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Abstract: Interesting photobiological properties have been demonstrated for some Cachrys species,
including C. libanotis L., C. sicula L., and C. pungens Jan. The present study was designed to assess the
photocytotoxic activity of Prangos ferulacea Lindl. (synonym of C. ferulacea (L.) Calest.). This plant
was previously considered a Cachrys species but, at present, it is part of the Prangos genus. P. ferulacea
is an orophilous plant present in the eastern Mediterranean and in western Asia. Three different
extraction techniques were utilized. Obtained extracts were compared both for their phytochemical
content and for their photobiological properties on human melanoma cells irradiated with UVA
light. The apoptotic responses, together with the antioxidant activity, were also assessed. P. ferulacea
extracts were able to affect cell viability in a concentration-dependent manner, with the sample
obtained through supercritical CO2 extraction showing the highest activity (IC50 = 4.91 µg/mL). This
research points out the interesting content in the photoactive compounds of this species, namely
furanocoumarins, and could provide a starting point for further studies aimed at finding new
photosensitizing agents useful in cancer photochemotherapy.

Keywords: Apiaceae; Cachrys; furanocoumarins; melanoma; photosensitizing agents; plant
extracts; Prangos

1. Introduction

A number of studies concerning the phytochemical composition of plants belonging
to the Cachrys species highlighted the abundance of coumarins, a family of benzopyrones,
and their derivatives, mainly furanocoumarins [1–4]. The Cachrys group (Apiaceae) is
divided into several genera, namely Cachrys, Prangos, Alocacarpum, Bilacunaria, Ferulago,
Diplotaenia, Eriocycla, and Azilia [5,6]. Furanocoumarins possess a furan ring fused with the
coumarin skeleton. These compounds can be classified into two groups, namely the linear
and angular type, according to the attachment place of the furan ring [7].

Beside other biological properties, coumarins and their derivatives have been inves-
tigated for their anticancer activity, and it has been demonstrated that their mechanism
of action is generally caspase-dependent apoptosis [8]. The potential application of these
molecules in the treatment of malignant melanoma has also been assessed [8,9].
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Despite significant advances in diagnosis and treatment, skin cancer is one of the lead-
ing causes of death and melanoma is the most aggressive form of skin cancer [10]. Beyond
the earliest treatment options, such as surgery, chemotherapy, and radiation, more recent
therapeutic approaches including nanodrugs, immunotherapy, and photochemotherapy,
have been introduced [11]. Photochemotherapy is a very promising approach in anticancer
research, in which a photosensitizing agent exerts an antiproliferative effect after interaction
with a suitable light, and they exert these effects at doses at which both the photosensitizer
and the light alone are not effective [12].

The PUVA (psoralen + UVA) therapy, whose name is an acronym for psoralen plus
ultraviolet-A radiation, is a kind of photochemotherapy based on the oral or topical admin-
istration of psoralens followed by exposure to UVA radiations [13]. As well as its use in the
treatment of psoriasis, vitiligo, and other dermatological diseases, this therapeutic modality
is one of the first line options for the treatment of mycosis fungoides, the most common type
of cutaneous T-cell lymphoma, which is a heterogenous group of non-Hodgkin lymphomas
arising in the skin [14].

In our previous studies focusing on the search for photoactive phytochemicals, we
highlighted the biological properties of different plant species belonging to Cachrys genus,
such as Cachrys pungens Jan [15]. The methanolic extract of the aerial parts, together with
its chloroform fraction and the coumarins fraction, induced photocytotoxic effects on UVA-
irradiated melanoma cells. More recently, we also investigated the photocytotoxic potential
of coumarin-rich extracts from C. sicula and C. libanotis aerial parts, obtained through two
extraction methods, namely traditional maceration and pressurized cyclic solid–liquid
(PCSL) extraction [16].

In view of these promising previous results, we decided to investigate the photobiolog-
ical properties of another species, namely Prangos ferulacea Lindl. The name is a synonym
of Cachrys ferulacea (L.) Calest., as this plant, which currently resides in the Prangos genus,
has been previously considered to be a Cachrys species [17]. Indeed, the classification of the
genus Cachrys has been somewhat confused, and according to recent molecular phyloge-
netic studies, the genera Prangos, Cachrys L., Azilia, Bilacunaria Pimenov & V.N. Tikhom.,
Diplotaenia Boiss., Eriocycla, and Ferulago W.D.J.Koch belong to the Cachrys clade [18].

