementary
Tables S8–S10 provide detailed information on the GO analyses.

Additionally, KEGGs pathway enrichment analysis (p < 0.05) was performed on the
195 common targets of CLAE and DILI to identify the potential hepatoprotective pathways.
The top 30 pathways, including pathways in cancer, the AGE-RAGE signaling pathway in
diabetic complications, fluid shear stress, and atherosclerosis, are shown in Figure 4b based
on the number of enriched genes, fold changes, and p value. The results of the KEGGs
pathway are represented in detail in Table S11.
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3.3. Molecular Docking Simulation

In order to assess the binding affinity of CLAE compounds to the key target proteins
associated with DILI pathogenesis, a molecular docking analysis was conducted using
AutoDock Vina software v.1.1.2. The analysis focused on the top three CLAE compounds:
sequoiaflavone, 3-hydroxysandaracopimaric acid, and 3,7-dimethylquercetin (Table 3), and
the top eight DILI targets: TP53, IL6, TNF-α, HSP90AA1, EGFR, IL1B, BCL2, and CASP3
(Table 2). The ligand molecules were docked within the designated grid box that was
generated around the active site of each protein.

Table 4 displays the results of the docking analysis, which includes the docking scores,
interacting amino acid residues at the active sites, and associated bond types. In accordance
with Autodock Vina, a lower docking score indicates a stronger ligand–receptor association,
with a score below −7 kcal/mol indicating a high binding affinity [101]. The interaction
complexes with docking scores below −7 kcal/mol are illustrated in Figures 5–7 organized
in ascending order of score values for each ligand.

Table 4. Molecular docking results of the top three CLAE bioactive constituents against the top eight
target proteins.

Target Protein Ligand Docking Score
(kcal/mol) Interacting Amino Acid Residues Bond Type

TP53
(8DC4)

Sequoiaflavone −9.060

Glu221
Ser229

Leu145 and Val147
Val147, Pro151, Pro222, and Pro223

Pro223
Cys220

Amide-Pi Stacked
Carbon–Hydrogen

Conventional Hydrogen
Pi-Alkyl
Pi-Sigma
Pi-Sulfur

3-Hydroxysandaracopimaric acid −6.291 Pro151, Pro222, and Pro223
Val147

Alkyl
Conventional Hydrogen

3,7-Dimethylquercetin −7.112

Leu145 and Val147
Glu221

Cys220 and Thr230
Val147, Pro151, and Pro222

Pro222 and Pro223
Cys220

Gly154 and Thr155

Alkyl
Amide-Pi Stacked

Conventional Hydrogen
Pi-Alkyl
Pi-Sigma
Pi-Sulfur

Unfavorable Donor–Donor

Co-crystallized ligand −7.040

Pro223
Glu221
Cys220

Val147, Pro151, Pro222, and Pro223
Thr230
Val147
Cys220

Alkyl
Amide-Pi Stacked

Conventional Hydrogen
Pi-Alkyl

Pi-Donor–Hydrogen
Pi-Sigma
Pi-Sulfur

IL6
(4NI9)

Sequoiaflavone −7.444

Leu33
Lys41 and Arg40

Arg168 and Lys171
Ser37

Alkyl
Pi-Alkyl
Pi-Cation

Pi-Donor–Hydrogen

3-Hydroxysandaracopimaric acid −4.837 Leu33, Arg40, and Lys171 Alkyl

3,7-Dimethylquercetin −6.277

Leu33
Ser37

Arg40, Arg168, and Lys171
Lys171
Ser37

Arg168

Alkyl
Carbon–Hydrogen

Pi-Alkyl
Pi-Cation

Pi-Donor–Hydrogen
Unfavorable Donor–Donor

* TNF-α
(2AZ5)

Sequoiaflavone −9.429

ProA117
LysB98 and IleB118

GlnA61 and TyrB119
LysA98
TyrA119
TyrB119

Alkyl
Carbon–Hydrogen

Conventional Hydrogen
Pi-Cation

Pi-Pi Stacked
Pi-Pi T-shaped

3-Hydroxysandaracopimaric acid −8.56
SerB60 and TyrB151

TyrA119 and TyrB119
TyrA119

Conventional Hydrogen
Pi-Alkyl
Pi-Sigma

3,7-Dimethylquercetin −7.258

LeuA57 and IleA155
GlyA121, TyrA151, and TyrB151

TyrA59
TyrA59

Alkyl
Conventional Hydrogen

Pi-Alkyl
Pi-Pi Stacked
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Table 4. Cont.

