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Abstract: Ursolic acid (UA) is a plant-derived molecule with relevant anti-aging activity, which
makes this molecule a potential functional active ingredient in cosmetic formulations. The main
objectives of this study were to optimize the UA extraction process from Annurca apple (AA) with
sunflower oil as a lyophilic food-grade solvent using Response Surface Methodology (RSM) to
determine the potential cosmetic application of the obtained extract. The results of RSM analysis
showed a maximum UA yield of 784.40 ± 7.579 (µg/mL) obtained under the following optimized
conditions: sunflower oil as extraction solvent, 68.85 ◦C as extraction temperature, and 63 h as
extraction time. The HPLC-DAD-HESI-MS/MS analysis performed on the extract obtained under
these conditions, named Optimized Annurca Apple Oleolyte (OAAO), led to the identification of
twenty-three phenolic and terpenoid molecules and the quantification of eight of them. To explore
the biological properties of OAAO, the in vitro antioxidant activity was evaluated by DPPH, ABTS,
and FRAP assays, resulting in 16.63 ± 0.22, 5.90 ± 0.49, and 21.72 ± 0.68 µmol Trolox equivalent/g
extract, respectively. Moreover, the permeation study has shown that OAAO may be considered a
safe and functional ingredient in potential cosmetic formulations.

Keywords: ursolic acid; oleolyte; antiaging; response surface methodology; biocompatible solvent

1. Introduction

Ursolic acid (UA) (3β-hydroxy-urs-12-en-28-oic-acid) is a pentacyclic triterpenoid
carboxylic molecule widely distributed in herbs, leaves, flowers, and fruits [1]. In natural
matrices, this molecule may occur in free, in saponin-complexed form, or in its structural
isomer (different substitution of methyl group), that is, oleanolic acid (3β-hydroxy-olea-12-
en-28-olic-acid; OA) [1]. In recent years, UA and its derivatives have attracted considerable
attention due to their functional properties, such as antioxidant [1], antitumor [1], anti-
inflammatory [1], and antibacterial activities [2]. More specifically, great attention has
been paid to the potential cosmetic application of UA, in line with the increasing trend of
valorizing plant molecules as bioactive agents in cosmetic formulations [3–6]. Different
studies conducted on human keratinocytes have shown a valuable increase in ceramide
production after UA treatment [7]. It is well documented that the reduction in epidermal
ceramide content is the main cause of impaired epidermal barrier function, leading to
sensitive skin, increased transepidermal water loss, and high skin susceptibility to irritant
agents [1]. These findings have also been confirmed by human studies, in which the
recovery of epidermal permeability barrier function was improved after topical application
of UA, as well as the ceramide content in the epidermis [7]. Moreover, UA treatment of
human fibroblasts has shown a significant increase in collagen content [7,8]. In addition,
UA has also been used as a functional agent in topical formulations for its broad cosmetic
bioactivity, e.g., to improve and prevent skin roughness [9] and acne [10], and as a skin
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whitening agent due to its capacity to inhibit tyrosinase activity [11]. Since the reduction of
dermal collagen content and skin dehydration have been commonly defined as the main
cause of skin wrinkles and xerosis, UA can be recognized as a novel and natural anti-aging
agent suitable for the development of cosmeceutical formulations.

The main natural UA sources are medicinal plants (mainly those belonging to the
Lamiaceae family, such as Rosmarinus officinalis), flowers, and leaves of a wide variety of
plant species. The recent literature has reported UA concentration in edible fruits, such as
valuable levels in argan fruits (1.08 mg/g dw) [12], hawthorn (1.14 mg dw) [13], cranberry
(7.09 mg/g dw) [14], jujube (0.53 mg/g dw) [15] and apple peel (14.3 mg/g dw) [1,16].
Annurca apple is the only apple cultivar native to southern Italy, listed as a Protected
Geographical Indication (PGI) product by the European Council [Commission Regulation
(EC) No. 417/2006)]. The nutraceutical potential of Annurca polyphenols has been largely
documented for its beneficial effects on the management and control of cholesterol plasma
levels in healthy and mildly hypercholesterolemic patients [17–20]. Specifically, UA and
its peculiar structural isomer Annurcoic acid (subtraction with hydroxyl group), isolated
exclusively in this apple cultivar, has been defined as the main triterpenoid components
of the Annurca apple [21]. Due to the lipophilic nature of UA, ethyl acetate, methanol,
petroleum ether, chloroform, and ethanol are commonly used for extraction from natural
sources [22,23]. Among the above-mentioned solvents, only ethanol is regarded as suitable
for obtaining extracts compatible with human health. Nevertheless, its use remains limited
due to its high cost. Such considerations are in line with the current search for innovative
extraction protocols of UA, involving alternative solvents, safe, possibly from natural
sources and of low cost.

In light of what is stated above, the main objective of the present study was to inves-
tigate the potential of lyophilized Annurca Apple (AA) as a source of triterpenic acids,
especially ursolic acid, for the development of potential natural cosmetic formulations.
To optimize the UA extraction conditions from AA, the response surface methodology
(RSM) was applied in order to assess the maximum yield of ursolic acid using sunflower
oil as a food-grade lipolytic extraction solvent. The extract obtained under optimized
conditions (OAAO, Optimized Annurca Apple Oleolyte) was qualitatively characterized by
HPLC-DAD-HESI-MS/MS and quantitatively quantified by HPLC-DAD analysis, which
was opportunely validated in the current work. Finally, its potential in vitro antioxidant
activity was evaluated, and to assess its potential use as a functional ingredient in cosmetic
formulations, a classical in vitro Franz cell experiment was performed to investigate the
skin penetration behavior of UA.

2. Materials and Methods
2.1. Reagents

All chemicals, reagents, and standards used were analytical or LC-MS grade reagents.
The water was treated in a Milli-Q water purification system (Millipore, Bedford, Burling-
ton, MA, USA) before use. Sunflower oil was purchased in a local market. Ursolic acid
(purity ≥ 98.5% HPLC), rutin (purity ≥ 94% HPLC), quercetin 3-O-glucoside (purity ≥ 98%
HPLC), kaempferol 3-O-glucoside (purity ≥ 90% HPLC), kaempferol 3-O-rhamnoside (pu-
rity ≥ 98% HPLC), phloridzin (purity ≥ 99% HPLC), phloretin (purity ≥ 98.5% HPLC),
gallic acid (purity ≥ 99% HPLC), 6-hydroxy-2, 5, 7, 8-tetramethylchromane-2-carboxylic
acid (purity > 97% HPLC) were purchased from Sigma-Aldrich (Milan, Italy).

2.2. Sample Collection and Oleolyte Preparation
2.2.1. Oleolyte Preparation Protocol and Experimental Design

Annurca apple fruits (Malus pumila Miller cv Annurca; about 100 g each) were
collected in Valle di Maddaloni (Caserta, Italy) in October 2021 when the fruits had just
been harvested (green peel). The fruits were reddened, following the typical treatment for
about 30 days [24], and then analyzed. After this time, the apples were washed and sliced
for freeze-drying. The oleolyte preparation was performed by adding a defined weight



Antioxidants 2023, 12, 224 3 of 19

of AA to a certain volume of a deacidified sunflower oil (g/mL) in a ratio of 1:4. At the
end of the matrix maceration in oil, the mixture was centrifuged at 9000 rpm for 10 min.
The oil supernatant was collected and stored protected from light at 4 ◦C until analysis. As
reported in Table 1, different extraction times (1, 2, 4, 12, 24, 48, and 96 h) and incubation
temperatures (20, 40, 60, and 80 ◦C) were opportunely combined to optimize the ursolic
acid incorporation in the oleolyte. All optimization conditions were performed in triplicate.