P. ferulacea is an orophilous species of the eastern Mediterranean and western Asia,
being present in Italy, Sicily, the Balkans, Syria, Caucasia, and Iran [19,20]. In these regions,
it is also used as animal fodder [21]. This species has been shown to be extremely rich in
coumarins, the main class of secondary metabolites detected so far. In addition, the aerial
parts also contain several flavonoid glycosides [5]. Shokoohinia and colleagues described
the presence of osthole, psoralen, isoimperatorin, oxypeucedanin, oxypeucedanin hydrate,
gosferol, oxypeucedanin methnolate, and pranferol in the root extract of the plant [22]. The
composition of the essential oil from its fruits has also been described, and γ-terpinene and
α-pinene have been described as the major constituents [23].

Different biological properties, such as antimicrobial properties, hypoglycemic activi-
ties, and analgesic effects, have previously been demonstrated for this plant [24–26]. Bruno
and coworkers also reported the antioxidant, cytotoxic, and acetylcholinesterase inhibitory
activities of the essential oil from this species, which showed a moderate cytotoxic activity
on HCT116 human colon carcinoma, MDA-MB 231 breast carcinoma, and A375 melanoma
cell lines [6].

To the best of our knowledge, despite the known content in photoactive compounds
(namely furanocoumarins), the photosensitizing properties of P. ferulacea have never been
investigated so far.

The present study was designed, in particular, to evaluate, for the first time, the photo-
cytotoxic properties of P. ferulacea, which were assessed on a human melanoma C32 cell line
irradiated with UVA light. Moreover, particular attention was paid to the technique utilized
to extracts the photoactive compounds responsible for such activity. To this end, traditional
and innovative methods were used and compared. The aerial parts were extracted using
three different techniques, namely traditional maceration (TM), supercritical CO2 (S-CO2),



Antioxidants 2023, 12, 384 3 of 18

and pressurized cyclic solid–liquid extraction (PCSL) using a Naviglio extractor®. These
last two extraction procedures have emerged as promising technologies over conventional
techniques for the extraction of bioactive compounds from vegetable sources [27–29]. Con-
ventional techniques, such as maceration or Soxhlet extraction, require a large quantity of
solvent and longer extraction time, and are also accompanied by a low extraction rate and
solvent contamination. Because of these shortcomings, above all the use of toxic and/or
carcinogenic organic solvents, the interest of the researchers is towards novel, efficient, and
green extraction techniques [27].

The rapid solid–liquid dynamic extraction performed using the Naviglio extractor®,
based on a new solid–liquid extraction principle called Naviglio’s principle, is a technique
that is able to reduce extraction times and that allows us to obtain higher yields compared
to traditional procedures [30].

A supercritical fluid is a liquid or a gas at atmospheric conditions which is character-
ized by an interesting dissolving power in its supercritical region, namely when it is heated
above its critical temperature and compressed above its critical pressure. Supercritical fluid
extraction is a separation process in which the chemical compounds are dissolved in a
supercritical fluid, and it is useful to selectively extract a specific compound or fraction
from an extract [31].

The phytochemical composition of the P. ferulacea extracts was assessed with gas
chromatography–mass spectrometry (GC–MS), and principal component analysis (PCA)
was used to explore the data patterns and to highlight differences among the composition of
P. ferulacea extracts. The in vitro photobiological properties were assessed on the melanoma
C32 cell line, and the apoptotic responses were also investigated. The in vitro antioxidant
activity was assessed as well.

2. Materials and Methods
2.1. Chemicals

Ascorbic acid, DPPH, propyl gallate, β-carotene, linoleic acid, Tween 20, chlorogenic
acid, quercetin, Folin–Ciocalteu reagent, RPMI-1640 medium, fetal bovine serum, penicil-
lin/streptomycin, L-glutamine, trypan blue, phosphate buffered saline, Hanks’ balanced
salt solution, and tetrazolium salt MTT were supplied by Sigma-Aldrich S.p.a. (Milano,
Italy). Melanoma C32 cells were obtained from Type Culture Collection (ATCC) no. CRL-
1585. Cyclin D1, p53 p21, PARP, GAPDH, and peroxidase-coupled goat anti-mouse or
goat anti-rabbit antibodies were obtained from Santa Cruz Biotechnology (Heidelberg,
Germany); ECL System (Amersham Pharmacia Biotech, Cologno Monzese, Italy). All other
reagents were obtained from VWR International s.r.l. (Milan, Italy).

2.2. Preparation of P. ferulacea Extracts

P. ferulacea (syn. C. ferulacea (L.) Calest.) aerial parts were collected in Calabria
(Southern Italy). A voucher specimen (leg. det. Carmine Lupia) was deposited at the
Mediterranean Etnobotanical Conservatory, Sersale, Catanzaro (position number 35 of
the Apiaceae section). Plant material was air-dried at room temperature and extracted
with methanol through both the maceration technique (72 h × 3 times, plant-to-solvent
ratio 1:10 g/mL) and a Naviglio extractor® (Atlas Filtri SrL, Limena, PD, Italy), using a
plant:solvent ratio 1:10 g/mL × 2 cycles [32]. Both obtained total extracts were dried under
reduced pressure at 40 ◦C, weighed, and stored at 4 ◦C until the analyses took place.