Target Protein Ligand Docking Score
(kcal/mol) Interacting Amino Acid Residues Bond Type

Co-crystallized ligand −9.076
GlyA121

TyrB59, TyrB119, and TyrB151
TyrA119

Halogen (Fluorine)
Pi-Alkyl
Pi-Sigma

HSP90AA1
(8AGI)

Sequoiaflavone −10.27

Asn51
Ser50 and Gly97

Ala55, Met98, and Val 168
Asp54
Asn51
Met98
Ser52

Amide-Pi Stacked
Conventional Hydrogen

Pi-Alkyl
Pi-Anion

Pi-Donor–Hydrogen
Pi-Sigma

Van Der Waals

3-Hydroxysandaracopimaric acid −6.905

Ala55, Lys58, and Met98
Gly132
Gly132
Gly135

Alkyl
Conventional Hydrogen

Unfavorable
Acceptor–Acceptor
Carbon–Hydrogen

3,7-Dimethylquercetin −7.945

Lys58 and Ile96
Asn51
Asn51

Ala55 and Met98
Met98

Alky
Carbon–Hydrogen

Conventional Hydrogen
Pi-Alkyl
Pi-Sulfur

Co-crystallized ligand −9.931

Ile96, Met98, and Leu107
Asp93, Gly97, Asn106, and Thr184

Phe138
Ala55
Met98

Alkyl
Conventional Hydrogen

Pi-Alkyl
Pi-Sigma
Pi-Sulfur

EGFR
(7T4I)

Sequoiaflavone −10.14

Lys745
Leu718, Thr790, Met793, and Thr854

Val726 and Ala743
Leu718, Val726, and Leu844

Cys797
Phe723

Carbon–Hydrogen
Conventional Hydrogen

Pi-Alkyl
Pi-Sigma
Pi-Sulfur

Pi-Pi T-shaped

3-Hydroxysandaracopimaric acid −8.331 Leu718, Val726, Ala743, and Leu844
Thr790 and Thr854

Alkyl
Conventional Hydrogen

3,7-Dimethylquercetin −7.868

Leu718
Thr790, Met793, and Thr854
Val726, Ala743, and Leu844

Leu718

Carbon–Hydrogen
Conventional Hydrogen

Pi-Alkyl
Pi-Sigma

Co-crystallized ligand −9.079

Leu718, Val726, Ala743, Lys745, and
Leu792

Asp800 and Glu804
Leu718, Gln791, and Asp800

Thr790, Met793, Phe795, Cys797, and
Thr854

Val726 and Ala743
Leu718, Val726, and Leu844

Alkyl
Attractive Charge
Carbon–Hydrogen

Conventional Hydrogen
Pi-Alkyl
Pi-Sigma

IL1B
(1T4Q)

Sequoiaflavone −8.833

Ala1
Val3

Val3, Asn7, Lys65, Lys88, and Ser153
Lys63 and Pro91

Ser43
Asn7

Alkyl
Carbon–Hydrogen

Conventional Hydrogen
Pi-Alkyl

Pi-Donor–Hydrogen
Unfavorable Donor–Donor

3-Hydroxysandaracopimaric acid −6.477
Ser5
Ser43
Tyr68

Carbon–Hydrogen
Conventional Hydrogen

Pi-Alkyl

3,7-Dimethylquercetin −6.588

Pro87
Ser43, Glu64, Leu62, and Lys65

Pro91
Val3
Ser5

Alkyl
Conventional Hydrogen

Pi-Alkyl
Unfavorable

Acceptor–Acceptor
Unfavorable Donor–Donor

BCL2
(7LHB)

Sequoiaflavone −10.13

Glu152
Glu136

Arg146 and Ala149
Tyr108
Leu137
Met115
Phe153

Amide Pi-Stacked
Conventional Hydrogen

Pi-Alkyl
Pi-Pi T-shaped

Pi-Sigma
Pi-Sulfur

Van Der Waals

3-Hydroxysandaracopimaric acid −7.917

Met115, Leu137, Ala149, and Val156
Glu136

Phe104, Phe112, and Phe153
Glu136

Alkyl
Conventional Hydrogen

Pi-Alkyl
Unfavorable

Acceptor–Acceptor
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Table 4. Cont.

