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Simple Summary: Natural products are interesting therapeutic options for the complementary
treatment of chronic diseases, such as diabetes mellitus and its complications. In this study, the
extract of Erva-Baleeira (Varronia curassavica Jacq.) and two substances isolated from its leaves were
submitted to assays that simulated possible aggressions caused to proteins due to high amounts of
glucose in the blood, typical of diabetes. Our findings suggest that all samples evaluated decreased
the generation of reactive species and their damages to proteins, information that is useful to the
understanding of the therapeutic properties of this plant species.

Abstract: Background: Varronia curassavica Jacq. (Boraginaceae) is traditionally used in the treatment
of inflammatory processes. The ethanolic extract of its leaves (EEVc) showed anti-inflammatory
properties and low toxicity. Medicinal plants have aroused interest for their antiglycation activities.
The formation and accumulation of advanced glycation end products (AGEs) are associated with
several chronic diseases. The objective of this study was to evaluate the antiglycation potential
of EEVc and two isolated compounds. Methods: The compounds brickellin and cordialin A were
obtained by chromatographic methods and identified by spectrometric techniques. Analysis of
fluorescent AGEs, biomarkers of amino acid residue oxidation, protein carbonyl groups and crosslink
formation were performed in samples obtained from an in vitro model system of protein glycation
with methylglyoxal. Results: EEVc, brickellin and cordialin A significantly reduced the in vitro
formation of AGEs, and reduced the damage caused by oxidative damage to the protein. Conclusions:
According to the results, EEVc, brickellin and cordialin A are potential candidates against AGEs
formation, which opens the way to expand the therapeutic arsenal for many pathologies resulting
from glycoxidative stress.

Keywords: Cordia verbenacea; antiglycation activity; oxidative stress; cordialin A; brickellin

1. Introduction

The use of medicinal plants and natural products as a therapeutic resource is already
well-known and contributes significantly to the development of drugs and medicines [1].
Among the native plants in traditional use in Brazil, the leaves or aerial parts of erva-
baleeira (Varronia curassavica Jacq. sin. Cordia verbenacea DC., Boraginaceae family), may be
highlighted due to their traditional use in the treatment of infections, gastric ulcers, pain,
inflammation and rheumatism, as infusions and ethanolic or hydroethanolic extracts [2].
This species is available in popular fairs and is employed in phytotherapy programs of
the Brazilian Public Health System, such as the “Farmácias Vivas” [3,4]. In addition, it is
included in the official compendia of the country that aim to guide and stimulate studies
on its use [5,6].
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Different therapeutic activities have already been attributed to the compounds of the
ethanolic and hydroethanolic extracts from its leaves, such as antioxidant, anti-inflammatory
and antiedematous activities [7,8], in addition to a potent activity in the prevention and
reduction in ethanol-induced gastric ulcers [9,10], and the extracts have been safe in terms
of toxicity and teratogenicity in different animal models [11]. The essential oil of the
leaves has anti-inflammatory activity and is the active ingredient of the topical herbal
medicine Acheflan® [12].

Medicinal plants are therapeutic alternatives for treating chronic inflammatory dis-
eases, such as rheumatoid arthritis, osteoarthritis, atherosclerosis, diabetes mellitus and
neurodegeneration [13,14]. The inflammatory process is complex and modulated in many
ways and plays essential physiological roles in the body [15]. However, when exacerbated,
its damage leads to harm, modifying the function and integrity of macromolecules, increas-
ing the levels of reactive oxygen species and causing oxidative stress, which is associated
with the physiopathology of several chronic inflammatory diseases [16].

Within this context, the present study focused on evaluating the effect of V. curassavica
extract and isolated metabolites on the formation of advanced glycation end-products
(AGEs). AGEs are products generated from the interaction of reducing sugars with amino
groups of proteins, being formed mainly by the endogenous route, occurring under physio-
logical conditions in all tissues and body fluids [17]. Their accumulation in the human body
is favored in conditions of chronic hyperglycemia, aging, dietary patterns, impaired AGE
detoxification mechanisms, and unhealthy lifestyles such as sedentary lifestyles, smoking
and chronic stress. The presence and accumulation of AGEs in the body contribute to the
triggering and aggravation of several chronic diseases and metabolic syndromes [18]. In
addition, AGEs negatively interfere with the chemical and functional properties of sev-
eral proteins through the formation of intra- and inter-protein crosslinks, and interactions
with cellular receptors, favoring the generation of free radicals [19,20]. AGE interaction
with its specific receptor, named RAGE (Receptor for Advanced Glycation End-products)
causes an increased expression of pro-inflammatory cytokines and exacerbation in the
production of reactive oxygen species in cells, which results in increased inflammation and
oxidative stress [21–23].

Several mechanisms have been exploited to intervene in the formation, accumulation
and oxidative damage caused by AGEs in the body [16]. To date, there are still no drugs on
the market that act directly on AGEs. It is known that some compounds have antiglycation
activity, but further studies are still needed. One example is aminoguanidine, which has
exceptional antiglycation activity, but clinical studies have found the presence of relevant
adverse effects, leading its therapeutic use to be discontinued [24].

Recent reviews demonstrate that medicinal plants and natural products have been
relevant in the prospection of new therapeutic agents with antiglycation activity [15,25].
Thus, using an in vitro model system of protein glycation, the present study aimed to in-
vestigate the antiglycation effects of V. curassavica leaf extract and two isolated compounds,
brickellin and cordialin A.

2. Materials and Methods
2.1. Plant Material and Extract

The harvesting of the leaves, the processing and the extraction, were conducted by
Dr. Juhan A. Scardelato Pereira. The leaves of Varronia curassavica Jacq. were collected at
the experimental field of Pluridisciplinary Center for Chemical, Biological and Agricul-
tural Research (CPQBA) of the University of Campinas–Unicamp, Betel District, Paulínia
city, São Paulo state, Brazil (22◦47′15.91” S 47◦06′42.87” W) on 10/31/2013 at 12:00 am
(27 ◦C, relative humidity of 65%, cloudy weather). A voucher specimen was deposited
at the Herbarium São José do Rio Preto (IBILCE-Unesp, São José do Rio Preto, São Paulo
state, Brazil) under the number 31235. The leaves were dried in an oven (40 ◦C) with air
circulation for 3 days and powdered in a knife mill. The extraction was performed with
ethanol by remaceration in 3 steps at 35 ◦C under occasional stirring. The extraction time
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in the first step was 24 h, and in the last two, 48 h each. The total plant drug: solvent ratio
was 1:15 (1 kg/15 L).

