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Abstract: Mitochondrial open reading frame of the 12S rRNA type-c (MOTS-c) is the most unearthed
peptide encoded by mitochondrial DNA (mtDNA). It is an important regulator of the nuclear
genome during times of stress because it promotes an adaptive stress response to maintain cellular
homeostasis. Identifying MOTS-c specific binding partners may aid in deciphering the complex web
of mitochondrial and nuclear-encoded signals. Mitochondrial damage and dysfunction have been
linked to aging and the accelerated cell death associated with many types of retinal degenerations.
Furthermore, research on MOTS-c ability to revive oxidatively stressed RPE cells has revealed a
significant protective role for the molecule. Evidence suggests that senescent cells play a role in
the development of age-related retinal disorders. This review examines the links between MOTS-c,
mitochondria, and age-related diseases of the retina. Moreover, the untapped potential of MOTS-c as
a treatment for glaucoma, diabetic retinopathy, and age-related macular degeneration is reviewed.

Keywords: MOTS-c; mitochondrial dysfunction; glaucoma; diabetic retinopathy; age-related macu-
lar degeneration

1. Introduction

Mitochondrial DNA (mtDNA) encodes for numerous small polypeptides, termed
mitochondrial-derived peptide (MDP), from their Short Open Reading Frame regions.
These MDPs include humanin (HN), six small-humanin like peptides (SHLP1-6), and
MOTS-c [1]. MDPs have been shown to reverse insulin resistance, slow the aging process,
and reduce inflammation in rodent studies [2–4]. They are known to provide a wide
array of protective effects, including neuroprotective, cytoprotective, antioxidant, anti-
inflammatory, and metabolic properties which would be valuable in the treatment of retinal
diseases [5,6]. Therefore, it is not surprising that all MDPs discovered to date have either
altered expression under age-related pathological conditions or can ameliorate symptoms
when administered exogenously.

The MDP that has been evaluated the most is HN, which is cytoprotective in numerous
neurodegenerative diseases and shows anti-apoptotic activity in cybrid cell lines carrying
mitochondria from patients with age-related macular degeneration (AMD) [5]. Importantly,
Nashine et al., showed that damaged mitochondria in the AMD patients be rescued by
treatment with Humanin-G, a cytoprotective peptide that increased cellular longevity [7].
The rate of damage to mtDNA is higher than that to nuclear DNA in studies with human
RPE cells exposed to oxidative stress [8]. Six other peptides, designated SHLP1-6, with
lengths ranging from 20 to 38 amino acids, are also located on the 16S rRNA, alongside
humanin. SHLP6 induced cell death, while SHLP2 and SHLP3 prevented cell death. SHLP2
acted similarly to HN in protecting primary mouse cortical neurons from toxicity caused by
beta-amyloid (Aβ1-42). The differentiation of insulin-dependent adipocytes was hastened
by SHLP2 and SHLP3 [1].
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Mitochondria are found in the retinal pigment epithelial (RPE) basal region, near
the photoreceptors (PRs). In the inner retina, however, mitochondria are predominantly
concentrated in the unmyelinated proximal axons of retinal ganglion cells (RGCs), which
transmit visual information to the brain [9]. Over time, oxidative damage caused by mtDNA
instability leads to more damage to the mitochondria, which is known to be a major cause
of age-related eye disorders [10].

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are two types of
free radicals that can be produced as metabolic byproducts of oxidation-reduction reactions
in living cells [11]. Unstable molecules with an odd number of unpaired electrons are
known as free radicals. It is important to note that both endogenous and exogenous
substances can contribute to ROS production [11]. High ROS can react with a wide variety
of biomolecules (such as proteins, lipid membranes, and DNA) and causing harm to cells.
High level of ROS and free radicals, or low levels of antioxidants, characterize oxidative
stress [12,13]. Dynamic redox balance between ROS production and free radical scavenging
may be achieved under physiological conditions. Massive accumulation of ROS occurs in
response to different overabundant stimuli (both endogenous and exogenous). This may
cause oxidative stress in the affected tissues [14].