Target Protein Ligand Docking Score
(kcal/mol) Interacting Amino Acid Residues Bond Type

3,7-Dimethylquercetin −7.394

Leu137 and Ala149
Ala100, Phe104, and Arg146
Arg146, Val148, and Ala149

Phe104

Alkyl
Conventional Hydrogen

Pi-Alkyl
Pi-Pi T-shaped

Co-crystallized ligand −12.78

Ala100, Val133, Leu137, and Val156
Gly145

Arg107 and Asp111
Ala100, Asp103, and Asp111

Asp103 and Asn143
Glu152

Ala100, Phe112, Met115, Arg146, Val148,
and Ala149

Tyr202
Tyr202

Alkyl
Amide Pi-Stacked
Attractive Charge
Carbon–Hydrogen

Conventional Hydrogen
Halogen (Cl, Br, I)

Pi-Alkyl
Pi-Donor–Hydrogen

Pi-Pi Stacked

CASP3
(3KJF)

Sequoiaflavone −8.477

Trp214
Trp214
Asp253
Arg207

Asn208 and Phe250
Phe256

Conventional Hydrogen
Pi-Alkyl
Pi-Anion
Pi-Cation

Pi-Donor–Hydrogen
Pi-Pi Stacked

3-Hydroxysandaracopimaric acid −6.334
Phe250

Asn208 and Phe250
Phe250

Carbon–Hydrogen
Conventional Hydrogen

Pi-Alkyl

3,7-Dimethylquercetin −6.261

Arg207 and Ser251
Phe256
Trp206
Trp214

Conventional Hydrogen
Pi-Alkyl

Pi-Pi T-shaped
Unfavorable Donor–Donor

Co-crystallized ligand −8.20

Arg207
Arg207, Asn208, Ser209, Trp214, and

Phe250
Arg207, Asn208, and Ser251

Phe250 and Phe252
Phe256

Attractive Charge
Conventional Hydrogen

Carbon–Hydrogen
Pi-Alkyl

Pi-Pi Stacked/3.72

* The TNF-α model is based on the co-crystal structure of the TNF-α dimer.

The findings revealed that sequoiaflavone exhibited the highest binding affinity for all
the proteins analyzed in this study. Significantly, the most favorable results were observed
with HSP90AA1, EGFR, BCL2, TNF-α, and TP53 exhibiting docking scores of −10.27,
−10.14, −10.13, −9.429, and −9.060 kcal/mol, respectively.
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Figure 7. Three-dimensional and two-dimensional representations of the interaction complexes of
3,7-dimethylquercetin with TP53, TNF-α, HSP90AA1, EGFR, and BCL2. The plots have been arranged
in ascending order according to their respective docking score values.

As depicted in Figure 5, the interaction complex between sequoiaflavone and HSP90AA1
manifested a total of twelve intermolecular interactions. Among these, three were at-
tributed to hydrogen bonds, wherein sequoiaflavone interacted with Ser50 and Gly97
through conventional hydrogen bonding, and with Asn51 via Pi-donor–hydrogen bond.
On the other hand, the docked complex of sequoiaflavone and EGFR displayed remark-
ably fifteen intermolecular bonds that involved four conventional hydrogen bonds with
Leu718, Thr790, Met793, and Thr854, along with one carbon–hydrogen bond with Lys745.
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Furthermore, it was observed that sequoiaflavone and BCL2 exhibited nine intermolecular
interactions, including a single conventional hydrogen bonding with Glu136. Additionally,
the interaction between sequoiaflavone and TNF-α is mediated by ten intermolecular link-
ages, including two conventional hydrogen bonds formed with GlnA61 and TyrB119, as
well as two additional carbon–hydrogen bonds with LysB98 and IleB118 residues located
beyond the active site. Sequoiaflavone was found to form fifteen intermolecular bonds
with TP53, including two conventional hydrogen bonds with Leu145 and Val147, as well as
a carbon–hydrogen bond with Ser229.