Table 1. Independent variables used for the RSM model set.

Independent Variables Factor Levels

Time (hours) 1 2 4 12 24 48 96

Temperature (◦C) 20 40 60 80

Total runs 28

2.2.2. Oil Deacidification Procedure

The oil was deacidified by performing a liquid-liquid extraction with an alkaline
solution. A volume of 250 mL of a sodium carbonate solution (Na2CO3 7.5%, w/v) was
mixed with 250 mL of n-hexane and added with 500 mL of sunflower oil [25]. The mixture
was stirred for 10 min, and the organic phase was separated by liquid-liquid extraction.
The organic phase was washed with 1000 mL of water to remove the traces of the alkaline
solution. The mixture was left under stirring for 10 min, and the organic phase was
recovered by liquid-liquid extraction. Finally, the hexane was evaporated under a vacuum
at 35 ◦C to obtain a deacidified oil.

2.2.3. Acidity Determination of Oil Samples

The determination of acidity, expressed as the weight percentage of oleic acid, was
performed in agreement with Regulation (EU) No 2016/1227. A mixture of diethyl ether
and ethanol (50:50 v/v) was neutralized with a solution of potassium hydroxide 0.1 M,
with 300 µL of an ethanolic solution of phenolphthalein 0.03 M added. An aliquot of oil
(2.5 g) was dissolved in 50 mL of the neutralized solvent mixture. The mixture was titrated
whit stirring with an aqueous solution of potassium hydroxide 0.1 M until the color change
of the pH indicator. All determinations were performed in triplicate. The acidity was
calculated according to the following formula: (V × c × M)/(10 × m), where V is the
volume (ml) of the titrated potassium hydroxide solution, c is the concentration (M) of
titrated potassium hydroxide solution, M is the molar mass in grams per mole of oleic acid
(282 g/mol), and m is the mass (g) of the oil sample.

2.3. Triterpenoic Analysis
2.3.1. Ursolic Acid Extraction Protocol

A volume of 120 mL of a solution of sodium carbonate Na2CO3 7.5% (w/v) was
added to 60 mL of OAAO. The mixture was stirred for 10 min, and the aqueous phase
was separated by liquid-liquid extraction. The aqueous phase was acidified with 2 N
hydrochloride acid at pH = 3, frozen and lyophilized. To the solid residue, a volume of
20 mL of ethyl acetate was added. The mixture was vortexed for 1 min and placed in an
ultrasonic bath (Branson Fisher Scientific 150 E Sonic Dismembrator) for 10 min. Samples
were then shaken on an orbital shaker (Sko-DXL, Argolab, Carpi, Italy) at 600 rpm for
10 min and centrifuged at 9000 rpm for 10 min. The supernatants were collected and stored
at 4 ◦C protected from the light. The obtained pellets were re-extracted with 10 mL of
ethyl acetate using the same procedure. Finally, the extracted obtained were evaporated to
dryness under a light stream of nitrogen, reconstituted in dimethylsulfoxide (DMSO) at a
concentration of 30 mg/mL, diluted with acetonitrile at a concentration of 5 mg/mL, and
stored at −20 ◦C until analysis.
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2.3.2. Ursolic Acid Quantitative Analysis by HPLC-DAD

A Jasco Extrema LC-4000 HPLC system (Jasco Inc., Easton, MD, USA), coupled with
an autosampler, a binary solvent pump, and a diode-array detector (DAD), was used for
the analysis. Separation was performed according to the previously described method with
slight modifications [26]. The column used was a Kinetex® C18 column (250 mm × 4.6 mm,
5 µm; Phenomenex, Torrance, CA, USA). Water with 0.1% formic acid (A) and acetonitrile
(B) were used as mobile phases. The elution gradient was performed under the following
conditions: 0–3 min, isocratic on 60% phase B; 3–20 min, linear gradient from 60 to 90% B;
20–24 min, isocratic with 90% B; 24–29 min, isocratic on 60% B for column reconditioning.
The injection volume was 20 µL, the column temperature was set at 30 ◦C, and the flow
rate was set at 1 mL/min. The quantification of ursolic acid was performed at 205 nm [26].

2.3.3. Linearity and Sensitivity of the Ursolic Acid HPLC-DAD Analysis

An analytical standard of ursolic acid was used to develop and validate the HPLC-
DAD method used to evaluate the UA title in each extraction performed. A stock solution
of the UA standard was prepared at a concentration of 1000 ppm using HPLC-grade ace-
tonitrile as solvent. Six different concentrations (0.001, 0.005, 0.01, 0.05, 0.1, and 0.5 mg/mL)
were prepared from the standard stock solutions and analyzed by HPLC in triplicate. A
6-point calibration curve was constructed by plotting the peak area against the standard
concentration to evaluate the linearity of the method. Limits of detection (LODs) and
limits of quantification (LOQs) were determined to evaluate the sensitivity of the method.
Determination of the signal-to-noise ratio is performed by comparing measured signals
from samples with known low concentrations of analyte with those of blank samples and
previously described [27,28] LODs establishing the minimum concentration at which the
analyte can be reliably detected as is defined as the lowest detectable concentration of ana-
lyst that the analytical system can reliably distinguish from the background level (S (signal
of compound)/N (signal of noise)) = 3, while LOQ is defined as the lowest quantifiable
concentration of analyst that can be measured with a standard level of confidence, and it is
typically calculated using (S/N) = 10 [27,28].

2.3.4. Accuracy and Precision of Ursolic Acid HPLC-DAD Analysis

As recommended by the ICH guidelines, to validate an analytical method, it is essen-
tial to determine the accuracy (estimated by calculating the % bias) and precision (estimated
by calculating the % CV, coefficient of variation %) of the developed method [28]. Accuracy
(% bias) was calculated by intraday and inter-day analysis of calibration standards. Three
different UA concentrations were injected 3 times per day (intra-day) and once for 3 con-
secutive days (inter-day). Precision (%CV, coefficient of variation %) was determined by an
intraday and inter-day analysis of UA calibration standards at 3 different concentrations.
Each analyte was injected 3 times per day (intra-day) and once for 3 consecutive days
(inter-day).

2.3.5. Matrix Effect of Ursolic Acid Extraction

The matrix effect was investigated by calculating the ratio of the peak area in the
presence of matrix (matrix spiked with Ursolic acid post extraction) to the peak area in the
absence of matrix (Ursolic acid in acetonitrile). The matrix was spiked with the analyte in
triplicate with 10 µg (low), 20 µg (medium), and 30 µg (high). The ratio was calculated
as follows:

Matrixeffect % =
Peak area in presence of matrix

Peak area in solvent
·100

2.3.6. Recovery of Ursolic Acid Extraction

The matrix effect was investigated by calculating the ratio of the peak area in the
pre-extraction spiked samples (matrix spiked with Ursolic acid pre-extraction) to the peak
area in the post-extraction spiked samples (matrix spiked with Ursolic acid post-extraction).
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The matrix was spiked with the analyte in triplicate with 10 µg (low), 20 µg (medium), and
30 µg (high) either before (pre-extraction spiked) or after (post-extraction spiked) extraction.
The ratio was calculated as follows:

Recovery % =
Peak areapre−extraction spiked sample

Peak areapost−extraction spiked sample
·100

2.4. Polyphenols Analysis
2.4.1. Polyphenolic Extraction

An aliquot of OAAO (8 g) was dissolved in n-hexane (8 mL) and mixed with 8 mL of a
solution of 80% methanol with 1% formic acid [29], shaken for 10 min on an orbital shaker
(Sko-DXL, Argolab, Carpi, Italy) at 600 rpm. The hydroalcoholic phase was separated with
a liquid-liquid separation and protected from light at 4 ◦C. The oil phase was re-extracted
with the same procedure using 8 mL of the hydroalcoholic mixture. Finally, the extracts
obtained were evaporated to dryness under a gentle stream of nitrogen, reconstituted in a
hydroalcoholic mixture at a concentration of 20 mg/mL, and stored at −20 ◦C until analysis
of maintenance.