A further extract from P. ferulacea aerial parts was also obtained through supercritical
CO2 extraction. About 20 ± 2 g of P. ferulacea were placed in the vessel extractor. Supercriti-
cal CO2 extraction experiments were carried out in a laboratory-scale plant (Spe-ed SFE
Applied Separations, USA) using a temperature of 40 ◦C and a pressure of 250 bar. The
carbon dioxide used (purity > 99.99%) was supplied by SIAD Spa (Bergamo, Italy), the
extraction time was of about 3 h, and the extractor worked discontinuously; static phases
of 15 min were alternated to dynamic extraction phases of the same duration to improve
the yield [33].
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2.3. GC-MS Analyses

The apolar constituents, namely the coumarins, terpenes, and fatty acids, present
in the three different P. ferulacea extracts were identified through gas chromatography–
mass spectrometry (GC–MS). Analyses were performed using a Hewlett-Packard 6890 GC
connected to a Hewlett-Packard 5973 selective mass detector and equipped with an SE-30
(100% dimethylpolysiloxane) capillary column (30 m × 0.25 mm, 0.25 µm film thickness).
Analyses were carried out using helium as the carrier gas (linear velocity 0.00167 cm/s)
and a programmed temperature from 60 to 280 ◦C (with a rate of 16 ◦C /min). The column
inlet was set at 250 ◦C. The MS operating parameters were as follows: ion source, 70 eV; ion
source temperature, 230 ◦C; electron current, 34.6 µA; vacuum 10–5 torr. Mass spectra were
acquired over a 40–800 amu range at 1 scan/s. Constituents were identified by comparison
of their GC retention times with those of available standards, and by comparing their mass
spectra with those from Wiley Mass Spectral Database of the GC–MS system [34].

2.4. DPPH Assay

The radical scavenging activity of P. ferulacea extracts was assessed using the well-
established DPPH test, performed as previously described [35]. Briefly, 800 µL of a 0.1 mM
methanolic solution of the radical 2,2-diphenyl-1-picrylhidrazyl (DPPH) were mixed with
200 µL of each sample (concentrations ranging from 5 to 1000 µg/mL). Ascorbic acid was
used in the positive control group and absorbance was measured at 517 nm after 30 min of
incubation in the dark.

2.5. β-Carotene Bleaching Assay

The antioxidant activity of P. ferulacea extracts was also estimated using the β-carotene-
linoleate bleaching method, as previously described [34]. One milliliter of a 0.2 mg/mL
chloroform solution of β-carotene were added to linoleic acid (0.02 mL) and 100% Tween
20 (0.2 mL). The solvent was then evaporated, and distilled water (100 mL) was added.
A total of 5 mL of the resulting emulsion was transferred into tubes containing 0.2 mL
of each sample (concentration range 0.25–100 µg/mL). The mixtures were placed in a
water bath at 45 ◦C, and the oxidation of the emulsion was monitored by measuring the
absorbance at 470 nm over a 60 min period, namely at the initial time and after 30 and
60 min. The same procedure was followed with propyl gallate, which was used as a positive
control. The antioxidant activity was calculated in terms of the successful prevention of
β-carotene bleaching.

2.6. Evaluation of In Vitro Photocytotoxic Effects

The photocytotoxic effects of P. ferulacea extracts were assessed in vitro on a UVA-
irradiated human C32 melanoma cell line. Cells were cultured in RPMI-1640 medium
supplemented with 10% FBS, 1% L-glutamine, and 1% penicillin/streptomycin at 37 ◦C in
a humidified atmosphere of 5% CO2 until a monolayer was formed, avoiding the phase
of cells overlapping. The photocytotoxicity was evaluated as previously reported [36].
Briefly, 3.8 × 104 cells were placed in each well of a 96-well tissue culture microtiter plate
(100 µL/well). Twenty-four hours later, the medium was removed. The C. ferulacea extracts
were dissolved in MeOH (final solvent concentration 0.5% v/v), diluted with Hanks’
balanced salt solution (HBSS, pH 7.2), and added to the microtiter plates (10 µL/well) in
order to have final concentrations ranging from 0.625 to 100 µg/mL. After 30 min, the
plates were irradiated at 365 nm for 1 h at a dose of 1.08 J/cm2 using a HPW 125 Philips
lamp. The spectral irradiance of the source (0.3 mW/cm2) was measured with a radiometer
equipped with a 365-CX sensor (Cole-Parmer Instrument Company, Niles, IL, USA). Sample
solutions were then replaced with fresh medium, and microtiter plates were incubated for
a further 48 h. Bergapten was used as a positive control, and experiments were performed
in quadruplicate.