2.2. Experimental

The solid phase extraction (SPE) of the extract was performed with silica gel (60–200 µm,
Sigma-Aldrich, St. Louis, MI, USA) as the stationary phase. Thin layer chromatography
(TLC) was performed on silica gel chromatoplates (0.20 µm, 60G, F254, Macherey-Nagel,
Germany). The analytical grade solvents employed in SPE and TLC were hexane (Synth,
São Paulo, Brazil), chloroform, ethyl acetate and methanol (Qhemis, São Paulo, Brazil). The
TLC spray reagent was composed by sulfuric acid and ethanol (Synth, São Paulo, Brazil).
For the high-performance liquid chromatography (HPLC) sample pretreatment by SPE, a
C18 cartridge (45 µm; 500 mg; 6 mL, SampliQ, Agilent Technologies, USA) was employed.
For the HPLC analyses and sample pretreatment, the samples were prepared with HPLC
grade methanol (J.T. Baker, CA, USA) and ultrapure water (MilliQ, Merck, Germany) and
filtered through PVDF filter membranes (0.22 µm, Sigma-Aldrich, St. Louis, MI, USA). The
analyses were performed in HPLC-UV (Thermo Scientific Ultimate 3000, Waltham, MA,
USA) coupled to a C18 column (250 × 4.6 mm; 5 µm, Thermo Sientific, Waltham, MA,
USA). Compounds isolation was performed on HPLC-UV (Perkin Elmer Flexar, Waltham,
MA, USA) coupled to a C18 semipreparative column (250 × 21.20 mm; 7 µm, Eclipse
XDB, Agilent Technologies, Santa Clara, CA, USA). The Fourier Transform Infrared (FTIR)
spectra were obtained using a spectrometer (VERTEX 70, Bruker, Billerica, MA, USA) in
Attenuated Total Reflectance (ATR) mode from 400 to 4000 cm−1 at 4 cm−1 resolution and
32 scans. The ultraviolet (UV) spectra were obtained (Synergy TM H1, BioTek Instruments
Inc., Winooski, VE, USA) at wavelength range of 210–450 nm. The identification of the
purified compounds was based on the spectrometric data from 1H (400 MHz) and 13C
(100 MHz) one-dimensional nuclear magnetic resonance spectrometry (model DRX400, 9.4
T–Ultra Shield, Bruker, USA) with deuterochloroform (Sigma Aldrich, St. Louis, MI, USA)
as solvent and TMS as internal reference. Mass spectrometry (HPLC-MS Acquity QDa,
Waters, Milford, MA, USA) were performed in the full-scan analysis mode and monitored
by the masses of cationized molecules with sodium [M + Na]+ of m/z 400 to 600.

Compounds Isolation and Purification

The fractionation of the dry extract (8 g) was performed by SPE in a glass column
(12 × 10 cm) containing silica gel. The elution was developed under reduced pressure as
follows (eluent volume of 900 mL and fractions volume of 300 mL): (a) hexane: ethyl acetate
8:2 (v/v)–fractions: F1.1; F1.2; F1.3; (b) 6:4 (v/v)–F2.1; F2.2; F2.3; (c) ethyl acetate–F3.1; F3.2;
F3.3; (d) ethyl acetate: methanol 9:1 (v/v)–F4.1; F4.2; F4.3; (d) methanol–F5.1; F5.2; F5.3.

The SPE separation was evaluated by TLC and HPLC-UV. TLC: The fractions and
the EEVc solutions (5 mg/mL, ethyl acetate) were applied (40 µL) in silica gel chromato-
plates using as mobile phases: (a) chloroform: ethyl acetate: methanol 5.5:3.5:1 (v/v);
(b) chloroform: ethyl acetate 6:4 (v/v). The spray reagent was 10% sulfuric acid in ethanol
(110 ◦C, 10 min). HPLC-UV: The fractions and the EEVc (10.0 mg sample in 1.0 mL of
methanol: water 95:05 v/v) were submitted to SPE in a C18 cartridge and eluted with
4.0 mL of methanol: water 95:05 (v/v). The eluate was dried, solubilized in methanol
(1.0 mg/mL), and filtered through a PVDF membrane. The samples (20 µL) were analyzed
on HPLC-UV with a C18 column under a linear gradient of 5–100% methanol in 30 min
plus methanol in 5 min; flow rate of 1.0 mL/min; detector wavelength at 254 nm.

F4.1 and F4.3 were selected for semipreparative HPLC separation. The fractions were
submitted to a pretreatment similar to the analytical pretreatment, and aliquots of 1.0 mL of
their solutions (50 mg/mL) were injected onto HPLC. The semipreparative separation was
performed on HPLC-UV coupled to a C18 semipreparative column with methanol: water
75:25 isocratically for 35 min; flow rate of 8.0 mL/min; detector wavelength at 254 nm. The
purity (area normalization method) of the isolated compounds was determined by HPLC-
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UV using the same equipment, coupled to C18 analytical column with methanol: water
75:25 isocratically for 35 min; flow rate of 0.4 mL/min; detector wavelength at 254 nm.

2.3. In Vitro Model System of Protein Glycation

The in vitro model system of protein glycation was in accordance with dos Santos et al. [26],
with modifications. Bovine serum albumin (BSA: 10 mg/mL) (Sigma-Aldrich, St. Louis, MI,
USA) was incubated in the presence of methylglyoxal (MGO: 5 mM), in phosphate buffer
(0.1 M, pH 7.4) (Sigma-Aldrich, USA) containing 0.02% sodium azide (Merck, Germany),
at 37 ◦C for 8 days. The incubations were conducted in the absence or in the presence
of different concentrations of EEVc (62.5; 125; and 250 µg/mL) or brickellin (0.031; 0.062;
and 0.125 mM) or cordialin A (0.025; 0.051; and 0.102 mM). Aminoguanidine (AG: 1 mM)
(Sigma-Aldrich, St. Louis, MI, USA) was used as a prototype therapeutic agent with
anti-AGE activity [27].