2.4.2. Polyphenolic Quantitative Analysis by HPLC-DAD Analysis

Polyphenols quantitative analysis of the OAAO hydroalcoholic fraction was performed
with an HPLC Jasco Extrema LC-4000 system (Jasco Inc., Easton, MD, USA) equipped
with an autosampler, a binary solvent pump, and a diode-array detector (DAD) validated
method [27]. Chromatographic analysis was performed according to our previously de-
veloped, and Chalcones were monitored at 280 nm, while flavonols were monitored at
360 nm. The mobile phases were water at 2% formic acid (solvent A) and a solution at
0.5% formic acid in acetonitrile and water 50:50, v/v (solvent B). Separation was performed
using as column a Kinetex® C18 column (250 mm × 4.6 mm, 5 µm; Phenomenex, Tor-
rance, CA, USA): 0–5 min of 10% (B), from 10% (B) to 55% (B) in 50 min and 95% (B) in
10 min, followed by 5 min. The injection volume was 20 µL, the column temperature was
set at 30 ◦C, and the flow rate was set at 1 mL/min. Peak identification was based on
a comparison of retention times with analytical standards and standard addition to the
samples. Quantitative analyses were performed using the calibration curve calculated with
6 different concentrations in a concentration range of 0.1–1000 ppm and triplicate injections
at each concentration level.

2.5. OAAO Qualitative Composition by HPLC-DAD-HESI-MS/MS Analysis

An HPLC DIONEX UltiMate 3000 (Thermo Fisher Scientific, San Jose, CA, USA)
equipment, coupled with an autosampler, a binary solvent pump, a diode-array detector
(DAD), and an LTQ XL mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA),
were used for the analysis. Separation was performed using as column a Kinetex® C18
column (75 mm × 2.1 mm, 2.6 µm; Phenomenex, Torrance, CA, USA). The mobile phases
were water at 0.1% formic acid (A) and acetonitrile at 0.1% formic acid (B). Elution was
performed according to the following conditions: 0–3 min hold at 5% solvent B, from
5% (B) to 95% (B) in 22 min, followed by 3 min of maintenance; for the remaining 3 min,
the column was equilibrated to the initial conditions. The injection volume was 5 µL,
the column temperature was set at 35 ◦C, and the flow rate was set at 0.35 mL/min.
For the mass parameters, the source was a heated electrospray interface (HESI) operated
in negative ionization with full scanning (FS) and data-dependent acquisition (DDA).
Chalcones were monitored at 280 nm, while flavonols were monitored at 360 nm. Collision-
induced fragmentation was made using argon, with a collision energy of 35.0 eV. The source
operated in negative ionization mode for the analysis of the polyphenolic extract and both
in positive and negative ionization modes for the analysis of the triterpenoic extract. The
ion source was set for positive ionization mode using the following parameters: auxiliary
gas flow rate: 10; sheath gas flow rate: 30; source heated temperature: 150 ◦C; capillary
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temperature: 320 ◦C; source current: 100 µA; source voltage: 3.5 kV; tube lens: 80 V; and
capillary voltage: 32 V. The ion source was set for negative ionization mode using the
following parameters: auxiliary gas flow rate: 10; sheath gas flow rate: 30; source heated
temperature: 150 ◦C; capillary temperature: 320 ◦C; source current: 100 µA; source voltage:
3.5 kV; tube lens: 90 V; and capillary voltage: 31 V.

2.6. Total Phenolic Content Determination

The total phenol content (TPC) was performed by Folin–Ciocalteau’s assay, using
gallic acid as the reference standard (Sigma-Aldrich, St. Louis, MO, USA) [30]. Briefly,
0.1 mL of the samples were diluted with water to obtain an absorbance value included
in the linear range of the spectrophotometer. The reactives were added to the samples
sequentially: 0.5 mL of Folin–Ciocalteau’s (Sigma-Aldrich, St. Louis, MO, USA) reagent
and 0.2 mL of an aqueous solution of Na2CO3 7% (w/v), bringing the final volume to 10 mL
with water. Then, the samples were shaken and incubated for 90 min in the dark. After
the reaction time, the absorbance was measured at 760 nm (Jasco Inc., Easton, MD, USA).
The analysis was performed in triplicate, and the total polyphenols concentration was
expressed in gallic acid equivalents (GAEs).

2.7. Antioxidant Activity
2.7.1. DPPH• Radical Scavenging Assay

The radical scavenging ability of the antioxidants in the sample was evaluated using
the stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) [31]. The analysis was performed
by mixing 100 µL of each sample, opportunely diluted in an extraction mixture, with
1000 µL of a DPPH methanolic solution (153 mmol/L). The mixture was left in incubation
for 10 min of reaction time in the dark. The decrease in absorbance was evaluated using a
UV–visible spectrophotometer (Beckman, Los Angeles, CA, USA). After the reaction time,
the absorbance was measured at 517 nm. All determinations were performed in triplicate.
DPPH• inhibition was calculated according to the formula: [(Ai − Af )/Ac] × 100, where
Ai is the absorbance of the sample at t = 0, Af is the absorbance of the sample after the
reaction time, and Ac is the absorbance of the control, obtained by mixing 1000 µL of a
DPPH methanolic solution with 100 µL of methanol. The obtained results are expressed
in µmol of Trolox (6-hydroxy-2, 5, 7, 8-tetramethylchroman-2-carboxylic acid) equivalent
(TE). Moreover, the results were also reported as EC50, which is the amount of antioxidant
compound necessary to neutralize the initial DPPH• concentration by 50%.

2.7.2. Ferric Reducing/Antioxidant Power (FRAP) Assay

The reducing ability of the Fe3+ ion to Fe2+ ion under acidic conditions was evaluated
using the FRAP assay. This antioxidant activity was evaluated by monitoring the formation
of a Fe2+–TPTZ complex with a spectrophotometer (Jasco Inc., Easton, MD, USA). The
FRAP working solution was prepared by mixing 10 vol of 0.3 M acetate buffer, pH 3.6
(3.1 g sodium acetate and 16 mL glacial acetic acid), 1 vol of 10 mM TPTZ prepared in
40 mM HCl, and 1 vol of 20 mM FeCl3. All the components of the working solutions were
freshly prepared and used on the same day of preparation. Before performing the assay,
all the solutions were brought to 37 ◦C. The amount of 2.85 mL of working solution was
mixed with 0.15 mL diluted samples and incubated at 37 ◦C for 4 min. After the incubation
time, the absorbance was acquired at 593 nm (Jasco Inc., Easton, MD, USA). The blank was
represented by the only working solution. For the calculation of antioxidant activity, the
blank absorbance value was subtracted from the absorbances of the samples. All analyses
were performed in triplicate. A standard curve was plotted with Trolox, and the results are
expressed as µmol TE.