As illustrated in Figure 6, the interaction analysis revealed the presence of seven
intermolecular interactions between 3-hydroxysandaracopimaric acid and TNF-α. Notably,
three conventional hydrogen bonds were identified, with one being associated with the
SerB60 residue and the remaining two with the TyrB151 residue. Moreover, the interaction
between 3-hydroxysandaracopimaric acid and EGFR resulted in the formation of nine inter-
molecular bonds, which included two conventional hydrogen bonds that were established
with Thr790 and Thr854. In addition, eleven intermolecular interactions were detected
between 3-hydroxysandaracopimaric acid and BCL2, where a conventional hydrogen bond
was formed with Glu136 residue.

Furthermore, it was observed that 3,7-dimethylquercetin demonstrated a signifi-
cant potential in its ability to bind with TP53, TNF-α, HSP90AA1, EGFR, and BCL2.
The docking scores for these interactions were −7.112, −7.258, −7.945, −7.868, and
−7.394 kcal/mol, respectively. According to the findings presented in Figure 7, the com-
pound 3,7-dimethylquercetin exhibited an interaction with TP53 through eighteen inter-
molecular associations, including two conventional hydrogen bonds with Cys220 and
Thr230. Additionally, the interaction between 3,7-dimethylquercetin and TNF-α was char-
acterized by nine intermolecular bonds, four of which were conventional hydrogen bonds
with GlyA121, TyrA151, and TyrB151. As well, the intermolecular connection between
3,7-dimethylquercetin and HSP90AA1 was established through the formation of eight
bonds, comprising a conventional hydrogen bond and a carbon–hydrogen bond, with the
Asn51 residue. In relation to the interplay between 3,7-dimethylquercetin and EGFR, a total
of twelve intermolecular connections were identified. These included four conventional
hydrogen bonds with Thr790, Met793, and Thr854, as well as a carbon–hydrogen bond with
Leu718. Moreover, it was observed that 3,7-dimethylquercetin exhibited intermolecular
interactions with BCL2 via ten connections. Notably, two conventional hydrogen bonds
were identified at the active site, specifically with Ala100 and Phe104. Additionally, a
further hydrogen bond was detected with the Arg146 residue, which is situated beyond
the active site.

3.4. In Vivo Validation
3.4.1. CLAE Improved Liver Function

As depicted in Figure 8A–C, a significant impairment of liver function was exhibited
in the vehicle-treaded MTX group, indicating liver injury, as expressed by elevated levels
of circulating liver enzymes (ALT, AST, and ALP) compared to the control group. Hep-
atoprotective effects of CLAE at both doses were evident by the significant reductions in
the circulating levels of ALT, AST, and ALP when compared to the vehicle-treated MTX
group (Figure 8A,B,C, respectively). The higher dose of CLAE exhibited a more efficient
improvement in liver function and hence hepatoprotection compared to the smaller one,
indicating the dose-dependent effect of CLAE.
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Figure 8. Effect of 10 days administration of Chamaecyparis lawsoniana extract (CLAE) at 200 and
400 mg/kg/day, gavage on impaired liver function induced by single i.p injection of methotrexate
(MTX) at a dose of 20 mg/kg on the fifth day of the experiment. Liver function is presented as serum
levels of alanine aminotransferase (ALT, (A)), aspartate aminotransferase (AST, (B)), and alkaline
phosphatase (ALP, (C)). Values are presented as mean ± SEM (n = 6/group). Statistical analysis
was conducted using one-way analysis of variance (ANOVA) followed by Tukey’s Post hoc test.
**** p < 0.0001, ** p < 0.01, and * p < 0.05.

3.4.2. CLAE Alleviated Hepatic Oxidative Stress

As presented in Figure 9A–C, MTX intoxication elicited pronounced hepatic oxidative
stress, as manifested by a significant increase in the lipid peroxidation product MDA and
significant attenuation of the hepatic antioxidant capacity, as depicted by a decline in the
SOD activity and GSH level when compared to the control group. Comparable to the
vehicle-treated MTX group, both doses of CLAE significantly alleviated MTX-induced
oxidative stress, where there was a significant reduction in hepatic MDA, while enhanced
SOD activity and GSH level in the liver was observed upon CLAE administration, indicating
the antioxidant potential of CLAE (Figure 9A–C).