The cytotoxic activity was assessed 48 h later with the 3-[4,5-dimethyl-2-yl]-2,5-
diphenyl tetrazolium bromide (MTT) assay, as previously reported [37]. Briefly, medium
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was removed and 0.5% w/v MTT (100 µL/well) was added. After 4 h of incubation, DMSO
(100 µL/well) was added to dissolve the formazan crystals and absorbance was measured
at 550 nm by means of a microplate reader (Stat fax 3200, Awareness Technology Inc., Palm
City, FL, USA).

Cell morphology was visualized by using an inverted microscope (AE20 Motic, Motic
Instruments, Inc., VWR, Milano, Italy), and photos were captured with a digital camera
(VisiCam 3.0 USB, VWR, Milano, Italy).

2.7. Immunoblotting Analysis

The melanoma cells (C32) were harvested and lysed in 500 µL of RIPA buffer for
total protein extraction. Here, 8% SDS-polyacrylamide gel was used for the resolution
of the proteins that were transferred to a nitrocellulose membrane. Then, the filter was
probed with cyclin D1, p53, p21, PARP, and GAPDH antibodies (Santa Cruz, Biotechnology,
Heidelberg, Germany). The antibody antigen complex was detected with a secondary anti-
body conjugated to horseradish peroxidase and revealed with the ECL System (Amersham
Pharmacia Biotech, Cologno Monzese, Italy) [38].

2.8. Statistical Analysis

Three independent measurements were carried out for phytochemical analyses. Bio-
logical assays were performed in quadruplicate, and data were expressed as mean ± S.E.M.
D’Agostino–Pearson’s K2 test and Levene’s test were used to check the normality of data
and homogeneity of variances. For calculation of the half inhibition concentration (IC50),
raw data were fitted through nonlinear regression in Graph Pad Prism 5 (Graph Pad Soft-
ware Inc., San Diego, CA, USA), and curves were plotted using the equation log (inhibitor)
vs. response—variable slope. Statistical differences between the control and treated groups
and between treated group means were tested by one-way analysis of variance (ANOVA),
followed by Dunnett’s multiple comparison test and a Bonferroni post-hoc test, respectively
(p < 0.05, Sigma Stat Software, Jantel Scientific Software, San Rafael, CA, USA).

Principal component analysis (PCA) was performed with the online software Metabo-
Analyst version 5.0 (http://www.metaboanalyst.ca, accessed on 27 October 2022). Data
were checked for integrity, and zero values were replaced with small values (1/5 of the
minimum positive value for each variable found within the original data). Data were
then pretreated through Pareto-scaling. The phytochemical compounds extracted through
the three different extraction techniques were graphed through a clustered heat mapping
technique, using MetaboAnalyst version 5.0.

3. Results
3.1. Phytochemical Constituents

The aerial parts from P. ferulacea were collected in Calabria (southern Italy) and ex-
tracted with methanol through traditional maceration (TM) and pressurized cyclic solid–
liquid (PCSL) extraction using a Naviglio extractor®. A further sample was obtained
through supercritical CO2 extraction (S-CO2). The TM technique allowed us to obtain a
higher yield (14.7%) compared to the other two methods (3.6% for PCSL and 2.4% with
S-CO2, Table 1).

Table 1. Prangos ferulacea Lindl. extracts.

Extraction Technique Abbreviation Yield (%)

Maceration TM 14.7
Naviglio® PCSL 3.6

Supercritical CO2 S-CO2 2.4

The main aim of the phytochemical investigation was the identification of fura-
nocoumarins, the class of compounds responsible for the photosensitizing effects. To

http://www.metaboanalyst.ca
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this end, gas chromatography–mass spectrometry was performed. The analyses allowed
us to identify coumarins and other chemical constituents (Table 2).

Table 2. Phytochemical profile of Prangos ferulacea Lindl. extracts.