The review looks at the potential beneficial effect of MOTS-c on age-related retinal dis-
eases, such as glaucoma, diabetic retinopathy (DR), and age-related macular degeneration
AMD, as well as the connection between mitochondria and these diseases.

2. Role of Mitochondria in the Retina

Among all human tissues, the retina uses the most oxygen [15–17]. Among all forms
of central nervous tissue, the inner retinal neurons have the highest metabolic rate, and
the photoreceptors’ oxygen consumption rate is even higher. The ionic pumps that power
the “dark current” are powered by the ATP produced by the mitochondria found in the
inner segments of PR cells [15,17,18]. The retina receives a lot of direct exposure to visible
light, and it also has a lot of photosensitizers [19]. Normally, oxidative damage is kept to a
minimum by the body’s own antioxidants and repair mechanisms [20].

In retinal diseases, there is a slow shift toward exacerbation of these changes [20,21].
The neural retina and retinal pigment epithelium rely on mitochondria for their metabolic
maintenance. As a matter of fact, photoreceptors have low reserves of mitochondrial energy
and are, thus, especially vulnerable to disturbances in energy homeostasis [22]. It is, thus,
not surprising that the most common retinal disorders, i.e., glaucoma, AMD, and DR,
show mitochondrial dysfunction [23]. Oxidative stress and apoptosis are involved in the
final pathological stages of retinal diseases, such as photoreceptor degeneration, diabetic
retinopathy, and retinal ganglion cell injury [24]. The 4977-base pair (bp) common deletion
(mtDNA4977) is a marker of mtDNA damage caused by oxidative stress. This deletion
affects more than a quarter of the mitochondrial genome and disrupts three complexes of
genes that code for proteins involved in oxidative phosphorylation (OXPHOS) [25,26]. OX-
PHOS, a main nut in energy production, is comprised of four respiratory chain complexes
included in electron transport, generation of the proton gradient in the mitochondrial
intermembrane space, and ATP synthesis. Moreover, OXPHOS has a role in apoptosis and
radical production.

Dysregulated mitochondria result in significantly less energy production and en-
hanced apoptosis, and severely affect tissue homeostasis [27]. Defects of the mitochon-
dria have been implicated in aging and the pathogenesis of numerous retinal degenera-
tions [10,20]. Mutations in mtDNA can cause lower ATP synthesis, increased generation of
toxic ROS, and significant decline in mitochondrial functions, all of which are universal
features of normal ageing. Mitochondrial disorders mainly affect organs and cells that are
highly metabolic and depend on aerobic respiration including: nervous system, heart, skele-
tal muscles, renal tubules, endocrine glands, ears, and in the eyes (Figure 1). Mitochondrial
dysfunction is a hallmark of each of these diseases, and oxidative stress is a key contributor
to this dysfunction when the cell’s antioxidant defenses are outmatched by ROS [28–30].
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Figure 1. Mitochondria’s biological role in the retina of a healthy eye. Created with Biorender.com.

3. MOTS-c and Its Role in Mitochondrial Biogenesis and Mitophagy

Of the known native MDPs, MOTS-c has most consistently been reported to have
metaboloprotective properties in multiple models of metabolic dysfunction [31]. The MDPs
have an important function as mitochondrial retrograde signaling molecules that modulate
the status of mitochondrial health. The mitochondrially encoded 12S rRNA region encodes
for MOTS-c, a 16-amino-acid peptide with the sequence of MRWQEMGYFYPRKLR [31].