3.4.3. CLAE Reduced Hepatic Inflammation

As shown in Figure 9D, the vehicle-treated MTX group exhibited significant elevation
in the proinflammatory cytokine, TNF-α, indicating hepatic inflammation compared to the
control group. On the other hand, CLAE significantly reduced the hepatic TNF-α content
in a dose-dependent manner in comparison with the vehicle-treated MTX group.
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Figure 9. Effect of 10 days administration of Chamaecyparis lawsoniana extract (CLAE) at 200 and
400 mg/kg/day, gavage on hepatic oxidative stress and inflammation induced by single i.p injection
of methotrexate (MTX) at a dose of 20 mg/kg on the fifth day of the experiment. Oxidative status
is expressed by hepatic content of malondialdehyde (MDA, (A)), superoxide dismutase (SOD, (B)),
and reduced glutathione (GSH, (C)). Inflammatory status is expressed by proinflammatory cytokine
tumor necrosis factor-α (TNF-α, (D)). Values are presented as mean ± SEM (n = 6/group). Statistical
analysis was conducted using one-way analysis of variance (ANOVA) followed by Tukey’s Post hoc
test. **** p < 0.0001, *** p < 0.001, ** p < 0.01, and * p < 0.05.

3.4.4. CLAE Attenuated Apoptosis (Immunostaining and Biochemical Findings)

MTX intoxication induced hepatic apoptosis, as manifested by increased positive
areas of p53 staining, a proapoptotic biomarker, in hepatocyte nuclei, whereas reduced
positive areas of Bcl-2-staining, antiapoptotic protein, and weak cytoplasmic immune
reactivity were noticed in immunostained liver sections when compared to the control
group (Figure 10A). Further, biochemical measurements revealed declined antiapoptotic
Bcl-2, while the proapoptotic biomarkers Bax and caspase-3 were increased in the vehicle-
treated MTX group in comparison with the control one (Figure 10B,C,D, respectively).
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Figure 10. Effect of 10 days administration of Chamaecyparis lawsoniana extract (CLAE) at 200 and
400 mg/kg/day, gavage on hepatic apoptosis induced by single i.p injection of methotrexate (MTX)
at a dose of 20 mg/kg on the fifth day of the experiment. (A) depicts representative micrographs of
immunohistochemically stained liver sections for p53 expression (arrowhead) and Bcl-2 expression of
different study groups (×400 and Scale bar, 50 µm). Positive immune reaction for the target protein
is demonstrated by a brown color. (B,C) are the quantification of p53 and Bcl-2, respectively. The
hepatic contents of Bcl-2 (D), Bax (E), and caspase-3 (F) were also shown. Values are presented as
mean ± SEM (n = 6/group). Statistical analysis was conducted using one-way analysis of variance
(ANOVA) followed by Tukey’s Post hoc test. **** p < 0.0001, *** p < 0.001, ** p < 0.01, and * p < 0.05.

CLAE, in a dose-dependent manner, attenuated MTX-induced hepatic apoptosis with
the remarkable downregulation of p53 immunoexpression along with the upregulation of
cytosolic Bcl-2 in immunostained liver sections (Figure 10A–C). CLAE dose-dependently
increased hepatic Bcl-2, while both hepatic Bax and caspase-3 (Figure 10D–F) were reduced
compared to the vehicle-treated MTX group.
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3.4.5. CLAE Improved Liver Histology (Histopathological Findings)