Compound RT 1 RAP 2

TM PCSL S-CO2

Furanocoumarins

Psoralen 17.645 - - 2.93 ± 0.25
Xanthotoxin 19.251 1.91 ± 0.04 2.73 ± 0.17 3.14 ± 0.11
Bergapten 19.411 - 2.83 ± 0.13 4.30 ± 0.09

Isopimpinellin 20.645 1.13 ± 0.05 0.89 ± 0.07 2.17 ± 0.14
Marmesin 21.223 - - 3.96 ± 0.19

Coumarins

Citropten 18.782 - - 2.48 ± 0.26
Osthole 19.891 2.42 ± 0.12 2.03 ± 0.19 3.82 ± 0.19

Isomeranzin 20.582 - - 1.90 ± 0.11

Terpenes

Estragole 11.192 - - 0.15 ± 0.02
trans-Caryophyllene 13.827 0.81 ± 0.03 - -

Cadinene 14.816 0.54 ± 0.03 - -
Neophytadiene 17.450 0.78 ± 0.04 - 0.71 ± 0.06

Fatty acids

Lauric acid 15.039 - - 0.10 ± 0.01
Myristic acid 16.496 3.24 ± 0.20 0.25 ± 0.03 2.04 ± 0.09

Pentadecanoic acid 17.336 0.44 ± 0.03 - -
7,10,13-Hexadecatrienoic acid 17.959 0.97 ± 0.04 - -

Isopalmitic acid 18.009 - - 0.55 ± 0.04
Palmitic acid 18.113 8.49 ± 0.49 1.15 ± 0.10 0.14 ± 0.02
Margaric acid 18.891 0.33 ± 0.03 - -

Oleic acid 19.091 - 0.36 ± 0.03 -
8,11-Octadecadienoic acid 19.371 - 1.08 ± 0.04 -

Stearic Acid 19.617 0.82 ± 0.03 - -
Linoleic acid 19.702 1.69 ± 0.13 - 0.20 ± 0.02

Arachidic acid 20.988 1.13 ± 0.08 0.44 ± 0.04 -
Behenic acid 22.263 2.72 ± 0.22 1.33 ± 0.14 -

Tricosylic acid 22.954 1.13 ± 0.07 - -
Lignoceric acid 23.760 4.39 ± 0.33 0.86 ± 0.04 1.00 ± 0.10

Cerotic acid 25.829 1.40 ± 0.10 - -

Total compounds 34.34 13.95 29.59
1 Retention time (min). 2 Relative peak area percentage (TIC %). Each value is the mean ± S.D. of three independent
measurements.

Five furanocoumarins were detected: psoralen, xanthotoxin, bergapten, isopimpinellin,
and marmesin. These constituents were found in higher number and percentages in the
extract obtained through supercritical fluid extraction compared to the other ones. This
last technique allowed the extraction of marmesin, which is a precursor in furanocoumarin
biosynthesis [39], and psoralen, which were not identified in the other two extracts. Xantho-
toxin, bergapten, and isopimpinellin, also present in other extracts, were more abundant,
with percentages equal to 3.14%, 4.30%, and 2.17%, respectively. The same trend was
observed for the extraction of simple coumarins, as follows: the use of supercritical carbon
dioxide (S-CO2) allowed the extraction of three compounds, namely citropten, isomer-
anzin, and osthole, while only the latter molecule was identified, at a lesser extent, in the
other two P. ferulacea extracts (TM and PCSL). Moreover, four terpenes, namely estragole,
trans-caryophyllene and neophytadiene, together with a number of fatty acids, were also
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recognized. These two last classes of phytochemicals were more abundant in the TM
sample. With regard to the fatty acid composition, the highest percentages were observed
for palmitic acid (8.49%), 7,10,13-hexadecatrienoic acid (4.62%), lignoceric acid (4.39%), and
myristic acid (3.24%).

A clear overview of the distribution of identified metabolites in the three extracts was
evidenced by principal component analysis. Figure 1 describes the scores plot (a) and the
biplot of scores and loadings values (b), by considering the first and the second principal
components, with a total explained variance of 85%.
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The S-CO2 samples, located in the top right half of the scores and loadings biplot, were
characterized by the highest content of coumarins and furanocoumarins. The TM samples
were located in the top left half of the biplot, which could be explained as being due to
their higher amounts of fatty acids compared to the other samples.

These differences in the relative content of significant discriminant secondary metabo-
lites are also visualized in the heatmap reported in Figure 2.
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3.2. Antioxidant Potential

The in vitro antioxidant potential of P. ferulacea extracts was assessed using the DPPH
radical scavenging assay and the β-carotene bleaching test. Ascorbic acid [40] and propyl
gallate [41,42] were used as positive controls, respectively. All three P. ferulacea extracts
induced a concentration-dependent radical scavenging activity (Table 3, Figure 3). The
sample obtained with traditional maceration showed the best radical scavenging potency
(IC50 = 77.37 ± 1.58 µg/mL). A better antioxidant activity was also observed in the second
test, with IC50 values equal to 19.57 ± 0.67 and 27.94 ± 0.48 µg/mL after 30 and 60 min of
incubation, respectively (Figure 4).