2.7.3. ABTS• Radical Scavenging Assay

The ABTS assay is an antioxidant protocol based on the ability of the molecules to react
with ABTS•+ radicals (2, 20-azinobis (3-ethylbenzotiazoline-6-sulfonate)). The test was
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performed according to the experimental protocol previously performed by Maisto et al.
(2022) [31], with some modifications. ABTS solution was obtained by shaking 2.5 mL of
an ethanolic solution of ABTS 7.0 mM with 44 µL of an aqueous solution of potassium
persulfate 140 mM, which was stored for at least 7 h at 5 ◦C in darkness. After this time,
the working solution was prepared by diluting the obtained mixture with an ethanol-water
solution until an absorbance value of 0.700 ± 0.05 was acquired at 754 nm (Jasco Inc., Easton,
MD, USA). The assay was performed by mixing 1000 µL ABTS working solution with 100 µL
of the sample previously diluted in the extraction solvent. The mixture was incubated
for 2.5 min in the darkness. After this time, the sample absorbances were read at 734 nm.
The control was obtained by replacing the samples with the same volume of ethanol. The
radical inhibition was calculated according to the formula: [(Ai − Af )/Ac] × 100, where
Ai is the absorbance of the sample at t = 0, Af is the absorbance after 2.5 min, and Ac is the
absorbance of the control at time zero. The antioxidant standard used as a positive control
was Trolox. The results are expressed both as µmol of TE and EC50, which is the amount of
antioxidant necessary to decrease the initial ABTS•+ concentration by 50%.

2.8. Skin Sample

Four mm skin flaps of pig (age of 8–9 years) ears were excised from the outer part
of a male pig ear, post-sacrifice, within 24 h from animal death, and left to settle at a
controlled temperature and humidity of 24 ◦C and r.H. of 50.0% for approximately 30 min.
Dial Calipers-0–4-Inch-001 Inch (52-008-704 SU, WESTport, Corporation, West Islip, New
York 11795) was used to ensure skin thickness, and Tewameter TM Nano (C + K electronic
GmbH, Köln, Germany) was used to ensure skin integrity, accepted TEWL values were
<15 g/mh2. Then, skin samples were loaded into the diffusion cell system.

2.8.1. Diffusion Experiment

Franz’s diffusion cell system consists of 2 main chambers: the donor and the receptor,
between which the excised porcine skin flap, stripped of its subcutaneous tissue, is placed,
with the epidermis facing the donor compartment and fixed with forceps. Triplicate
Franz cells were fitted for each oleolyte to be analyzed, plus 1 for the blank. The donor
compartment of each cell was loaded with 1 mL of oleolyte containing 211 µg/mL of
UA. While the receptor was filled with 5 mL of PBS solution and a magnet to avoid the
saturation of the first liquid layer in contact with the skin. After assembly, the cells are
placed in a thermostatically controlled bath at 37.0 ◦C. A special cap is mounted on the
donor compartment to maintain a constant pressure (1 atm) inside the chamber. A total
of 24 Franz cells were prepared, 12 with the oleolyte and 12 for blank. After placement,
the time is monitored with a timer, and 1 mL of the receptor fluid is collected at set times.
Finally, cells are disassembled, and the skin is collected for further extraction procedures.
Skin flaps were rinsed with physiological saline solution (NaCl 0.9%) by dabbing with a
cotton pad (Linea F, Angelini Acraf Spa, Aprilia, Italy), which was then cut into a 10 mm
diameter piece. Before extractions, the epidermis and dermis were split by heating with a
hair dryer for 30 secs, then by scraping with tweezers (Semken-Taylor Rette N. 1 Cm. 12,
5, Asa Dental Spa) and surgery (Pikdare Spa, Casnate con Bernate, Como, Italy) [32,33].
Afterward, the epidermis and dermis were placed in individual glass test tubes and kept
in contact with 1 mL of an ethanolic solution containing PBS for 1 h. Subsequently, the
solvent was gently evaporated under N2 flow. The experiments were carried out employing
2 different concentrations, the higher of 50 µg/mL, out of iBuP, which was 100 µg/mL,
and the lower of 5 µg/mL, out of iBuP, which was 10µg/mL, respectively. Extraction from
each skin layer (Epidermis and Dermis) was carried out using 1 mL of water: ethanol sol.
50/50 (v/v) as an extraction solvent. The mixtures were sonicated for 30 min at 30 ◦C and
finally left in agitation (600 rpm) at room temperature for 4 h. After the extraction time,
skin samples were discharged, and the extraction solvent was transferred to plastic vials
and then centrifuged at 12,000 rpm for 10 min. The supernatant was filtered using nylon
syringe filters 0.22 µm (Phenomenex, Bologna, Italy) and analyzed by HPLC-MS.
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2.8.2. HPLC-MS Method for Franz’s Diffusion Cell System

An HPLC Agilent 1200 coupled with an Agilent Technologies 6470-triple quadrupole
mass spectrometer (Agilent Technologies, Palo Alto, CA, USA) was used for the analysis.
Elution was performed on a Kinetex® XB-C18 column (50 mm × 3 mm, 2.6 µm; Phe-
nomenex, Torrance, CA, USA). The mobile phases were water with 0.1% formic acid (A)
and methanol with 0.1% formic acid (B). The elution gradient was performed according
to the following conditions: 0–3 min, isocratic on 40% phase B; 3–13 min, linear gradient
from 40 to 95% B; 13–18 min, isocratic on 95% B; 18–21 min, isocratic on 40% B for column
recondition. The column temperature was set at 40 ◦C, inject volume was 5 µL, and the
flow rate was set at 0.40 mL/min. The source was a heated electrospray interface (HESI)
operated in positive ionization with multiple reaction monitoring (MRM) scanning modes.
One MRM transition was used as a quantifier transition and a second MRM transition
served as a qualifier transition. The first transition (455.3–455.3) was made with a collision
energy of 20 eV, while the second transition (455.3–407.0) was performed with a collision
energy of 40 eV. The 2 transitions were made with a fragmentor of 135. Argon was used as
a gas for collision-induced fragmentation. The MRM analyte parameters were optimized
using a methanolic solution of ursolic acid at a concentration of 1 ppm. Ursolic acid was
quantified according to a calibration curve (R2 ≥ 0.99) made with 9 different concentrations
(5000, 1000, 500, 100, 50, 10, 5, 1, and 0.5 ppb) and triplicate injections at each concentration.
The ion source was set using the following parameters: gas temperature: 270 ◦C; gas flow
rate: 10 L/min; gas temperature: 300 ◦C; sheath gas flow rate: 12 L/min; capillary voltage:
3500 V; nebulizer pressure: 40 psi; and nozzle voltage: 1000 V.

2.9. Statistics

Unless otherwise stated, all the experimental results were expressed as the mean ± sta-
ndard deviation (SD) of 3 repetitions. Graphics and IC50 values determination were
calculated using GraphPad Prism 8 software. The RSM optimization was performed with
Minitab software version 21.1.0. The RSM optimization was performed by applying the
variance ANOVA analysis and the Pareto-chart graphic to identify the significant process
parameters. These parameters were used in a multiple-response prediction analysis to
identify a polynomial model to optimize UA concentration.

3. Results and Discussion
3.1. Optimisation of Ursolic Acid Extraction Using RSM Model

The choice to optimize the UA extraction conditions in sunflower oil was related to its
ability to extract mainly the AA lipophilic components such as UA. In the literature, mainly
ethyl acetate, chloroform, and hexane have been described as exhaustive solvents for UA
recovery from natural sources [1,34]. Since these solvents are not considered biocompatible,
the obtained extract cannot be suitable for the preparation of formulations for human
usage. Therefore, there is an urgent need to individuate an apolar biocompatible solvent
for the recovery of lyophilic natural compounds from the food matrix. To this end, we have
optimized the extraction of UA from AA in sunflower oil using the RSM statistical model.