As displayed in Figure 11B, features of hepatopathy were observed upon the examination
of H&E-stained liver sections from rats of the vehicle-treated MTX group, where most of the
hepatocytes exhibited dark-stained nuclei, while few were normal. Wide separations between
hepatocyte plates were depicted due to sinusoids dilatation. Inflammatory cell infiltrations
close to the dilated and congested portal vein, as well as proliferated bile ductulus, were
detected in the region of the portal tract. On the contrary, the control group exhibited normal
hepatic architecture, where each hepatic lobule consisted of anastomosing radially distributing
hepatocytes. The hepatocytes were polygonal in shape with well-defined boundaries. Their
cytoplasm was acidophilic, and the majority of cells had a single rounded, vesicular, and
centrally placed nucleus, whereas some cells appeared to be binucleated. The hepatic sinusoids
were seen as narrow spaces in between adjacent plates of hepatocytes and lined by flat
endothelial cells and Kupffer cells. The hepatic portal tracts were seen at the periphery of the
lobule. Portal tracts had branches of the portal vein, hepatic artery, and bile duct (Figure 11A).
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Figure 11. Photomicrographs of HE-stained sections of liver tissue showing histological features
of different studied groups, control group (A), vehicle-treated methotrexate (MTX) group (B),
Chamaecyparis lawsoniana extract (CLAE) at 200 and 400 mg/kg/day, gavage (C,D, respectively).
Normal vesicular central nucleus (arrow), sinusoids (S), portal vein (PV), bile duct (Bd), dark py-
knotic nuclei (curved arrow), dilated sinusoids (*S), inflammatory cellular infiltrations (IFs). (×400
and Scale bar, 50 µm). (E) shows scoring of histopathological changes in portal tract inflammatory
cells. Hepatotoxicity was induced by single i.p injection of MTX at a dose of 20 mg/kg on the
fifth day of the experiment, and CLAE administration started five days prior to MTX injection and
continued for another 5 days. Statistical analysis for histopathological scoring was performed using
Kruskal-Wallis test and Dunn’s test for multiple comparisons. ** p < 0.01, and * p < 0.05.
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Upon examination of the liver section from rats who received the lower dose of
CLAE, partial restoration of liver histological features was depicted. Some dispersed
inflammatory cells through the parenchyma of the liver could be noticed. Some hepatocytes
still showed dark-stained nuclei and few cellular infiltrations. Double bile ducts and dilated
sinusoid could be observed (Figure 11C). Interestingly, increasing the dose of CLAE restored
most of the histological features, which appear near normal patterns (Figure 11D). The
vehicle-treated MTX group exhibited significantly increased portal tract inflammation
scores compared to the control, while CLAE dose-dependently reduced the injury scores
(Figure 11E).

4. Discussion

Despite the recent therapeutic advancements and significant progress in medicine,
hepatic diseases continue to pose a universal health challenge. Therefore, the exploration
of novel and potent drugs against liver injury is a worthwhile pursuit. While synthetic
drugs have been used to treat liver diseases, they have been shown to be carcinogenic and
cause severe side effects. In contrast, herbal products are cost-effective, better compatible
with the human body, have lower side effects, and are easier to store. Moreover, plants are
a rich source of bioactive constituents such as phenolic acids and flavonoids, making the
herbal approach a viable alternative to conventional therapy [102].

Therefore, the present study focused on investigating the protective potential of
Chamaecyparis lawsoniana aerial parts ethanolic extract (CLAE) against DILI, with a specific
emphasis on liver injury caused by MTX. The research methodology was based on phy-
tochemical profiling, which was subsequently complemented by network pharmacology
and docking studies, followed by preclinical validation. By adopting the comprehensive
approach, the study has successfully identified the most biologically significant compo-
nents of CLAE, along with their potential molecular targets and mechanisms of action in
mitigating MTX-induced liver injury.

The phytochemical profile of CLAE was investigated using UPLC–ESI–MS/MS analy-
sis in negative mode. According to the retention time, pseuomolecular ion peak [M-H]−,
MS2 fragmentation patterns, as well as the available literature, 65 phytochemicals were
tentatively characterized, mainly including flavonoids, particularly bioflavonoids, and
glycosides, diterpene and phenolic acids, and lignans.

Previous studies have extensively investigated the hepatoprotective effects of various
components from these identified chemical classes. Flavonoids, in particular, have gained
recognition for their ability to provide a substantial hepato-protective effect through diverse
mechanisms. A wide range of approximately 100 bioflavonoids have been documented for
their hepatoprotective activity [103]. Notably, amentoflavone, a biflavonoid, has demonstrated
significant hepatoprotective activity through various mechanisms [104,105]. Moreover, signifi-
cant hepatoprotective properties in diverse models of DILI have been demonstrated by other
subtypes of flavonoids, specifically quercetin and its related compounds such as quercetin
7-rhamnoside, 3′-O-methyl quercetin, and quercetin-3-O-glucuronide [106,107].

Additionally, several medicinal plants containing diterpene acids, such as Juniperus
phoenicea [108] and Rosmarinus officinalis [109], have been found to protect the liver from dam-
age caused by carbon tetrachloride (CCl4). Additionally, extracts from Cupressus sempervirens
leaves, rich in biflavones and phenolic acids, showed significant hepatoprotective properties
against both CCl4-induced and paracetamol-induced damage [110,111]. Juniperus sabina
aerial parts, containing diterpene acids, lignans, and flavonoids, also demonstrated promis-
ing hepatoprotective activity against CCl4-induced damage [112].