The sample extracted with the Naviglio extractor® (PCSL) was also effective in pro-
tecting linoleic acid from peroxidation, even if only to a minor extent, with IC50 values
equal to 30.75 ± 1.11 and 34.27 ± 0.35 µg/mL after 30 and 60 min, respectively.

3.3. Photocytotoxicity

The photocytotoxic properties of investigated samples were evaluated on a melanoma
C32 cell line. Cell cultures were treated with different concentrations of each sample (rang-
ing from 0.625 to 100 µg/mL), dissolved in MeOH and diluted with Hanks’ balanced salt
solution (HBSS, pH 7.2), in 96-well tissue culture microtiter plates. Plates were incubated
at 37 ◦C for 30 min and then irradiated with UVA light for 1 h at a dose of 1.08 J/cm2.
All three P. ferulacea extracts affected cell viability in a concentration-dependent manner.
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Extracts obtained through TM and PCSL extraction showed a good biological activity, with
IC50 values equal to 27.95 ± 0.67 and 25.90 ± 1.23 µg/mL. Consistent with the highest
furanocoumarin abundance, the best activity was observed for the extract obtained through
supercritical CO2 extraction, with an IC50 of 4.91 ± 0.15 µg/mL (Table 4).

Table 3. Antioxidant activity of P. ferulacea Lindl. extracts.

Sample

IC50 (µg/mL)

DPPH
β-Carotene

30 min 60 min

TM 77.37 ± 1.58 b 19.57 ± 0.67 b 27.94 ± 0.48 c

PCSL 90.27 ± 1.45 c 30.75 ± 1.11 c 34.27 ± 0.35 d

S-CO2 413.10 ± 1.79 d n.a. n.a.
Ascorbic acid * 2.00 ± 0.01 a - -
Propyl gallate * - 1.00 ± 0.02 a 1.00 ± 0.02 a

Data were expressed as mean ± S. E. M. (n = 3). Abbreviations are as follows: TM, traditional maceration; PCSL,
pressurized cyclic solid–liquid extraction; S-CO2, supercritical CO2 extraction. Different letters along column
(DPPH) or between columns (β-carotene bleaching test) indicate statistically significant differences at p < 0.05
(Bonferroni post-hoc test); n.a. = not active; * positive controls. Different letters indicate the statistical differences
detected through Bonferroni post-hoc test.
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Figure 4. Concentration-dependent inhibition of lipid peroxidation induced by P. ferulacea Lindl.
extracts. (a) Traditional maceration, TM, 30 min of incubation; (b) traditional maceration, TM,
60 min; (c) pressurized cyclic solid–liquid extraction, PCSL, 30 min.; (d): pressurized cyclic solid–
liquid extraction, PCSL, 60 min; (e) nonlinear regression analyses; *** p < 0.001 compared to control
(Dunnett’s test); ### p < 0.001 compared to positive control (propyl gallate, 1 µg/mL).

Table 4. Photocytotoxic effects of P. ferulacea Lindl. extracts on human melanoma cell line C32.

Sample
IC50 (µg/mL)

Irradiated Cells Unirradiated Cells

TM 27.95 ± 0.67 c >100
PCSL 25.90 ± 1.23 c >100
S-CO2 4.91 ± 0.15 b >100

Bergapten * 0.191 ± 0.012 a n.d.
Data were expressed as mean ± SEM (n = 4). Different letters indicate statistically significant differences at p < 0.05
(Bonferroni post-hoc test). Abbreviations are as follows: TM, traditional maceration; PCSL, pressurized cyclic
solid–liquid extraction; S-CO2, supercritical CO2 extraction; n.d., not detectable; * positive control.

Interestingly, no samples were significantly cytotoxic in the dark. At all the concen-
trations tested, the extracts showed enhanced cytotoxicity upon exposure to UV light, as
illustrated (Figure 5). This is very interesting, as a proper photosensitizing agent should
not have high levels of dark toxicity [43,44].
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The cell morphology 48 h after treatment and UVA irradiation was captured on a
digital camera (Figure 6).
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extracted with maceration (TM), 50 µg/mL; (c) treated irradiated cells, P. ferulacea extracted with
Naviglio® (PCSL), 50 µg/mL; (d) treated irradiated cells, P. ferulacea L. extracted with supercritical
CO2 extraction (S-CO2), 25 µg/mL. Cells were visualized with an inverted microscope (AE20 Motic)
and images were captured with a VisiCam digital camera. Arrows indicate rounded and shrunken
cells. Magnification, 10×.