According to our experimental protocol, the extraction temperature was constantly
kept below 80 ◦C, considering that other works have reported that the UA extraction
rate decreases above 70 ◦C [35]. Our experimental data showed that UA concentration
ranged from 8.21 ± 0.41 µg/mL (p < 0.001; 60 min, 20 ◦C, 1 h, with 30 min of sonication) to
734.79 µg/mL (68.85 min, at 63 ◦C, without sonication). First, three independent commonly
modified factors, i.e., extraction time (12, 24, 48, and 96 h) and temperature (20, 40, 60, and
80 ◦C), combined with or without a single sonication cycle (30 min), were evaluated to
optimize the UA yield in sunflower oil. Considering the independent variables analyzed,
according to the preliminary ANOVA analysis, only extraction time (A) and extraction
temperature (B), without sonication treatment (C), were significantly correlated with UA
extraction yield, as described in the Pareto-chart graphic, with α = 0.05 (Figure 1).
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(A) and temperature (B).

According to the statistical results of model fitting, the best model to maximize the UA
yield would be achieved by limiting the statistical analysis to a two-variable correlation (2 FI,
i.e., A and B) (Figure 1). The multiple regression analysis of UA amounts demonstrated
that the model was significant (p < 0.0001), did not present a lack of fit (p = 0.182), and
the predictivity of the model was 77.89% (R-sq 84.47%, R-sq (adj) 80.95%; R-sq (pre)
77.89%). Second-order quadratic polynomial models were suitable to assess the influence
of the two independent and significative variables on the UA output, as described by
Equation (1), in terms of uncoded units, where variables A and B were extraction time and
temperature, respectively.

UA Concentration (µg/mL) = 11.07 A + 30.55 B − 0.0685A2 − 0.2782B2 − 0.0336 AB − 624 (1)

Equation (1) suggests that UA extraction in oil is both a time- and temperature-
dependent process. Specifically, according to Equation (1), factors A and B influence in
different manners UA output. Precisely, considering that the B factor is associated with a
high numeric coefficient (30.55 and 0.278), extraction temperature has a more pivotal role
in influencing UA yield than extraction time (A).

Generally, according to other works related to the optimization of the UA extraction
process in ethanol from food sources, the optimum temperature values ranged from 40 to
50 ◦C [36,37]. Our model seems to indicate that the most effective temperature is 63 ◦C.
This difference, in comparison to the findings above reported, probably may be related
to the higher viscosity of sunflower oil used as a solvent, in comparison to the organic
solvents conventionally employed for UA recovery. It was well established that high
extraction temperatures decrease the viscosity of both the extraction medium and the
solvent (sunflower oil), which helps the solvent (more fluid) penetrate the plant matrix,
resulting in faster kinetics and exhaustive solvents [38]. However, the increase in solvent
temperature may reduce surface tension and, consequently, improve the permeability of
the food matrix, resulting in a higher extraction rate [39].

Furthermore, as reported by Equation (1), the temperature value must be kept below
maximum values, which causes the degradation of UA [35]. The same results were re-
ported by the 3D response surface graphic, which correlates all the variables investigated
(Figure 2a). The predictive model estimates the theoretical conditions to obtain the optimal
UA extraction in oil solvent at 63 ◦C for 68.85 h, as reported in Figure 2. These two param-
eters were combined to set up new extraction conditions from AA to verify and confirm
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the theoretical UA yield of 761.50 µg/mL, as shown by the multiple response prediction
analysis performed.
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Our experimental data reported that UA concentration obtained in optimized condi-
tion was 784.40 ± 7.579 mg/mL (p < 0.0001), with an EA% of 3%. This evidence confirms
the predictivity of the developed extraction method [40].

3.2. Quantitative Polyphenolic Analysis of OAAO by HPLC-DAD-FLD

In order to establish the polyphenolic composition of OAAO obtained, the chromato-
graphic analysis of the hydroalcoholic OAAO extract was performed using a method
previously optimized and developed [27]. The HPLC-DAD-FLD analysis led to the iden-
tification and quantification of 7 phenolic compounds. The observed data are listed in
Table 2. Predictably, considering the great structural diversity of the AA polyphenolic
composition, which ranged from polar molecules (e.g., phenolic acids) to lipophilic com-
pounds (e.g., de-glycosylated flavonols), only the AA polyphenolic lipophilic fraction was
identified in OAAO. Specifically, rutin and quercetin-3-O-glucoside are the most abundant
polyphenols occurring in OAAO. Apart from flavonols, dihydrochalcones are the second
most representative polyphenolic class in OAAO, with phlorizin and phloretin reaching
concentrations of 0.15 µg/mL and 0.07 µg/mL, respectively. As reported in Table 2, the
more hydrophilic AA polyphenolic compounds were not detected in OAAO. This is related
to the high lipophilicity of sunflower oil used as a solvent, which was able to selectively
extract only the non-polar polyphenolic AA compounds. Quercetin, on the other hand,
was not detected in OAAO, despite its high lipophilicity. This result may be related to the
low initial quercetin concentration in AA, which may reach an undetectable concentration
in OAAO.
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Table 2. Quantitative analysis of OAAO evaluated by HPLC-DAD-FLD analysis.

Compound Mean Value ± SD (µg/mL of OAAO)

Chlorogenic acid nd

Caffeic acid nd

p-Cumaric acid nd

Procyanidin B1 + B3 nd

Procyanidin B2 nd

Epicatechin nd

Rutin 0.76 ± 0.001

Quercetin-3-O-glucoside 0.71 ± 0.007

Kaempferol-3-O-rhamnoside 0.15 ± 0.010

Kaempferol-3-O-glucoside LOQ

Apigenin-7-O-glucoside 0.0081 ± 0.0001

Phloridzin 0.15 ± 0.010

Quercetin nd

Phloretin 0.07 ± 0.01
Values are expressed in µg/mL of OAAO ± standard deviation (SD) of three repetitions. nd: not detected.

3.3. Qualitative Polyphenols and Terpenoid Characterisation by HPLC-HESI-MS/MS

OAAO was subjected to a double and different extraction procedure, in both hydroal-
coholic and ethyl acetate solvents, as previously described in Sections 2.3.1 and 2.4.1, in
order to evaluate its chemical composition. The hydroalcoholic extract was analyzed to
assess the qualitative OAAO polyphenolic composition, while OAAO ethyl acetate extract
was analyzed to evaluate its terpenoid composition, anyway, all the identified compounds
were reported in Table 3. Quercetin O-rutinoside (compound 1) showed a [M-H]− ion at
m/z 609. The base peak ion at 301 [M-H-Rut]−, derived from the cleavage of the disac-
charide group, and the fragment ions at m/z 255 [M-H-Rut-CO-H2O]− and at m/z 179
[M-H-Rut-C7H6O2]−, which derived from the RDA fragmentation, agreed with literature
dat [41]. However, compound 1 was identified as rutin by comparison with an authentic
analytical standard. Compound 2 displayed a [M-H]− ion at m/z 463. The base peak
ion at m/z 301 [M-H-Glu]− was derived from the neutral loss of glucose moiety while
the fragment ion at m/z 179 [M-H-Glu-C7H6O2]− was due to the RDA fragmentation.
Based on the tandem mass spectrum and by comparison with an analytical standard,
compound 2 was identified as quercetin 3-O-glucoside [41]. Compound 3 displayed a
[M-H]− ion at m/z 447 and was annotated as kaempferol 3-O-glucoside. Its tandem mass
spectrum showed a base peak ion at m/z 285 [M-H-Glu]−, due to the loss of the glucose
group, and the fragment ions at m/z 179 [M-H-Glu-C7H6O2]−, due to the RDA fragmen-
tation, confirmed the linkage of the glucose moiety at the aglycone kaempferol. Based
on literature data and by comparison with an authentic analytical standard, compound 3
was identified as kaempferol 3-O-glucoside [42]. Compound 4 showed a [M-H]− ion at
m/z 435. The base peak ion at m/z 273 [M-H-Glu]− for the loss of the glucose unit and
the fragment ion at m/z 167 [M-H-Glu-C7H6O]− confirmed the presence of the chalcone
moiety and the linkage with a hexoside group. Based on the tandem mass spectrum
and by comparison with an authentic analytical standard, compound 4 was identified as
phloridzin [41]. Kaempferol 3-O-rhamnoside (compound 5) displayed a [M-H]− ion at
m/z 431. The base peak ion at m/z 285 [M-H-Rha]− was derived from the neutral loss
of the sugar moiety while the fragment ion at m/z 179 [M-H-Rha-C7H6O]− was due to
the RDA fragmentation [43]. Compound 5 identity was confirmed by comparison with
an authentic analytical standard. Compound 6 displayed a [M+H]+ ion at m/z 503. The
base peak ion at m/z 485 [M+H-H2O]+ and the fragment ions at m/z 467 [M+H-2H2O]+, at
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m/z 457 [M+H-HCOOH]+ and at m/z 439 [M+H-HCOOH-H2O]+ indicated the linkage
of a hydroxyl and a carboxylic acid groups. Based on literature data, compound 6 was
putatively identified as hydroxymethoxyursolic acid [44]. Compound 7 showed a [M-H]−