In recent years, the focus of biomedical research has shifted towards identifying phar-
macological targets from active ingredients found in medicinal plants, with the ultimate
goal of developing novel therapies. The emergence of network pharmacology as a sys-
tematic paradigm presents a unique opportunity to explore traditional medicines and has
become a pioneering research field in drug discovery and development. This advancement
has paved the way for a better understanding of the complex bioactive components found
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in various medicinal plants [113]. The application of the network pharmacology approach
in this investigation led to the discovery of 195 significant potential targets of CLAE in
DILI. Among these targets, the top eight, namely TP53, IL6, TNF-α, HSP90AA1, EGFR,
IL1B, BCL2, and CASP3, were deemed particularly noteworthy.

Molecular docking is a computerized approach that predicts the most effective way for
a ligand to attach to a receptor, forming a stable complex. It is a valuable tool for identifying
potential drug targets by analyzing the binding ability of small molecules and the active
pocket of the protein. A low energy complex and a compatible ligand can result in strong
activity [114].

To shed light on the potential mechanisms underlying the hepatoprotective effects of CLAE
against DILI, a molecular docking simulation was carried out on the three most significant bioac-
tive compounds present in CLAE, namely sequoiaflavone, 3-hydroxysandaracopimaric acid,
and 3,7-dimethylquercetin, against eight key DILI targets, including IL6, TNF-α, HSP90AA1,
EGFR, IL1B, BCL2, and CASP3.

Apoptosis is a crucial intracellular process that functions as a self-destruct program,
playing a pivotal role in maintaining cellular homeostasis and eliminating irreparable
damaged cells [115]. Its regulation involves a complex network of genes, including TP53,
which induces cell apoptosis by controlling the translocation of antiapoptotic Bcl-2 and
pro-apoptotic Bax proteins. The activated p53 alters the permeability of the cell mem-
brane, facilitating the release of cytochrome c from the mitochondria into the cytoplasm.
Subsequently, this process triggers the activation of cleaved caspase3, initiating cell degra-
dation [116]. This process holds a significant importance in the context of liver injury [117]
since evidence suggested that the p53 protein accumulates in individuals with various
inflammatory liver diseases. Inhibiting the p53 signaling pathway has been demonstrated
to enhance drug-induced hepatocyte injury by regulating the mitochondrial apoptosis
pathway. Consequently, this presents a promising therapeutic strategy for effectively treat-
ing liver injury [118]. During molecular docking, TP53 exhibited a robust binding affinity
towards the CLAE components sequoiaflavone and 3,7-dimethylquercetin. Within the Bcl-2
active pocket, sequoiaflavone, 3-hydroxysandaracopimaric acid, and 3,7-dimethylquercetin
displayed promising binding energies, suggesting their potential for actively contributing
to the hepatoprotective effect by modulating apoptosis.

On the other hand, inflammation constitutes a significant factor in the development
of drug-induced toxicities, including those caused by MTX. This is due to the generation
of free radicals and associated oxidative stress, which are known to initiate inflammatory
responses. As a result, proinflammatory cytokines such as TNF-α, IL-1β, and IL-6 are
secreted, leading to tissue injury [119]. However, this study showed that the investigated
CLAE constituents could have the potential to downregulate these mediators by inter-
acting with their active sites, particularly TNF-α, alleviating the inflammation associated
with DILI.

Furthermore, a correlation between heat shock protein 90 (HSP90) and hepatic injury
was previously reported, and it was observed that HSP90 inhibitors exhibited a protective
effect on various organs [120,121]. Additionally, the EGFR is implicated in the pathogen-
esis of both cirrhosis and hepatocellular carcinoma (HCC), with its hepatic expression
increasing during cirrhosis [122]. Studies have suggested that inhibiting EGFR may offer
a promising therapeutic strategy for reducing fibrogenesis and preventing HCC in pa-
tients with high-risk cirrhosis [123,124]. The results from the docking analysis revealed
that sequoiaflavone and 3,7-dimethylquercetin could possess inhibitory properties against
HSP90. Furthermore, these compounds also exhibited the ability to inhibit EGFR, along
with 3-hydroxysandaracopimaric acid. This dual inhibition potential may play a crucial
role in safeguarding the liver against hepatotoxicity.