In the phosphate buffer, present in all tubes, dimethyl sulfoxide (DMSO: 5% v/v)
(Sigma-Aldrich, St. Louis, MI, USA) was added, as it acted as a cosolvent in the solubiliza-
tion of EEVc and its isolated compounds. The aliquots were collected on days 0, 1, 2, 4 and
8 to perform the determinations described below.

2.3.1. Determination of Fluorescent AGE Formation

The monitoring of the fluorescent AGE generation was performed in a spectrofluo-
rometer (Synergy TM H1, BioTek Instruments Inc., Winooski, VE, USA), at excitation and
emission wavelengths of 355 and 430 nm, respectively [28]. The antiglycation potential of
EEVc and the isolated compounds was evaluated by comparing the AGE-related fluores-
cence generated in the incubation of BSA + MGO against the AGE-related fluorescence
generated in the incubation of BSA + MGO + EEVc or BSA + MGO + isolated compounds
at different concentrations.

The fluorescence values relative to the AGEs were obtained after the arithmetic subtrac-
tion of the fluorescence of the incubations of the EEVc or isolated compounds with buffer
from those of the EEVc or isolated compounds incubated with BSA or BSA + MGO. The
results were expressed in terms of arbitrary units (A. U.) of fluorescence. The fluorescence
intensities were measured using a microplate multimode reader (Synergy TM H1, BioTek
Instruments Inc., USA).

2.3.2. Determination of the Formation of Markers Related to Amino Acid Oxidation

Markers related to amino acid oxidation were monitored spectrofluorometrically
(Synergy TM H1, BioTek Instruments Inc., Winooski, VE, USA), at the respective exci-
tation/emission wavelengths: dityrosine (330/415 nm) as a marker of tyrosine residue
oxidation; kynurenine (365/480 nm) and N′-formylkynurenine (325/434 nm) as markers of
tryptophan residue oxidation [27].

The fluorescence values of dityrosine, kynurenine and N′-formylkynurenine were
obtained after the arithmetic subtraction of the fluorescence of incubations of the EEVc or
isolated compounds with buffer from those of the EEVc or isolated compounds incubated
with BSA or BSA + MGO. The results were expressed in terms of arbitrary units (A. U.)
of fluorescence.

2.3.3. Quantification of Carbonylated Proteins

Carbonyl groups in proteins (PCO) are used as biomarkers of oxidative damage.
The PCO levels were evaluated in reaction with 2,4-dinitrophenylhydrazine (DNPH),
generating dinitrophenylhydrazone, monitored at 370 nm. The PCO levels were estimated
using the molar extinction coefficient of the hydrazone (22,000 M−1·cm−1). Results were
expressed in terms of µmol/L [29,30].
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2.3.4. Modification of BSA via Crosslink Formation

The formation of crosslinks in the proteins (protein crosslinking) was analyzed via
polyacrylamide gel electrophoresis under denaturing conditions (SDS-PAGE) using in-
cubation samples from day 0 and day 8 of the experiment. Briefly, 3 µL aliquots of the
incubations were added to 9 µL of buffer containing 62.5 mM Tris-HCl (pH 6.8) (Sigma-
Aldrich, USA), 10% glycerol, 2% sodium dodecyl sulfate (Sigma-Aldrich, USA), 100 mM
dithiothreitol and 0.1% bromophenol blue. An aliquot (1.5 µL) of the resulting solution
(which contain 3.75 µg of protein) was subjected to electrophoretic separation performed in
SDS-PAGE (12%) for 1 h and 30 min at 120 V, in electrophoresis buffer [25 mM Tris-HCl
(pH 8.3), 192 mM glycerol and 0.1% SDS] [26,31].

The gel was stained with Coomassie blue solution for 30 min and then underwent
3 washes with bleaching solution (10% methanol, 10% acetic acid), followed by staying
48 h in bleaching solution, in order to ensure a better visualization of the bands in the
gel [26,31]. Densitometric calculations were performed using the Image J (v.1.53k) program
on the bands generated in the crosslinking region in order to better measure the differences
between the samples.

2.3.5. Statistical Analysis

The results were expressed as means ± standard error of the mean (SEM) and were
analyzed using One Way Analysis of Variance (ANOVA) followed by the analysis of
difference by the Newman-Keuls test. The software used was GraphPad Prism 9. The level
of statistical significance considered was p < 0.05.

3. Results and Discussion
3.1. Identification of Isolated Compounds

The compounds used in this work were isolated and purified through SPE followed
by preparative HPLC-UV. The TLC and HPLC-UV analyses (Figure S1 Supplementary
Material) of the SPE fractions showed a simple chromatographic profile for F4.1–3 and
F5.1–3, and the purification of the substances directly by preparative HPLC-UV was fea-
sible. The compounds were identified by one-dimensional nuclear magnetic resonance
spectrometry (1H and 13C NMR), mass spectrometry (MS), infrared (IR) and ultraviolet
(UV) absorption spectrophotometry. The spectrometry data were compared to the data in
the literature [32–36].

Compound (A) was obtained as a crystalline, yellowish, circularly shaped powder with
maximum UV absorptions (λmax) at 255 and 348 nm. The absorptions in the IR region were
characteristic of angular and axial deformations corresponding to the functional groups: the
range of 3200 cm−1 represents the stretching of O-H; the two intense bands between 1702
and 1200 cm−1 represent C–O and C–OH stretching. The range of 3000–2800 cm−1 is the
location of bands connected with the asymmetric and symmetric stretching modes of C–H:
νas (CH3), νs (CH3), νas (CH2) and νs (CH2), arising from the methyl and methylene groups,
and a tetrasubstituted alkene conjugated with aromatic ring and carbonyl in 1604 cm−1.
In the range of 900–690 cm−1, bands can be seen related to the stretching and bending
vibrations of C–H from the aromatic rings [37]. The mass spectra obtained by HPLC-MS in
the positive ion mode (ESI+) presented a peak at m/z 427.0 [M + Na]+ and in the negative
ion mode (ESI−), at m/z 403.2 [M − H]− (Figure S2 Supplementary Material).