As is shown, the incubation of cell cultures with the TM and PCSL samples at a
concentration of 50 µg/mL strongly affected cell viability compared to the control. Even
better results were observed for the sample obtained with supercritical carbon dioxide; as
reported in Figure 4c, cells treated with S-CO2 extract became rounded and shrunken even
at a lower concentration of 25 µg/mL.

3.4. Apoptotic Responses

Immunoblotting analysis has evidenced a downregulation in Cyclin D1 expression in
C32 UV-treated cells and an increase in the cyclin-dependent kinase inhibitor p21cip1/waf1,
which results in the cells being subjected to S-CO2 extract more consistently (Figures 7 and 8).
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Figure 7. Western blot analysis of Cyclin D1, p53, p21, and PARP (poly ADP-ribose polymerase)
protein levels in C32 cells treated or not with TM and PCSL extracts for 24 h, both in the presence and
absence of UV. The histograms represent the mean ± SD of three separate experiments in which band
intensities were evaluated as optical density (OD) and expressed as fold change relative to control;
* p ≤ 0.05; ** p ≤ 0.005 vs. control (C) and control + UV (C+UV).
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Figure 8. Western blot analysis of Cyclin D1, p53, p21, and PARP (poly ADP-ribose polymerase)
protein levels in C32 cells treated or not with S-CO2 extract for 24 h, both in the presence and
absence of UV. The histograms represent the mean ± SD of three separate experiments in which band
intensities were evaluated as optical density (OD) and expressed as fold change relative to control;
* p ≤ 0.05; ** p ≤ 0.005 vs. control (C) and control + UV (C+UV).

The UVA irradiation of the melanoma cells, treated with extracts obtained through the
TM, PCLS, and S-CO2 methods, has shown an upregulation in the onco-suppressor p53
protein with respect to the UVA-control cells.

In addition, we observed an upregulation in the proteolytic form di poly ADP ri-
bose polymerase (PARP), involved in DNA repair mechanisms, in melanoma cells which
underwent UVA light treatment (Figures 7 and 8).

4. Discussion

The Prangos Lindl. genus is comprised of about 45 species distributed from Portugal
to Tibet, with the center of the diversity located in the Irano-Turanian region. Phylogenetic
studies demonstrated that this genus is related to Binacularia and Cachrys genera [26], and
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both Prangos and Binacularia, together with Alocarpum, Ferulago, Diplotaenia Azilia, and
Eriocycla are currently members of the so-called Cachrys group [5,6].

Both the Prangos and Cachrys genera are rich in coumarins and particularly in fura-
nocoumarins [26,45].

Coumarins (1,2-benzopyrones or 2H-1-benzopyran-2-ones) consist of a benzene ring
linked to the pyrone ring. These benzopyrone compounds are divided into six groups,
namely simple coumarins, bicoumarins, furanocumarins, pyranocoumarins, benzocoumarins,
and coumestans [46]. Furanocoumarins are tricyclic aromatic derivatives which bear a
furan ring fused to the α-benzopyrone skeleton, and can be structurally divided into
angular and linear compounds, with the furan ring attached at the 6, 7 or to the 7, 8
position on the aromatic ring (angelicins and psoralens, respectively). Furanocoumarins
have interesting photosensitizing properties [47]. Photochemotherapy is a very promising
approach in oncology, and is based on the action of a photosensitizing agent which exerts
an antiproliferative effect after interaction with a suitable light, and they both exert these
effects at doses at which either the photosensitizer and the light alone are not effective [11].
Psoralens, when activated by UV light, are able to interact with DNA, forming cross-links
between adjacent strands and, hence, interfering with cellular replication [48]. This kind of
photochemotherapy, based on the administration of psoralens followed by exposure to UVA
radiation, is called PUVA therapy, and it is used in the treatment of both dermatological
diseases (such as psoriasis and vitiligo), and mycosis fungoides, the most common type of
cutaneous T-cell lymphoma, which is a heterogenous group of non-Hodgkin lymphomas
arising in the skin [14,49].

Prangos ferulacea Lindl. (syn. Cachrys ferulacea (L.) Calest.) is one of the most stud-
ied species previously included in the Cachrys genus and currently considered a Prangos
species [45]. In our study, this plant was tested for the first time for its photobiological
properties and for its potential use in the treatment of melanoma. Moreover, the aerial
parts of the plant were extracted using three different extraction techniques, both tradi-
tional methods (maceration), and innovative ones, namely rapid solid–liquid extraction
dynamic extraction via the Naviglio extractor, and supercritical CO2 extraction. Even if the
traditional maceration allowed us to obtain the highest extraction yield, furanocoumarins
were detected in higher number and percentages in the extract obtained through super-
critical fluid extraction. This last extract showed the presence of xanthotoxin, bergapten,
and isopimpinellin, together with other two compounds, namely marmesin and psoralen,
which were found in this sample only. The same extraction method also allowed us to
obtain a higher abundance of simple coumarins (citropten, osthole, and isomeranzin)
compared to the other two. Some terpenes were detected as well.