ion at m/z 273. The base peak ion at m/z 167 [M-H-C7H6O]− and the fragment ion at m/z
125 [M-H-C9H8O2]− indicated the presence of the chalcone moiety. Based on the tandem
mass spectrum and by comparison with authentic analytical standard, compound 7 was
identified as phloretin. Compound 8 displayed a [M+H]+ ion at 501. The base peak ion at
m/z 455 [M+H-HCOOH]+ and the fragment ion at m/z 419 [M+H-HCOOH-2H2O]+. By
comparison with literature data, compound 8 was putatively annotated as carboxyursolic
acid [41]. Compound 9 showed a [M+H]+ ion at m/z 487 and was tentatively identified
as annurcoic acid [22], a peculiar triterpenoid acid isolated exclusively in Annurca Apple.
The tandem mass spectrum displayed a base peak ion at m/z 469 [M+H-H2O]+ and a
fragment ion at m/z 423 [M+H-HCOOH-H2O]+, suggested the linkage of carboxylic and
hydroxy groups. Compound 10 displayed a [M-H]− ion at m/z 517. The base peak ion
at m/z 455 [M-H-CO2-H2O]− and the fragment ion at m/z 429 [M-H-2CO2]− suggested
the linkage of two carboxylic groups and a hydroxy moiety. Its tandem mass spectrum
allowed to putatively identify the compound 10 as zahnic acid [45]. Two medicagenic acid
isomers (compounds 11 and 16) were tentatively detected. They showed a [M-H]− ion
at m/z 501 and a base peak ion at m/z 483 due to the neutral loss of a molecule of water.
The fragment at m/z 391 [M-H-2HCOOH-H2O]− indicated the presence of two carboxylic
groups and agreed with the literature data [44]. Compound 12 showed a [M+H]+ ion at
m/z 473 and was putatively identified as corosolic acid. The base peak ion at m/z 455
[M+H-H2O]+ and the fragment ion at m/z 391 [M+H-HCOOH-2H2O]+ were due to the
neutral losses of water and formic acid molecules [46]. Compound 13 displayed a [M-H]−

ion at m/z 487. Its tandem mass spectrum was characterized by a base peak ion at m/z
425 [M-H-CO2-H2O]− and some fragment ions at m/z 441 [M-H-HCOOH]− and at m/z
407 [M-H-CO2-2H2O]−, which indicated the linkage of a hydroxy group and a carboxylic
acid. Based on literature data, compound 13 was putatively identified as arjunolic acid [46].
Compound 14 showed a [M+H]+ ion at m/z 457 and was tentatively annotated as oleanolic
acid. The base peak ion at m/z 439 [M+H-H2O]+, due to the neutral loss of a molecule of
water, and the fragment ions at m/z 393 [M+H-HCOOH-H2O]+, derived from the cleavage
of the hydroxy and the carboxy groups, confirmed oleanolic acid mass spectrum and agreed
with literature data [46]. Compound 15 displayed a [M+H]+ ion at m/z 457. The base peak
ion at m/z 411 [M+H-HCOOH]+ and the fragment ion at m/z 393 [M+H-HCOOH-H2O]+

indicated the presence of a carboxylic acid and a hydroxy group. Based on the tandem
mass spectrum and by comparison with an authentic analytical standard, compound 15
was identified as ursolic acid [46]. Compound 17 showed a [M-H]− ion at m/z 633. The
base peak ion at m/z 589 [M-H-CO2]− and the fragment ion at m/z 571 [M-H-CO2-H2O]−

derived from the cleavage of the carboxy the hydroxy groups. However, the fragment
ion at m/z 487 [M-H-CA]− indicated the linkage of the coumaric acid moiety. Based on
literature data, compound 17 was putatively annotated as dihydroxy-{[(hydroxyphenyl)-
propenoyl)]oxy}ursenoic acid [47]. Compound 18 displayed a [M-H]− ion at m/z 617. The
base peak ion at m/z 573 [M-H-CO2]− and the fragment ion and the fragment ion at m/z
453 [M-H-CA-H2O]− suggested the linkage of the carboxylic acid, the hydroxyl, and the
coumaric acid groups. Based on literature data, compound 18 was tentatively identified as
hydroxy-{[(hydroxyphenyl)-propenoyl)]oxy}ursenoic acid [47].

3.4. Validation of Ursolic Acid HPLC-DAD Analysis Method

The HPLC-DAD method for the characterization and quantification of UA in OAAO
was validated. To this purpose, the linearity, sensitivity, accuracy, and precision of the
method were evaluated. Specifically, linearity studies were conducted by generating
calibration curves on a wide range of standard analytical dilutions (six concentrations
ranging from 0.001 to 0.5 mg/mL). All analyses were performed in triplicate, and standard
concentrations were plotted versus peak area, yielding a linear relation (Table 4), described
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by a correlation coefficient of R2 0.999. The sensitivity of the analytical method was
assessed by determining the UA LOD e LOQ values. Our results show that UA LOD is
0.295 ppm, while UA LOQ is 0.845 ppm (Table 4). These values are perfectly in line with
the results of other authors, who reported values of UA LOD and LOQ of 0.15 ppm and
0.47, respectively [47]. Since UA LOD and LOQ values are largely below the concentrations
detected and quantified in all samples analyzed, this analytical method can be considered
a reliable protocol for both UA detection and quantification.

Table 3. HPLC-HESI–MS/MS analysis of OAAO hydroalcoholic and ethyl acetate extracts.

No. Extract Compound Ione Rt m/z Diagnostic Fragment Ref.