The 13C NMR spectrum showed 20 signals, being consistent with the structure of
the fundamental core of pentamethoxylated flavonoid compounds. The signals observed
in the 13C NMR spectra (Table 1) with a chemical shift (δ) of 62.1 q, 60.8 q, 56.0 q, 56.4 q
and 56.8 q and 1H NMR at δ 3.89 s, 3.93 s, 3.97 s, 3.94 s and 3.93 s were attributed to the
presence of five methoxyl groups. The signals with δ values in the 13C NMR spectrum
typical of oxygenated aromatic carbons at δ 152.8 s and 151.3 s were assigned to the carbons
attached to the phenolic hydroxyls; the signals of the two hydrogens of the hydroxyls were
observed at δ 12.38 s and 7.90 s. The positions of the substituent groups (five methoxyl
and two hydroxyl groups) on the aromatic rings (A and B) were assigned based on the
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multiplicity of the remaining hydrogens on the aromatic rings (all singlets), in comparison
with the 13C NMR data of polymethoxylated flavones described in the literature [32,34,35].
The signals at δ 103.0 d and 111.2 d observed in the 13C NMR spectrum and at δ 6.64 s (1H)
and 7.11 s (1H) in the 1H NMR spectrum were assigned to the 3′ and 6′ positions of the
B ring. The signals at δ 6.52 s in the 1H NMR spectrum and at δ 90.67 d in the 13C NMR
spectrum correspond to the unsubstituted carbon of ring A (C8) and its corresponding
hydrogen (H8). The signal with a chemical shift value of δ 177.4 s in the 13C NMR spectrum
showed the presence of the carbonyl, and the signals at δ 136.6 s (C3) and 155.9 s (C2) refer
to the double bond in the C ring.

Table 1. NMR spectrometric data for brickellin (2′,5-dihydroxy-4′,3,5′,6,7-pentamethoxyflavone) at
400 MHz for 1H and 100 MHz for 13C in CDCl3. Data from the literature are also presented.

C δ 13C δ 1H J δ 13C a δ 1H J a δ 1H J b δ 13C c δ 1H J c

2 155.9 s —- 155.5 s —- —- 155.4 s —-
3 136.6 s —- 136.3 s —- —- 140.4 s —-
4 177.4 s —- 176.9 s —- —- 179.0 s —-
5 152.8 s —- 152.3 s —- —- 153.0 s —-
6 132.6 s —- 132.0 s —- —- 132.6 s —-
7 159.1 s —- 158.5 s —- —- 158.7 s —-
8 90.6 d 6.52 s 90.4 d 6.35 s 6.62 s 90.6 d 6.67 s
9 152.8 s —- 153.4 s —- —- 155.4 s —-

10 106.4 s —- 105.9 s —- —- 113.1 s —-
1′ 108.7 s —- 108.2 s —- —- 107.1 s —-
2′ 154.0 s —- 152.3 s —- —- 152.9 s —-
3′ 103.0 d 6.64 s 102.6 d 6.45 s 6.59 s 99.9 d 6.43 s
4′ 151.3 s —- 150.8 s —- —- 152.9 s —-
5′ 143.6 s —- 143.1 s —- —- 140.4 s —-
6′ 111.2 d 7.11 s 110.9 d 6.88 s 7.10 s 110.2 d 6.94 s

OMe 62.1 q 3.89 s 61.7 q 3.70–4.00 s 3.80 s 60.9 q 3.79 s
OMe 60.8 q 3.93 s 60.5 q 3.70–4.00 s 3.90 s 60.6 q 3.80 s
OMe 56.0 q 3.97 s 56.5 q 3.70–4.00 s 3.93 s 56.3 q 3.91 s
OMe 56.4 q 3.94 s 56.1 q 3.70–4.00 s 3.93 s 56.4 q 3.91 s
OMe 56.8 q 3.93 s 55.7 q 3.70–4.00 s 3.96 s 56.8 q 3.91 s

2′-OH —- 7.90 s —- —- 7.87 s —- —-
5-OH —- 12.38 s —- —- 12.36 s —- —-

(a) ROBERTS et al. [33]: brickellin 13C NMR data in CDCl3 and 1H in CCl4. (b) IINUMA et al. [34]: brickellin 1H
NMR data in CDCl3. (c) IINUMA et al. [34]: 4′,5-dihydroxy-2′,3,5′,6,7-pentamethoxyflavone 13C and 1H NMR
data in CDCl3.

These analyses were conducted for the identification of 4′,5-dihydroxy-2′,3,5′,6,7-
pentamethoxyflavone or 2′,5-dihydroxy-4′,3,5′,6,7-pentamethoxyflavone (brickellin). The
13C NMR data were similar to brickellin (Figure 1A), isolated for the first time from Brickellia
veronicaefolia (HBK) Gray [33]. On the other hand, the differences in the δ values for 4′,5-
dihydroxy-2′,3,5′,6,7-pentamethoxyflavone were observed for C3, C4, C9, C10, C1′, C3′, C4′

and C5′ [34]. The 1H NMR data for H3′ and H6′ for the isolated flavone are also closer to
the data for brickellin [34,35] than for 4′,5-dihydroxy-2′,3,5′,6,7-pentamethoxyflavone [34].
Velde et al. [36] isolated two pentamethoxyflavones identified from V. curassavica leaves
as artemetin and 5,6′-dihydroxy-3,3′,4′,6,7-pentamethoxyflavone; the NMR data for the
last flavone was not shown in this work, thus it is not possible to confirm if it is also
brickellin. Table 1 shows the spectrometric data obtained for brickellin at 400 MHz for
1H and 100 MHz for 13C. The 1H and 13C NMR spectra of brickellin are presented in the
supplementary material (Figures S3 and S4 Supplementary Material).
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Figure 1. Chemical structures of brickellin (A) and cordialin A (B).