These classes of phytochemicals were previously reported by Bertoli and colleagues,
who investigated the phytochemical composition of the essential oils from the different
parts of P. ferulacea, reporting the presence of the terpenes α-pinene, sabinene, and limonene,
as well as the coumarin osthole [50]. Pistelli and coworkers reported the presence of osthol,
imperatorin, and isoimperatorin, oxypeucedanin, decursin, and heraclenin in the root and
the seed of the plant [3]. Moreover, the compounds osthol, bergapten, imperatorin, and
isoimperatorin were described in the extract from fruits from Sicily extracted with ethyl
acetate with Soxhlet [51], and Badalamenti and colleagues identified a new chemotype,
characterized by a large amount of (Z)-β-ocimene, from Sicily [52].

Our study evidenced the influence of the utilized extraction method on the phyto-
chemical composition of obtained extracts. As evidenced by principal component analysis,
the S-CO2 samples were characterized by the highest content of coumarins and fura-
nocoumarins, while the TM samples showed a higher amount of fatty acids compared to
the other samples.

The maceration technique was the best method with regard to the antioxidant activity
of P. ferulacea samples, which was assessed with two in vitro assays, the DPPH test and the
β-carotene bleaching test. Our results are in accordance with other studies which pointed
out the antioxidant potential of this species. The essential oils from the leaves and flowers
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of P. ferulacea were proven to induce a decrease in ROS and an increase in the activity
of superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) in
opsonized zymosan-stimulated human polymorphonuclear cells (PMNs) [52]. A good
radical scavenging ability was also described by Bagherifar and colleagues [53].

To the best of our knowledge, our study provides the first results as regards the
photobiological properties of this species. Here, C32 melanoma cancer cells were treated
with different concentrations of each P. ferulacea extract, and plates were then irradiated
with UVA light at a dose of 1.08 J/cm2. All three samples were able to affect cell viability in
a concentration-dependent manner. Consistent with the highest furanocoumarin content,
the extract obtained through supercritical CO2 extraction showed the best activity, with
an IC50 value equal to 4.91 ± 0.15 µg/mL, without showing a significant cytotoxicity in
the dark. This makes P. ferulacea extract a very interesting phytocomplex and a potential
candidate for further studies, as a proper photosensitizing agent should not have high
levels of dark toxicity [40,41].

Malignant melanoma is characterized by high mortality, drug resistance, and metas-
tases. The therapeutic treatments mainly used in the melanoma are surgical resection,
immunotherapy, biochemotherapy, and photodynamic and targeted therapy. However,
these approaches are not very successful over time, due to the onset of side effects and
resistance. For this reason, novel candidate therapeutics are needed. The focus is on natural
products, mainly used in traditional medicine for the treatment of various inflammatory
diseases, and which have shown fewer side effects [16].

In the present study, our results reveal that the effects of C. ferulacea extracts in
melanoma cells were accompanied by modulation of the key cell cycle regulatory proteins,
namely cyclin D1, p53, and p21Cip/Waf1. In fact, it is well known how cancer development
and progression are caused by the perturbation of the cell cycle regulatory mechanisms [54].

The cell cycle depends on the activation and inactivation of different cyclin-dependent
kinases related to cyclins and cdk-inhibitory sub-unity, such as p21Cip/Waf1, that belongs to
the Cip/Kip family [55].

In particular, the p21 and p53 proteins increased as a result of DNA damage, resulting
in cell cycle arrest and in the modulation of apoptotic responses. As reported by other
authors, p21 can inhibit some proteins involved in the activation of apoptosis, such as
procaspase 3, and caspases 8 and 10 [54].

In the presence of certain stressors, p21 can induce intrinsic and extrinsic pathways
of apoptosis, with an increase in the proapoptotic protein Bax and activation of the tumor
necrosis factor (TNF) family of death receptors, respectively [54,56].

In C32 cells which underwent exposure to UVA light, in addition to the upregulation in
p21, our results showed an increase in PARP cleavage, which plays key roles in DNA repair,
chromatin modulation, and transcription [57]. In conclusion, this study demonstrated that
P. ferulacea extracts, mainly the S-CO2 sample, contain important photoactive constituents
responsible for their photocytotoxic activity. The investigated samples induced promising
cytotoxic effects on malignant melanoma cells upon irradiation with UVA light, without
affecting cell viability in the dark. Future studies could be useful to further optimize the
extraction method and to continue investigating the interesting photobiological properties
of this species.
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