Translation of MOTS-c must take place in the cytoplasm using the universal genetic code
rather than the mitochondria-specific genetic code due to the presence of tandem start and
stop codons in the mitochondrial translation [32]. Loss of MOTS-c over time after selective
depletion of mitochondrial RNA suggests that the MOTS-c transcript is likely generated in the
mitochondria before being exported to the cytosol by an unknown mechanism [32]. Under
normal conditions, MOTS-c is found localized to mitochondria [32,33]. It has already been estab-
lished that some mitochondrial proteins are translated and translocated into the mitochondria
after being produced by mitochondrial associated cytoplasmic ribosomes [34,35].

By inhibiting respiration and increasing glucose uptake, MOTS-c is the mitochondrial
signal that promotes cellular health. According to the “Crabtree effect”, glucose can sup-
press cellular respiration and OXPHOS [36]. Glucose ingested in response to MOTS-c was
diverted from glycolysis and instead metabolized via the anabolic pentose phosphate path-
way (PPP), which supplies carbon sources for the synthesis of purines [32]. Furthermore,
MOTS-c increased the level of antioxidant intermediate and decreased intracellular levels
of essential and non-essential fatty acids, indicating improved lipid utilization [32]. Carni-
tine shuttles are responsible for transporting activated fatty acids into the mitochondria
for β-oxidation.

MOTS-c is strongly linked to amino acid, carbohydrate, and lipid metabolism and
serves as a key regulator for energy balance. It is encoded in mammalian cells by mitochon-
drial DNA and translocates to the nucleus in response to stress, where it promotes increased
production of reactive oxygen species (ROS). MOTS-c nuclear translocation requires 5′-
adenosine monophosphate-activated protein kinase (AMPK). By blocking both the folate
cycle and de novo purine biosynthesis, MOTS-c activates AMPK and leads to an increase
in 5-aminomidazole-4-carboxamide ribonucleotide (AICAR), a known AMPK activator [4].

MOTS-c regulates the nuclear genome and maintains cellular homeostasis in stress
conditions by providing an adaptive stress response [33,37]. Furthermore MOTS-c potenti-
ates Nuclear Factor Erythroid 2-Related Factor 2 (NFE2L2/NRF2) as antioxidant response
element (ARE) transcription factors [3,38,39], which are stress-responsive factors that pro-

Biorender.com


Antioxidants 2023, 12, 518 4 of 14

tect cells from oxidative stress [40]. In RPE, MOTS-c is found to be mainly in the perinuclear
region and cytoplasm [5]. It co-localizes largely with mitochondria in unstressed RPE cells,
and less in the nuclei (Figure 2). However, in response to metabolic or oxidative stress,
MOTS-c rapidly translocates into the nucleus [4,5]. MOTS-c triggers the activation of AMP-
activated protein kinase (AMPK) and accumulation of 5-aminoImdazole-4-carboxAmide
ribonucleotide (AICAR), a known AMPK activator, by inhibiting the folate cycle and de
novo purine biosynthesis [41,42].
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The nuclear factor kappa-B (NF-κB) is one of the most well-known downstream
targets of AMPK signaling in the inflammation process. Moreover, MOTS-c elevates
nicotinamide adenine dinucleotide+ (NAD+), a potent Sirtuin (SIRT) activator, which plays
a key role in energy metabolism, cell survival, and aging. SIRT1 deacetylates (at p65
subunit) and reduces NF-kB signaling that protects neurons from amyloid beta induced
toxicity in microglia [43]. Under energetic stress condition, AMPK and SIRT1 negatively
regulate Mammalian target of rapamycin Complex 1 (mTORC1) to conserve energy for cell
survival [44–46]. mTOR is an evolutionarily conserved serine/threonine protein kinase
that regulates multiple cellular processes such as cell growth, cell cycle, cell survival, and
autophagy [47]. Recent studies show that mTOR inhibition mitigates oxidative stress and
promote mitochondrial function to improve lifespan [48,49].