Based on the simulation results, the compounds displayed favorable affinities for
binding to the targeted proteins. It is noteworthy to highlight that sequoiaflavone exhibited
an exceptionally strong binding affinity towards all the targeted proteins. These findings
imply that these components might possess synergistic hepatoprotective effects through
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multiple mechanisms. Consequently, CLAE shows promise as a preventive approach
against DILI caused by these proteins.

To achieve a comprehensive appraisal, it is essential to perform an experimental
validation as this furnishes supplementary evidence and verification of the conclusions
derived from computational analysis. Consequently, this study employed a preclinical
model of MTX-induced liver injury in rats to investigate the potential hepatoprotective
effects and underlying mechanism of action of CLAE.

In this study, MTX intoxication elicited hepatotoxicity, as manifested by significant
augmentation in circulating liver function enzymes (AST, ALT, and ALP) and disrupted
histological architecture, which is consistent with previous studies [125,126]. However, the
administration of CLAE demonstrated hepatoprotective potential, as expressed by signifi-
cant dose-dependent decrease in AST, ALT, and ALP circulating levels, and the restoration
of normal hepatic histological features, where the smaller dose of CLAE elicited partial
restoration, while an increasing dosage reinstated the majority of these characteristics,
closely resembling normal patterns.

Ample evidence suggests that MTX-induced multiorgan injury involves oxidative
stress, which is a consequence of ROS activation [10,127,128] and results in a decline
in antioxidant defenses [129], which is consistent with our findings where challenging
rats with MTX significantly augmented the MDA level while attenuating the GSH level
and SOD activity in liver. CLAE depicted significant antioxidant potential by reducing
hepatic MDA levels while enhancing the hepatic antioxidant capacity expressed as SOD
activity and GSH levels, thereby alleviating MTX-induced oxidative stress. High-dose
MTX-associated oxidative stress triggered the release of proinflammatory cytokines, which
further contributes to tissue injury [130,131]; this supports our results where elevated
hepatic TNF-α following MTX intoxication was found. CLAE significantly and dose-
dependently reduced hepatic inflammation by reducing TNF-α levels. ROS overproduction
during MTX therapy provokes DNA damage and triggers apoptotic pathways, as reported
in several studies [126,132]. In this study, MTX upregulated p53, proapoptotic Bax, and
caspase-3, while it downregulated antiapoptotic Bcl-2, thus inducing apoptotic changes,
adding to MTX-induced hepatotoxicity. CLAE attenuated MTX-induced hepatic apoptosis
by downregulating p53 expression while upregulating cytosolic Bcl-2, as depicted in
immunostained liver sections. CLAE dose-dependently enhanced hepatic Bcl-2 while
decreasing Bax and caspase-3.

Collectively, these findings highlight the potential hepatoprotective benefits of CLAE
in reversing the detrimental effects of MTX-induced hepatopathy, and this effect may be
attributed to one or more of its bioactive components. Further research and investigation
are warranted to fully understand the mechanisms underlying this restoration and to
explore the clinical implications of these findings.

5. Conclusions

In conclusion, our research findings, supported by comprehensive in silico and in vivo
studies, present compelling evidence for the hepatoprotective properties of CLAE in DILI,
with a specific focus on MTX-induced liver injury. Moreover, our investigations have eluci-
dated the underlying mechanism of action of CLAE. Nevertheless, additional preclinical
and clinical studies are imperative to assess the efficacy and safety of CLAE in DILI cases,
and to evaluate any potential long-term complications that may arise.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antiox12122118/s1, Figure S1: UPLC-ESI-MS/MS total ion chro-
matograms of CLAE in negative ion mode; Figure S2: CLAE compounds-DILI targets network;
Table S1: Target proteins, the corresponding grid coordinates, and amino acid residues of the
active sites; Table S2: Pharmacokinetics and the drug-likeness properties of CLAE constituents;
Table S3: Bioactive compounds of CLAE; Table S4: Molecular targets of CLAE bioactive compounds;
Table S5: Molecular targets associated with DILI; Table S6: Molecular targets of CLAE associated
with DILI; Table S7: Core genes in PPI network ranked by the Degree method; Table S8: Detailed
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information of GO analysis for biological processes; Table S9: Detailed information of GO analysis
for cellular components; Table S10: Detailed information of GO analysis for molecular functions;
Table S11: Detailed information of KEGGs pathway analysis.
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