1 Hydroalcoholic Rutin [M-H]− 8.05 609
591 [M-H-H2O]−, 301 [M-H-Rut]−,

255 [M-H-Rut-CO-H2O]−, 179
[M-H-Rut-C7H6O2]−

[41]

2 Hydroalcoholic Quercetin-3-O-
glucoside [M-H]− 8.16 463

445 [M-H-H2O]−, 301 [M-H-Glu]−,
255 [M-H-Glu-CO-H2O]−, 179

[M-H-Glu-C7H6O2]−
[4]

3 Hydroalcoholic Kaempferol-3-O-
glucoside [M-H]− 8.73 447

429 [M-H-H2O]−, 285 [M-H-Glu]−,
179 [M-H-Glu-C7H6O2]−, 151

[M-H-Glu-C8H6O3]−
[41]

4 Hydroalcoholic Phloridzin [M-H]− 9.41 435 417 [M-H-H2O]−, 273 [M-H-Glu]−,
167 [M-H-Glu-C13H16O6]− [40]

5 Hydroalcoholic Kaempferol-3-O-
rhamnoside [M-H]− 9.78 431

413 [M-H-H2O]−, 327
[M-H-C4H8O3]−, 285 [M-H-Rha]−,

179 [M-H-Rha-C7H6O2]−
[42]

6 Ethylacetate Hydroxymethox-
yursolic acid [M+H]+ 11.49 503

485 [M+H-H2O]+, 467
[M+H-2H2O]−, 457

[M+H-HCO2H]+, 439
[M+H-HCO2H-H2O]+

[43]

7 Hydroalcoholic Phloretin [M-H]− 11.61 273
255 [M-H-H2O]−, 167
[M-H-C7H6O]−, 125

[M-H-C9H8O2]−
[40]

8 Ethylacetate Carboxyursolic acid [M+H]+ 12.17 501

483 [M+H-H2O]+, 455
[M+H-HCO2H]+, 437

[M+H-HCO2H-H2O]+, 419
[M+H-HCO2H-2H2O]+

[43]

9 Ethylacetate Annurcoic acid [M+H]+ 13.47 487

469 [M+H-H2O]+, 451
[M+H-2H2O]−, 441

[M+H-HCO2H]+, 423
[M+H-HCO2H-H2O]+

[20]

10 Ethylacetate Zanhic acid [M-H]− 14.83 517
499 [M-H-H2O]−, 473 [M-H-CO2]−,

455 [M-H-CO2-H2O]−, 429
[M-H-2CO2]−

[44]

11 Ethylacetate Medicagenic acid
isomer 1 [M-H]− 15.09 501

483 [M-H-H2O]−, 457 [M-H-CO2]−,
409 [M-H-2HCOOH]−, 391

[M-H-2HCOOH-H2O]−
[44]

12 Ethylacetate Corosolic acid [M+H]+ 15.19 473

455 [M+H-H2O]+, 427
[M+H-HCO2H]+, 409

[M+H-HCO2H-H2O]+, 391
[M+H-HCO2H-2H2O]+

[45]

13 Ethylacetate Arjunolic acid [M-H]− 15.75 487

469 [M-H-H2O]−, 441
[M-H-HCOOH]−, 425
[M-H-CO2-H2O]−, 407

[M-H-CO2-2H2O]−
[45]

14 Ethylacetate Oleanolic acid [M+H]+ 15.91 457
439 [M+H-H2O]+, 411
[M+H-HCO2H]+, 393
[M+H-HCO2H-H2O]+

[45]
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Table 3. Cont.

No. Extract Compound Ione Rt m/z Diagnostic Fragment Ref.

15 Ethylacetate Ursolic acid [M+H]+ 16.20 457
439 [M+H-H2O]+, 411
[M+H-HCO2H]+, 393
[M+H-HCO2H-H2O]+

[45]

16 Ethylacetate Medicagenic acid
isomer 2 [M-H]− 16.67 501

483 [M-H-H2O]−, 457 [M-H-CO2]−,
439 [M-H-CO2-H2O]−, 391

[M-H-2HCOOH-H2O]−
[44]

17 Ethylacetate

Dihydroxy-
{[(hydroxyphenyl)-

propenoyl)]oxy}urse-
noic acid

[M-H]− 18.79 633
615 [M-H-H2O]−, 589 [M-H-CO2]−,

571 [M-H-CO2-H2O]−, 487
[M-H-CA]−

[46]

18 Ethylacetate

Hydroxy-
{[(hydroxyphenyl)-

propenoyl)]oxy}urse-
noic acid

[M-H]− 20.89 617 599 [M-H-H2O]−, 573 [M-H-CO2]−,
453 [M-H-CA-H2O]− [46]

Table 4. Linearity and sensitivity of the HPLC-DAD method.

Compound Linearity Correlation
Coefficient (r2)

LOQ
(ppm)

LOD
(ppm)

Monitoring
Channel

Ursolic acid Y = 4 E + 06 x + 32,787 0.999 0.845 0.295 205 nm

Intra-day and inter-day accuracy (% bias), and precision (% C.V.), were determined
at UA concentrations of 500, 100, and 5 ppm (Table 5). As expected, the higher % C.V.
was measured at, the lower concentration tested (5 ppm), with intra-day and inter-day
% C.V. of 5.773% and 7.375%, respectively. The same was for the accuracy, whose lower
values of % bias were obtained at the lower concentration tested, with a % bias of −0.534%
(intra-day) and of −0.521% (inter-day). In general, we found that % C.V. values ranged from
1.874 to 5.773% and from 1.720 to 7.375% for intra-day and inter-day precision, respectively.
Moreover, the % bias ranged from −0.534 to 3.142% for the estimation of intra-day accuracy
and from −1.386 to −0.521% for the evaluation of inter-day accuracy. Considering low
values obtained for both %bias and %CV, the developed method may be considered a
reproducible and reliable protocol for the quantification of UA by HPLC-DAD analysis.

Table 5. Intra-day and inter-day precision and accuracy of UA.

Analyte Concentration (ppm) Intra-Day (CV%,
n = 3)

Inter-Day (CV%,
n = 3)

Intra-Day (%Bias,
n = 3)

Inter-Day (%Bias,
n = 3)

500 1.874 1.720 3.142 1.386

Ursolic acid 100 1.960 0.885 0.580 1.120

5 5.773 7.375 −0.534 −0.521

The recovery (%) and the matrix effect (%) were determined at UA concentrations of
30, 20, and 10 µg (Table 6). As expected, the higher % matrix effect was measured at the
lower Ursolic acid spiked concentration (10 µg), with a % matrix effect of 6.86%. In general,
we found that % recovery values and % matrix effect ranged from 89.42 to 91.21% and from
1.42 to 6.86%, respectively. Considering low values obtained for both % recovery values
and % matrix effect, the developed extraction and analysis methods may be considered as
a reproducible and reliable protocol for the quantification of UA by HPLC-DAD analysis.
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Table 6. Recovery and matrix effect of UA.

Analyte Ursolic Acid Spiked (µg) Recovery (%) Matrix Effect (%)

30 89.65 2.29

Ursolic acid 20 89.42 1.42

10 91.21 6.86

3.5. Total Polyphenols and In Vitro Antiradical Activity of OAAO

According to current knowledge, oxidative stress and UV irradiation are the main
causes of extrinsic and premature aging, as well as some skin cutaneous damage and
diseases [48]. Oxidative stress plays a pivotal role in the skin aging process and in several
age-related chronic diseases. Reducing ROS has been shown to attenuate oxidative damage
and extend animal tissues’ lifespan [49]. Considering the potential incorporation of OAAO
in cosmetic formulations, its total phenolic content (TPC) and in vitro antiradical activity
were investigated. To evaluate the OAAO total polyphenolic content, the Folin–Ciocalteau’s
assay was performed on OAAO hydroalcoholic fraction, resulting in 5.56 ± 0.45 GAE (gallic
acid equivalent)/g of OAAO. On the other hand, the antiradical activities of OAAO were
tested by the application of DPPH, ABTS and FRAP protocol, and the obtained results are
shown in Table 7.