MOTS-c is a key regulator of the signaling pathways that initiate mitochondrial
biogenesis, including the proliferator-activated receptor Gamma Coactivator 1 alpha (PGC-
1α). PGC-1α translocates to the nucleus upon activation and acts as a coactivator of
transcription factors such as NRF-1 and NRF-2, as well as mitochondrial transcription
factor A (TFAM), which are involved in OXPHOS and mtDNA replication [50–52]. PGC-1α
protects neural cells in culture from oxidative stress and delays the onset of conditions
associated with aging [53]. A recent study using human ARPE19 cells reported that elevated
PGC-1α is essential for maintaining normal autophagic flux [54]. In a rodent glaucoma
model, an AMD model, and cultured RGC-5 cells, activating AMPK/PGC-1α signaling
decreased cell apoptosis through its activation by different compounds [55].

MOTS-c regulates Sirtuins expression. Sirtuins belong to a conserved family of nicoti-
namide adenine dinucleotide- (NAD-)dependent protein deacylases [56,57] that modulate
metabolism with autophagy and mitophagy. They are associated with aging, metabolism,
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DNA repair, and prevention of age-related ocular diseases [58]. SIRT1 has been extensively
studied due to its ability to deacetylate PGC-1α, NF-κB, and p53 [59].

It has been reported that MOTS-c acts as a cytoprotective agent in various cell
types. Protective effects against glucose/serum restriction were significantly enhanced in
HEK293 cells that stably overexpressed wild-type MOTS-c compared to cells transfected
with empty vector control [33]. MOTS-c is crucial in preventing inflammation caused by
lipopolysaccharide-induced acute lung injury [60]. It has been called a mitochondrial-
encoded hormone or a mitochondrial cytokine (mitokine) [46,61–63] due to its dual roles
as an intracellular and endocrine factor. Multiple avenues, such as cellular uptake, are
being explored in order to better understand the molecular details of MOTS-function as an
endocrine factor.

MOTS-c has consistently been demonstrated to have metabolism protective proper-
ties in multiple models of metabolic dysfunction and its circulating level in humans are
reportedly reduced by aging, obesity [32], insulin resistance [32], diabetes [6], endothelial
dysfunction [64], and chronic kidney disease [65]. Indeed, clinical trials on MOTS-c and a
MOTS-c analogues are under way, with potential indications for coronary artery disease
in patients with type 2 diabetes (NCT04027712) and nonalcoholic hepatic steatosis and
obesity (NCT03998514) [31].

4. Age-Related Retinal Diseases

Metabolic dysfunction in neuronal cells is associated with the development of age-
related neurodegenerative diseases. The net result of metabolic dysfunction includes re-
duced bioenergetics, increased generation of mitochondrial ROS, mitochondrial dysfunc-
tion, and cell death [14,66]. With aging, the human retina undergoes various structural and
physiologic changes [67]. Aging has been associated with fewer retinal neurons (Rod PRs,
RGCs, Rod bipolar cells), along with numerous age-related alterations, such as higher rate
of mtDNA mutations and decreased density of cells and synapses [68,69]. mtDNA becomes
damaged with age and oxidative stress, and the absence of good repair mechanisms leads
to accumulative mitochondrial dysfunction, which is recognized as a crucial pathogenic
element in age-related ophthalmic diseases (Figure 3), such as glaucoma, DR, and AMD [70].
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4.1. Glaucoma

Progressive loss of vision is the outcome of glaucoma, a neurodegenerative disease of
the optic nerve characterized by the accelerated death of RGCs and their axons. Since RGCs
are located in the optic nerve, they are especially vulnerable to mitochondrial respiratory
capacity damages [71,72]. As the world’s population ages, experts predict that glaucoma’s
prevalence will rise, ultimately reaching 111.8 million people by the year 2040 [73]. In
common with other neurodegenerative disorders, increasing age is a major risk factor
for the prevalence and incidence of glaucoma. The causes of RGC degeneration in glau-
coma are probably multifactorial [74]. The link between increased age and prevalence
of glaucoma suggests that aging may make the optic nerve more susceptible to various
stressors, which eventually results in RGC death and optic nerve degeneration [75]. In the
early stages of glaucoma development, oxidative stress contributes to cellular damage in
the trabecular meshwork, changes in the homeostasis of nitric oxide and endothelin, and
finally, a role in cellular death in the ganglion cells [76]. An association between glaucoma
and mitochondrial dysfunction has been suggested in a recent clinical study, where a 21%
reduction in mitochondrial respiratory function and an increase in mtDNA mutations were
observed in peripheral blood of patients with primary open-angle glaucoma [77,78].