Compound (B) was isolated as a white and amorphous powder. Its UV spectrum
showed a band with λmax at 255 nm. The absorptions in the IR region were characteristic of
angular and axial strains corresponding to the functional groups: hydroxyl (3452 cm−1);
ketone (1704 cm−1); ether (1060 cm−1) [32,37], and with a trisubstituted double bond (1602
and 805 cm−1) characteristic of cordialin A (Figure 1B). The mass spectrum (HPLC-MS) in
the positive ion mode (ESI+) presented a peak at m/z 509.0 [M + Na]+, consistent with a
molecular mass of 486.0 Da of cordialin A (Figure S5 Supplementary Material).

The 1H and 13C NMR spectra data were coherent with the damarane-type triterpene
core found by Velde et al. [36] and Pereira [32] (Table 2) and allowed us to identify cordialin
A (Figure 1B). The signal with δ value in the 13C NMR spectrum at 98.3 s (C3) was assigned
to the hemiacetal carbon in the A ring of the damarane-type core. The signals in the 13C
NMR spectrum at δ 17.1 q (C21), 24.8 q, 18.6 q, 26.3 q, 18.8 q and 16.7 q (C26-C30) and in the
1H NMR spectrum at δ 1.89 m, 2.12 m, 1.43 s, 1.27 d, 1.04 s, 1.01 s, 0.91 s correspond to the
seven methyl groups of cordialin A. The δ value in the 13C NMR spectrum of 195.6 s was
assigned to the ketone group at C23. The eter group was assigned to the carbons C3 and
C19, which showed δ values of 98.3 s and 67.8 t in the 13C NMR spectrum, respectively.
The presence of the trisubstituted double bond at C20 and C22 was confirmed by the
signals in the 13C NMR with δ values of 164.2 s and 120.3 d, respectively. The signals of
the 24,25-epoxide group were observed in the 13C NMR spectrum at δ 66.3 d and 61.0 s,
respectively. The relative configuration was proposed based on the comparison of the
NMR data with the literature data and the analysis of the coupling constants observed in
the 1H NMR spectrum. The 1H and 13C NMR spectra of cordialin A are presented in the
supplementary material (Figures S6–S8 Supplementary Material).

Table 2. NMR spectrometric data for cordialin A at 400 MHz for 1H and 100 MHz for 13C in CDCl3.
Data from the literature are also presented.

C δ 13C δ 1H J (Hz) δ 13C a δ 1H J (Hz) a δ 13C b δ 1H J (Hz) b

1 30.0 t 3.12 td
(12.4; 5.9) 29.8 t 3.12 td

(12.5; 6.0) 30.0 t 3.11 td
(12.7; 5.9)

2 37.8 t nd * 37.8 t nd 37.9 t nd
3 98.4 s —– 98.7 s —- 98.6 s —-
4 36.1 s —– 36.1 s —- 36.1 s —-
5 51.0 d 1.31 dl (2.8) 50.9 d nd 50.9 d 1.31 dl (3.3)

6 19.4 t 1.66 m
1.48 m 19.4 t nd 19.4 t

1.67 dd
(12.3; 3.3)

1.48 m
7 34.3 t nd 34.3 t nd 34.4 t nd
8 39.9 s —- 39.9 s —- 39.9 s —-
9 50.1 d 1.57 d (10.8) 50.0 d nd 50.1 d 1.56 d (11.0)

10 40.9 s nd 41.0 s nd 41.0 s nd
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Table 2. Cont.

C δ 13C δ 1H J (Hz) δ 13C a δ 1H J (Hz) a δ 13C b δ 1H J (Hz) b

11 70.9 d 3.67 (10.8; 4.0) 70.5 d 3.65 td
(10.5; 4.2) 70.8 d 3.65 td

(11.0; 3.9)

12 37.2 t 1.89 m 36.9 t nd 37.2 t 1.85 td
(11.2; 3.9)

13 44.6 d nd 44.8 d nd 44.7 d nd
14 49.0 s nd 49.0 s —- 49.0 s —-
15 31.6 t —- 31.7 t nd 31.7 t nd
16 27.8 t nd 27.9 t nd 27.8 t nd

17 51.3 d 2.38 td
(10.4; 6.0) 51.5 d 2.40 td

(11.0; 6.0) 51.4 d 2.38 td
(10.5; 5.7)

18 15.4 q 0.95 s 15.4 q 0.95 s 15.4 q 0.95 s

19 67.8 t

4.16 dd
(8.6; 1.4)
4.33 dd

(8.6; 2.5)

67.8 t

α-H 4.15 dd
(8.5; 0.7)

β-H 4.32 dd
(8.5; 2.0)

67.9 t

4.15 dd
(8.5;1.0)
4.31 dd

(8.5; 2.5)
20 164.3 s —- 164.8 s —– 164.6 s —-

21 17.2 q 2.12 d
(0.8) 17.3 q 2.12 sl 17.3 q 2.11 sl

22 120.3 d 6.28 sl 120.4 d 6.28 sl 120.5 d 6.27 sl
23 195.7 s —- 195.7 s —- 195.7 s —-
24 66.3 d 3.34 s 66.4 d 3.34 s 66.4 d 3.33 s
25 61.0 s —- 61.2 s —- 61.2 d —-
26 24.9 q 1.43 s 24.9 q 1.42 s 25.0 d 1.42 s
27 18.7 q 1.27 s 18.6 q 1.27 s 18.7 q 1.26 s
28 26.3 q 1.04 s 26.4 q 1.03 s 26.4 q 1.03 s
29 18.9 q 1.01 s 18.8 q 1.01 s 18.9 q 1.00 s
30 16.8 q 0.91 s 16.8 q 0.90 s 16.9 q 0.90 s

(a) VELDE et al. [36]: cordialin A 13C and 1H NMR data in CDCl3. (b) PEREIRA et al. [32]: cordialin A 13C and
1H NMR data in CDCl3. * nd= not detected.