Table 7. Antiradical activity of OAAO extracts evaluated by DPPH, ABTS and FRAP assays.

Antioxidant Activity (µmol TE/g of OAAO Hydroalcoholic Extract ± SD)

DPPH Assay ABTS Assay FRAP Assay

14.63 ± 0.22 5.90 ± 0.49 21.72 ± 0.68
The results are expressed as µmol TE per gram of AA. Abbreviations: DPPH, (2, 2diphenyl-1-picrylhydrazyl;
ABTS, 2, 20-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid); FRAP, ferric reducing antioxidant power; TE, Trolox
equivalent, DW, dry weight. Values are mean ± standard deviation (SD) of three repetitions.

The scientific literature reported that the antiradical activity of Annurca apple polyphe-
nols was 40.98 ± 1.19 for ABTS, 15.59 ± 0.11 for DPPH, and 26.63 ± 0.70 µmol TE/g DW
for FRAP assay [50]. Interestingly, although the extraction in oil is highly selective for the
lipophilic molecules, OAAO has shown valuable antiradical potential (Table 7). These
results could be related to the non-polar apple polyphenols, such as flavonols and di-
hydrochalcones, which are the main polyphenolic components in OAAO, as previously
described in Sections 3.2 and 3.3. Furthermore, the results of the DPPH and ABTS assays
were also estimated as IC50 (Figure 3), which is defined as the amount of antioxidants
required to reduce the initial concentration of the radical solution by 50% [51]. Regarding
the reported OAAO IC50 values, also in this case, the antiradical activity registered by the
DPPH assay (10.21 mg/mL) was higher (doubled) than those acquired by the ABTS assay
(23.02 mg/mL). The reported trend is the same previously described by the estimation
of the antiradical activity expressed as µmol TE/g DW (14.63 ± 0.22 and 5.90 ± 0.49,
respectively, calculated by DPPH and ABTS assays).

3.6. Skin Permeation Study

In order to evaluate the potential application of OAAO for the formulation of natural
cosmetic products, a study of skin penetration was performed. The passage of natural
compounds across the major two skin layers (epidermis and derma) is a complex process
involving several stages: (i) the release of the molecule from the vehicle, (ii) penetration into
the stratum corneum, and (iii) partitioning from stratum corneum to target sites in epider-
mis and dermis [52]. Our results indicate that the oleolyte containing UA has a promising
penetration rate after 1, 2 and 4 h of application and reaches its maximum concentration in
the derma compartment after 4 h after application. No edema and erythema were observed
after the administration of the oleolyte to porcine skin.
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The LC-MS/MS measurements showed that the UA distribution was linear over time,
with a progressive shift from the epidermal to the dermal compartment, but without ever
affecting the blood flow simulated by the physiological solution (Figure 4). These valuable
results may be related to the triterpenoid lipophilic structure of UA, characterized by
XLogP3-AA of 7.3. In general, the topically applied compound can penetrate the skin by
two different routes, transcellular and intercellular, depending on the structural features
of the compound under study. Considering that lipophilic molecules prefer intercellular
passage [53], UA can potentially diffuse across the different skin compartments via the
intercellular route. The Regulation (EC) No. 1223/2009 of the European Union defines
a cosmetic product as “any substance or mixture intended to come into contact with the
external parts of the human body (epidermis, hair system, nails, lips, and external genital
organs) or with the teeth and mucous membranes of the oral cavity with a view exclusively
or mainly to cleaning them, perfuming them, changing their appearance, protecting them,
keeping them in good condition or correcting body odors” [33]. Consequently, the main
characteristic that distinguishes cosmetics from pharmaceutical products is that the cos-
metic product must not enter the bloodstream [33]. As reported in our permeation study,
only a statistically not significant trace of UA was observed in the physiological region
(which simulates the blood circulation in our system) (Figure 4). Based on these data,
OAAO can be considered a powerful and safe functional ingredient for the formulation of
a cosmetic product.

Antioxidants 2023, 11, x FOR PEER REVIEW 17 of 20 
 

 

Figure 4. UA in vitro skin permeation study; values are presented as means ± Dev. st of three repli-

cates. Data were analyzed with two-way ANOVA followed by Tukey’s posthoc test; * p < 0.01 4-h 

vs. 1-h, # p < 0.01 2-h vs. 1-h, $ p < 0.01 4-h vs. 2-h in the same group. 

4. Conclusions 

The described results show that AA could be considered a possible source of bioac-

tive compounds, especially UA. Notably, optimization of the extraction conditions using 

the RSM methodology allowed us to evaluate the maximum extractable UA amount in 

AA (784.40 ± 7.579 µg/mL) using sunflower seed oil as a food-grade extraction solvent. 

The extract obtained in the optimized conditions (OAAO) was also characterized to assess 

its chemical composition and its in vitro potential biological activities. The promising re-

sults in terms of antioxidant properties (IC50 10.21 mg/mL and 23.02 mg/mL evaluated 

respectively by DPPH and ABTS assays) and skin permeation (reaching maximum UA 

concentration in the epidermis after 2 h of treatment) may suggest OAAO as a powerful 

functional ingredient for the formulation of cosmetic products with anti-aging effects. Fur-

ther investigations on the in vitro and in vivo beneficial potential, especially the potential 

blanching activity, are necessary. 

Author Contributions: Conceptualization, M.M. and V.P.; methodology, M.M. and V.P.; software, 

V.P. and M.M.; validation, M.M. and V.P.; formal analysis, E.S. and F.I.; investigation, M.M., V.P., 

E.S., F.I. and R.C.; data curation, M.M. and V.P., writing—original draft preparation, M.M. and V.P.; 

writing—review and editing, M.M., V.P. and E.S., visualization, M.M. and V.P.; supervision, G.C.T., 

V.S. and E.N.; project administration, G.C.T., E.N. and V.S. All authors have read and agreed to the 

published version of the manuscript. Please turn to the CRediT taxonomy for the term explanation. 

Authorship must be limited to those who have contributed substantially to the work reported. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data used to support the findings of this study are included in 

this article. 

Acknowledgments: The assistance of the staff is gratefully appreciated. 

Conflicts of Interest: The authors declare no conflict of interest. 

 

 

 

 

1-h 2-h 4-h
0

400

800

1200

1600

N
an

o
g

ra
m

s 
U

A
/1

 c
m

2  o
f 

sk
in

Epidermis

Derma

Physiological solution

*,$

#

*

Figure 4. UA in vitro skin permeation study; values are presented as means ± Dev. st of three
replicates. Data were analyzed with two-way ANOVA followed by Tukey’s posthoc test; * p < 0.01
4-h vs. 1-h, # p < 0.01 2-h vs. 1-h, $ p < 0.01 4-h vs. 2-h in the same group.
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4. Conclusions

The described results show that AA could be considered a possible source of bioactive
compounds, especially UA. Notably, optimization of the extraction conditions using the
RSM methodology allowed us to evaluate the maximum extractable UA amount in AA
(784.40 ± 7.579 µg/mL) using sunflower seed oil as a food-grade extraction solvent. The
extract obtained in the optimized conditions (OAAO) was also characterized to assess its
chemical composition and its in vitro potential biological activities. The promising results in
terms of antioxidant properties (IC50 10.21 mg/mL and 23.02 mg/mL evaluated respectively
by DPPH and ABTS assays) and skin permeation (reaching maximum UA concentration in
the epidermis after 2 h of treatment) may suggest OAAO as a powerful functional ingredient
for the formulation of cosmetic products with anti-aging effects. Further investigations
on the in vitro and in vivo beneficial potential, especially the potential blanching activity,
are necessary.
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