Mitochondrial dysfunction is present in glaucoma animal models prior to RGC
death [79,80], suggesting a primary effect for mitochondrial abnormalities in glaucoma
onset and subsequent progressive loss of vision. In animals, elevated Intraocular Pressure
(IOP), a primary feature of glaucoma, reduces antioxidant defenses and increases oxidative
stress, which may predispose RGC to apoptosis and degeneration [81,82]. Blocking ROS
can reduce mitochondrial dysfunction, and thus, slow the progression of glaucoma. This is
because ROS are byproducts of electron outflow along the electron transport chain during
cell respiration [83,84].

Exogenous application of ROS triggers RGC apoptosis in vitro via caspase-independent
pathways [85], while reduction of ROS generation temporarily protects RGCs from apop-
tosis [86]. An important transcriptional factor in these events is Nrf2, which influences
the expression of a diverse array of antioxidant pathways, such as glutathione, as well as
cytoprotective genes. Another important regulator of the antioxidant defense system is
PGC-1α, which modulates the antioxidant proteins that are not regulated by Nrf2 [87,88].
PGC-1α has been shown to regulate astrocyte activities and RGC homeostasis [89]. More-
over, SIRT1 overexpression in mice showed significantly higher RGC number compared to
wild type [90]. Preliminary research shows that resveratrol (a SIRT1 activator) treatment
of mice at 250 mg/kg mitigates RGC loss and maintains pupillary light responses. SIRT1
controls vascular endothelial growth factor-A (VEGF-A) by activating hypoxia-inducible
factor-2 alpha (HIF-2α), as was noticed in a study conducted on hypoxic choroidal en-
dothelial cells by Balaiya et al. SIRT1 deacetylates (at p65 subunit) and reduces NF-kB
signaling that protects neurons from amyloid beta induced toxicity in microglia [90–92]. It
has been suggested that as a potent SIRT1 activator, MOTS-c would have the same effect
as Resveratrol on RGCs [93]. Additionally, the MOTS-c peptide could induce antioxidant
and cytoprotective genes expression by PGC-1α activation and NRF2 upregulation, which
maybe potentially useful for glaucoma treatment. MOTS-c can target mitochondria adap-
tation to restore energy production in cells with impaired OXPHOS, and therefore, may
provide a potential therapeutic approach in glaucoma [94].

4.2. Diabetic Retinopathy

Photoreceptors, bipolar, horizontal, amacrine, and ganglion neurons, Müller cells,
astrocytes, microglia, and pigment epithelial cells are all negatively impacted by dia-
betes [95,96]. Different racial populations (mtDNA haplogroups) have different suscep-
tibilities to develop diabetes [97,98]. DR, the most prevalent microvascular complication
of diabetes, occurs gradually within 15 years of diagnosis in as many as 50% of type I
diabetics and 10% of the type II diabetic patients [99,100]. However, hyperglycemia is the
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primary factor in the onset of DR in people with diabetes [101]. ROS production, including
superoxide and hydrogen peroxide, is increased in retinal tissues due to hyperglycemia.