3.2. Effects of EEVc, Brickellin and Cordialin A on Glycoxidation Changes in an In Vitro Model
System of Protein Glycation
3.2.1. Formation of Fluorescent AGEs and Markers of Oxidation of Amino Acid Residues

The deleterious effects caused by the exacerbated generation of AGEs in the body
mainly affect long-lived proteins (hemoglobin, collagen, elastin and others), as well as short-
lived proteins, such as plasma albumin. Albumin constitutes about 50% of the proteins
present in the plasma of healthy individuals and is involved in several physiological
processes, mainly in the transport of compounds [38]. Thus, in vitro model systems of
protein glycation have been used to investigate the deleterious consequences of protein
glycation, as well as to study the antiglycation activity of compounds or preparations. In
practical terms, bovine serum albumin (BSA) has been a viable choice as it shows homology
with human serum albumin (approximately 76%) [31,39].

The fluorescence intensities relative to AGE formation had progressive increases in
incubations of BSA + MGO when compared to the corresponding values of BSA alone.
Furthermore, BSA + MGO + AG had low levels of fluorescent AGEs, showing the respon-
siveness of this in vitro model system of protein glycation to interventions that are able to
inhibit the protein damage due to glycation (Figure 2). The incubations of BSA + EEVc,
brickellin and cordialin A (without MGO) did not emit significant fluorescence relative to
the AGEs, showing fluorescence values comparable to those found in the incubations of
BSA alone (Figure S9 Supplementary Material).
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Figure 2. Effects of different concentrations of EEVc (A), brickellin (B) and cordialin A (C) on the
formation of fluorescent AGEs in an in vitro model system of protein glycation with BSA + MGO.
BSA: bovine serum albumin; MGO: methylglyoxal; AG: aminoguanidine; EEVc: ethanolic extract
of V. curassavica. For all variables with the same letter, the difference between the means is not
statistically significant.

The absorption spectra graphs (Figures S10–S13) show data relative to the incubation
samples of the controls, EEVc, brickellin and cordialin A. The EEVc and cordialin A in
buffer without BSA had similar absorption values of BSA + MGO on days 0 and 1, which
may be associated with the ability of cordialin A and/or compound(s) in EEVc to absorb
light between 300 and 400 nm, and/or some kind of interaction with the buffer or the
co-solvent, but on the other days, the absorption of BSA + MGO was more expressive,
surpassing any tested sample and concentration.

When incubating the samples with the BSA + MGO, all tested samples decreased the
fluorescence relative to the AGEs. In Figure 2A, it can be observed that EEVc, at all tested
concentrations, inhibited AGE formation until the last day of the experiment. The highest
concentration of EEVc (250 µg/mL) was the most efficient in protecting the BSA against
glycation; on days 1 and 2 there was no significant difference between EEVc 250 µg/mL
and AG (1 mM) in relation to the anti-AGE effect. Both compounds, brickellin (Figure 2B)
and cordialin A (Figure 2C), significantly decreased the AGE formation during all periods of
the study and at all tested concentrations. At the highest concentrations, these compounds
showed a potential to inhibit AGE formation comparable to the AG for 1 and 2 days (for
brickellin) and 1 day (for cordialin A). Furthermore, the anti-AGE activities of brickellin
and cordialin A were found to have a concentration-dependent response. In the literature,
it is described that medicinal plants and polyphenols have antiglycation activity and act
on various targets that culminate in AGE redution in the body [15,25,39]. Plants belonging
to the same family as the V. curassavica species, Boraginaceae, have shown antiglycation
activities, including Cordia platythyrsa Baker [40] and Cordia sinensis Lam. [41].

Chinchansure et al. [39] consider that plants rich in phenolic compounds are benefi-
cial against injuries caused by glycoxidative stress as they have antioxidant and antigly-
cation activities, which would result in a synergism against AGE formation and accu-
mulation, as well as in reducing oxidative stress. In V. curassavica, compounds such as
rosmarinic acid, caffeic acid, gallic acid and chlorogenic acid were identified, as well
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as the isoflavones 7,4′-dihydroxy-5′-carboxymethoxy-isoflavone and 7,4′-dihydroxy-5′-
methyl-isoflavone; polymethoxylated flavones such as artemetin and 5,6′-dihydroxy-
3,6,7,3′,4′-pentamethoxyflavone; and the triterpenes cordialin A, (Z)-cordialin A and cor-
dialin B, [32,36,42–48]. Roldão [9] performed in vitro assays with the ethanolic extract of V.
curassavica, which inhibited, in a concentration-dependent manner, the lipid peroxidation
induced in rat hepatocyte plasma membranes. The EC50 was 76.11 ± 3.76 µg/mL, and
quercetin, used as a positive control, was 4.58 ± 0.52 µg/mL. While another ethanolic
extract of V. curassavica, analyzed by Santi et al. [10], showed a EC50 of 316.7± 23.16 µg/mL
in the assay with DPPH and quercetin as the control (EC50= 2.33 ± 0.14 µg/mL). The total
phenolic compounds content was 79.48 ± 0.63 mg GAE.g−1 (expressed as mg gallic acid
equivalents per gram of extract).

Rohn [49] observed that polyphenols can interact with various proteins, including
BSA, through covalent or non-covalent interactions, and among the amino acid residues
susceptible to interaction with phenols, it can be cited to include the nucleophilic chains
of lysine and cysteine, which are often associated with protein glycation [50]. Among
the polyphenols, the class that commonly appears in studies are flavonoids, which can
be justified given their wide distribution in plants; they have many biological activities,
such as antioxidant and anti-inflammatory [51,52]. In the present study, brickellin at the
concentration of 0.125 mM inhibited the formation of AGEs up to 2 days after the beginning
of the experiment, without a significant difference with AG (1 mM), and maintained the
anti-AGE activity in the following days, along with the other concentrations that proceeded
in a concentration-dependent manner.

Brickellin is a flavone with a hydroxyl present on the B ring (C2′); studies relating
the structure-activity of flavonoids against AGE formation show that the presence of
hydroxyl groups on the A and B rings increases the ability to inhibit AGE formation [53]
and that, in general, flavones show greater anti-AGE activity than flavonols, flavanones
and isoflavones [51].

Triterpenes can inhibit the interaction of reducing sugars with proteins and, con-
sequently, the AGE formation, decreasing oxidative stress [54]. Some known examples
in the literature are: the astragaloside-type triterpenes that inhibit carboxymethylysine
formation [55], ursolic acid and erythrodiol that have antioxidant and anti-inflammatory
activities, these are believed to modulate glycation and to decrease inflammation and
oxidative stress [56–59]. In the present study, cordialin A inhibited the AGE formation in a
concentration-dependent response. As mentioned earlier, V. curassavica leaves contain the
triterpenes cordialin A, (Z)-cordialin A and cordialin B [32,36]. The content of cordialin A
in EEVc was 4.89% (m/m) in our study.

According to the data described in the literature, the efficiency of triterpenes on
inhibiting the formation of AGEs in the body may be related to the interaction with the
macromolecules involved in the glycation process [54]. For example, there are triterpenes,
such as oleanolic and ursolic acid, that act by modulating the activity and/or the expression
of some enzymes, including aldose reductase and sorbitol dehydrogenase (whose levels are
decreased), resulting in the reduction of AGE formation, as well as increasing glyoxalase I,
leading to the detoxification of AGE precursors and, thus, reducing their accumulation in
the circulation and tissues [59,60]. The aforementioned triterpenes are not damarane-type
as cordialins, but they have some structural similarities.

Another way that triterpenes may contribute to AGE reduction is related to their ability
to scavenge free radicals, so contributing with non-enzymatic antioxidant compounds such
as reduced glutathione, ascorbic acid and α-tocopherol in the body’s defense [57]. In
addition, it has been observed that the triterpenoids lupeol and lupeol linoleate increased
the activity of antioxidant enzymes, such as superoxide dismutase, catalase, glutathione
peroxidase and glutathione S-transferase [61].

In general, EEVc and the isolated compounds, brickellin and cordialin A, at all tested
concentrations, promoted the protection of BSA against the deleterious modifications
caused by MGO, inhibiting AGE formation until the last day of analysis, day 8 (Figure 3).
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The AG used as prototype anti-AGE agent inhibited 70.7% of the AGE formation. AG is
known to react with dicarbonyl compounds, such as MGO, to form triazines [24]. There
was no statistically significant difference between EEVc 250 µg/mL and brickellin 0.125 mM
when compared with the antiglycation activity of AG; both reduced the AGE formation by
61.7% and 60.8%, respectively. Cordialin A at the concentration of 0.102 mM was also able
to inhibit AGE formation by more than half, equaling 54.9% (Figure 3).
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Figure 3. Percentage of AGE formation in an in vitro model system of protein glycation with
BSA + MGO on day 8. BSA: bovine serum albumin; MGO: methylglyoxal; AG: aminoguanidine;
EEVc: ethanolic extract of V. curassavica. For all variables with the same letter, the difference between
the means is not statistically significant.

Protein glycation is often accompanied by oxidative damage [27]. The fluorescence
intensities of dityrosine, N′-formylkynurenine and kynurenine were monitored as markers
of the oxidative changes in tyrosine and tryptophan amino acid residues from the incuba-
tions of BSA + MGO, in the presence of EEVc, brickellin and cordialin A. The fluorescence
intensities relative to dityrosine, N′-formylkynurenine and kynurenine formation had
progressive increases in the incubations of BSA + MGO when compared to BSA alone.
BSA + MGO + AG decreased the formation of these amino acid oxidation markers, showing
the responsiveness of this in vitro model system of protein glycation to interventions able
to inhibit the protein oxidation due to glycation process (Figure 4). It can also be noted that
none of the tested samples (EEVc, brickellin and cordialin A) with BSA promoted amino
acid oxidative damage as much as BSA + MGO (Figures S14–S16 Supplementary Material).

In Figure 4AI–CI, the formation of dityrosine caused by the interaction BSA + MGO
was increased and progressive over the days of the experiment. In Figure 4AI, it can be
observed that the EEVc, at all tested concentrations, protected BSA against the formation of
the dityrosine due to the incubation with MGO. In Figure 4BI, the incubation with brickellin
was also efficient in reducing the formation of dityrosine. The incubation with cordialin A
(Figure 4CI) attenuated the dityrosine formation with a concentration-dependent response;
however, on days 4 and 8 there was no difference with BSA + MGO.

Dityrosine can be found as a product of protein degradation, and endogenous and
exogenous agents, such as ultraviolet radiation, exposure to free radicals, lipid hydroper-
oxides and aging, can lead to dityrosine formation. Dityrosine has been used as a specific
marker for protein oxidation and, consequently, to measure oxidative stress [62].

The formation of N′-formylkynurenine (Figure 4 AII) was decreased in the incubations
of BSA + MGO in the presence of EEVc, which demonstrated a concentration-dependent
response in all of the concentrations and days of experiment, with the exception of day 2,
in which the EEVc (250 µg/mL) and AG were statistically equal, as were EEVc 125 and
62.5 µg/mL on the same day. In Figure 4BII, by day 2, the brickellin (0.125 mM) and AG
protected the BSA against N′-formylkynurenine formation in the same way. Cordialin A
had concentration-dependent effect on the inhibition of N′-formylkynurenine formation
(Figure 4CII).
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Figure 4. Effects of different concentrations of EEVc (A), brickellin (B) and cordialin A (C) on
the formation of dithyrosine (I), N′-formylquinurenine (II) and quinurenine (III) in in vitro protein
glycation model system with BSA + MGO. BSA: bovine serum albumin; MGO: methylglyoxal; AG:
aminoguanidine; EEVc: ethanolic extract of Varronia curassavica. For all variables with the same letter,
the difference between the means is not statistically significant.