Retinal neurodegeneration is an early event during the progression of DR. The patho-
genesis of DR involves progressive dysfunction of retinal mitochondria in the setting of
hyperglycemia, with mtDNA damage and accelerated apoptosis occurring in retinal cap-
illary cells [102]. In retinal tissues, hyperglycemia upregulates production of ROS, such
as superoxide and hydrogen peroxide [85,103]. The cascade of mitochondrial fragmen-
tation, DNA damage, increased membrane potential heterogeneity, decreased oxygen
consumption, and cytochrome c release is triggered by oxidative stress. By releasing
cytochrome c, mitochondria initiate the caspase cascade, thereby committing the cell to
apoptosis [104]. Oxidative stress also triggers activation of NF-κB, which initiates the
release of pro-inflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), inter-
leukin 6 (IL-6), IL-8, and IL-1β. Moreover, their expression levels are correlated with the
severity of DR [105,106].

Since the disease pathogenesis is partially attributed to mitochondrial dysfunction,
treatment options should also consider restoring normal mitochondrial function by low-
ering oxidative stress [107]. Thus, therapies that target multiple steps of oxidative stress
and mitochondrial damage should provide a hope for the prevention of this multifactorial
blinding complication of diabetes [108–110]. The development of retinopathy, on the other
hand, has been prevented in animal models of diabetes thanks to antioxidant supplementa-
tion and overexpression of mitochondrial antioxidant enzymes [111]. The recognition of
MOTS-c and its inverse relationship to age and hemoglobin A1c (HbA1c) [4,112] provide
further evidence for the importance of MDP in insulin sensitivity. Investigations by Raman-
janeya et al. showed that subjects with type II diabetes had significantly lower levels of
circulating MOTS-c than controls [113].

4.3. Age-Related Macular Degeneration

AMD is a developing neurodegenerative disease of the central macular region in-
volving PRs, RPE, Bruch’s membrane (BrM), and the choroid [114,115]. AMD affects
approximately 20–30% of people over 75 years in the developed world and it is estimated
to be increased to 288 million persons by 2040 [116]. Vascular inflammation and dysregu-
lation, mitochondrial damage and accumulation of ROS, and RPE cell senescence are the
molecular underpinnings of the transition from normal aging processes to pathological
AMD [117]. RPE dysfunction plays a crucial role in pathophysiology of AMD [118] and
oxidative stress is a key factor for triggering RPE degeneration [119].

The high metabolic activity of RPE cells is due to their numerous mitochondria. By
utilizing OXPHOS, mitochondria are the body’s primary source of energy production. Re-
duced energy production and increased apoptosis are both consequences of mitochondrial
dysregulation, which is thought to be a root cause of AMD [120–122]. These alterations lead
to a decline in bioenergetics, an uptick in mitochondrial ROS production, mitochondrial
dysfunction, and ultimately cell death. RPE cells isolated from AMD patients were found
to be particularly vulnerable to mtDNA damage [5,123–125].

Two central elements of RPE damage are NRF-2/ARE and PGC-1α, which undergo
downregulation and are associated with increased oxidative stress, lipofuscin accumulation,
and mitochondrial damage involved in AMD pathophysiology [126,127]. In patients with
AMD, plasma levels of complement regulatory proteins Factor H and Factor I (encoded by
the CFH and CFI genes, respectively) as well as some inflammatory cytokines (IL-6 and
TNF-α) are elevated [128,129].

There is solid evidence that dysfunction of the metabolic ecosystem leads to the
retinal degeneration associated with AMD. In a large study on dysregulated metabolic
pathways in AMD, Golestaneh et al. reported downregulated AMPK/SIRT1 and PGC-1α
pathways along with overactive mTOR expression contributed to the underlying disease
mechanisms in AMD RPE. These events could directly affect mitochondrial metabolism and
biogenesis [130]. Based on these studies, it is reasonable to speculate that pathways related
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to energy metabolism, mitochondrial biogenesis, and oxidative stress may be ideal targets
to treat AMD. Activation of AMPK promotes downstream energy producing pathways,
including glucose metabolism, mitochondrial function, and autophagy. This makes AMPK
an ideal target for diseases such as AMD.

It has been suggested that mtDNA fragmentation and MDPs may play a role in
the pathology of AMD, and this is supported by other studies. The mtDNA damage in
AMD patients was found to be increased by 350% and localized to specific regions of
the mitochondrial genome, including the 16S and 12S ribosomal RNA genes and eight
of the mitochondrial genome’s 22 tRNA genes [5]. Damage to 16S rRNA or 12S rRNA
could result in dysregulated production of MDPs. HN and SHLPs, provide cytoprotective
functions in RPE cells and ocular diseases and may be considered as potential therapeutic
targets for AMD [7,131,132]. MOTS-c is primarily expressed in the perinuclear region
and the cytoplasm of RPE. In unstressed RPE cells, MOTS-c co-localized primarily with
mitochondria, with negligible localization in the nucleus [5,33]. Serum-starved RPE cells
cotreated 24 h with tert-Butyl Hydroperoxide (tBH) (150 µM) and increasing doses of
MOTS-c (1 µg to 10 µg) demonstrated elevated protection of RPE cells, with the highest
dose providing the most protection.

5. Future Directions

Mutations, fragmentation, and disruption of mtDNA accumulate with age, causing
progressive mitochondrial damage in the human retina as a result of the aging process.
Age-related retinal diseases, such as diabetic retinopathy, age-related macular degeneration,
and glaucoma, all have these occurrences as important pathogenic factors. Eventually,
more and more people will be affected by age-related ocular diseases. It is estimated that
by 2050, 470 million people will have some degree of visual impairment and 61 million
will have total vision loss [133]. The healthcare system will be taxed by the needs of the
millions of people who are blind or visually impaired, as well as their family members
and other caregivers. In the medical field, there is often a dearth of effective treatments
for patients who are already in the late stages of a disease. Since the adaptive phase and
the early pathology phase in retinal diseases are reversible and the most effective phases,
respectively, it is crucial to establish methods of early detection of retinal diseases and
monitoring of disease progression and treatment efficacy [134].

The integrity of the MDPs relies on the integrity of the mtDNA, as they are encoded
directly from the 16S rRNA and 12S rRNA regions of the mtDNA. There is a risk that
MDPs will lose their efficacy if the mtDNA is degraded or mutated. MDPs are crucial
mitochondrial retrograde signals that directly reflect the state of mitochondrial health.
Because they control mitochondrial metabolism and processes like aging, inflammation,
and insulin resistance, they may be useful in treating retinal diseases. In times of adversity,
MOTS-c plays a crucial role as a regulator of the nuclear genome, encouraging the right
kind of stress response to help keep things steady in the cell. Possible AMPK-regulated
partners for MOTS-c shuttle. Even though the connection with AMPK is obvious, its role as
a nuclear gatekeeper for MOTS-c is fascinating in and of itself. Keep in mind that although
AMPK is well-known as a serine/threonine kinase, the absence of MOTS-c containing
residues in its sequence indicates the involvement of intermediates. Identifying MOTS-c
specific binding partners may help in deciphering the complex web of mitochondrial and
nuclear-encoded signals. In addition, research on MOTS-c potential to revive oxidatively
stressed RPE cells has revealed a significant protective role for this molecule. Evidence
suggests that senescent cells play a role in the development of age-related retinal disorders;
it seems plausible that HN and related compounds could one day be used as senolytic
medications. More research is needed in this emerging field before it can provide conclusive
answers, especially concerning the in vivo MOTS-c functions.
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6. Conclusions

Even though mitochondria are at the heart of cellular signaling, MDPs, specifically
MOTS-c, would provide promising results in the treatment of retinal disorders caused by
mitochondrial dysfunction (Figure 4). The goal of this review was to show the untapped
potential of MOTS-c as a therapeutic option in the treatment of age-related retinal diseases.
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