In vivo, N′-formylkynurenine and kynurenine are formed from the oxidation of trypto-
phan, a process that depends on the presence of reactive oxygen species and enzymes such
as 2,3-dioxygenase and indoleamine-2,3-dioxygenase [63]. In the present study, both EEVc
and brickellin at the highest concentration, in the first 2 days of incubation, prevented the
formation of N′-formylkynurenine, which may be associated with the synergism with the
antioxidant activity of EEVc and the fraction enriched with flavonoid compounds [6,7,9].
The oxidative degradation of Amadori protein-product intermediates causes the modifica-
tion of protein tryptophan residues by oxidation via the hydroxyl radical, affecting their
function under physiologically relevant conditions [64].

For kynurenine, BSA + MGO increased the formation of this oxidation marker (Figure 4).
In the incubations of BSA + MGO with EEVc (Figure 4AIII) or cordialin A (Figure 4CIII),
the inhibition of kynurenine formation occurred in a concentration-dependent response.
On day 8, brickellin (Figure 4BIII) at a concentration of 50 µg/mL inhibited the kynurenine
formation, as well as AG.



Antioxidants 2023, 12, 522 13 of 19

In clinical therapy, tryptophan catabolism is relevant because of the metabolites
that are generated, such as 3-hydroxyanthranilic acid, anthranilic acid and quinolic acid.
These metabolites are associated with various neurological diseases and disorders, such
as Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis [65,66],
atherosclerosis [67], as well as cataract formation and the suppression of the prolifera-
tion of immune cells, such as T cells [68].

3.2.2. Quantification of Carbonyl Groups in Proteins

Protein glycation and the process leading to the formation of AGEs result in the
generation of highly reactive intermediates, such as dicarbonyl compounds and reactive
oxygen species (ROS). The increased generation of ROS in the organism and the consequent
inefficient action of the endogenous antioxidant mechanisms cause oxidative stress. The
accumulation of ROS under conditions of oxidative stress induces lipid peroxidation and
glycoxidation reactions, which exacerbates the formation of AGEs and ROS, intensifying the
oxidative damage [69]. Research has shown that inflammatory diseases of chronic nature
and neurodegenerative diseases have increases in the levels of carbonyl groups in proteins
(PCO) in common. The products formed in the protein carbonylation are chemically stable,
which favors their accumulation and detection in the body [70].

The PCO levels were monitored in the incubation samples on the last day of experi-
ment, day 8 (Figure S17 Supplementary Material). The incubations of BSA + MGO exhibited
the maximum response in the PCO formation, while the AG incubated with BSA + MGO
had a mild effect on inhibiting the protein carbonylation, as already expected according to
Colzani et al. [71]. Among the investigated samples, none of them caused the carbonylation
of BSA when incubated in the absence of MGO. When incubated with BSA + MGO, EEVc
and brickellin, at all tested concentrations, did not inhibit the PCO formation as much
as AG. On the other hand, cordialin A exhibited the best effect on the inhibition of PCO
formation, in a concentration-dependent response, with cordialin 0.051 and 0.025 mM being
more effective than AG.

In vivo, moderately levels of PCO can be degraded by two main proteolytic pathways:
the proteasomal and the autophagic/lysosomal systems [72]. However, proteins that are
strongly carbonylated tend to form high molecular weight aggregates that are resistant
to degradation, which favors their accumulation in the body [73], a condition that is
age-dependent [72].

The low efficiency of EEVc and brickellin to inhibit PCO formation suggested that they
are more effective in directly stabilizing dicarbonyl compounds, such as MGO (considering
the best results on inhibiting AGE formation), than in decreasing the oxidative damage
to BSA damage generated by the exposure to MGO. The performance of cordialin A on
PCO formation inhibition was different from the other samples, in that the higher the
concentration, the lower the PCO levels. The data in the literature show that the efficiency
of triterpenes on inhibiting the formation of AGEs occurs more broadly and may be due to:
(a) the interaction with macromolecules involved in the glycation process [54,61], either by
modulating the activity and/or expression of enzymes; (b) by facilitating the metabolization
of AGEs [59,60]; or (c) by the ability to scavenge free radicals [58]. So far, the results of our
study suggest that cordialin A may be interacting with BSA, decreasing the damage caused
by MGO; however, this hypothesis still needs to be further investigated.

3.2.3. Modification of BSA via Crosslinking

Detrimental effects occur when crosslinks are formed in proteins, which represent
the major late consequences of protein glycoxidation. Protein crosslinking is formed from
the interaction of dicarbonyl compounds with amino acid residues present in proteins
and/or due to rearrangements of Amadori products [74,75]. This condition is accelerated
by the presence of free radicals, leading to the cleavage and production of protein frag-
ments and, consequently, cause impairments in their physical, chemical and functional
properties [76,77]. Studies have shown how the interaction of glycated albumin with
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drugs impacts their pharmacokinetics, such as anti-inflammatory drugs [78–82]. Among
the methods used for protein crosslink determination, electrophoresis is one of the most
common [26,31,83]. The analysis of the protein crosslinking was performed with the in-
cubation samples from day 0 and day 8 (Figure 5). The samples evaluated were EEVc
at concentrations of 250, 125 and 62.5 µg/mL; brickellin 0.125; 0.062; and 0.031 mM and
cordialin A 0.102, 0.051 and 0.025 mM, with AG (1 mM) as control (Figure 5A–C on day 0).

Antioxidants 2023, 12, x FOR PEER REVIEW 15 of 19 
 

 

Figure 5. Effects of (A) EEVc, (B) cordialin A and (C) brickellin on protein crosslinking formation on 
day 0 and day 8 in an in vitro protein glycation model system using BSA and MGO. BSA: bovine 
serum albumin; MGO: methylglyoxal; AG: aminoguanidine; EEVc: ethanolic extract of V. 
curassavica. 

4. Conclusions 
The ethanolic extract of V. curassavica leaves (EEVc) and the two compounds isolated 

from EEVc (brickellin and cordialin A) showed to be potent candidates against the 
inhibition of AGE formation by reducing the oxidative damage and its deleterious effects. 
It should be noted that there was no significant difference between the inhibition 
promoted by brickellin and EEVc at the highest concentrations (0.0125 mM and 250 
μg/mL) within the first hours of the experiment, while cordialin A (0.102 mM), with a 
concentration-dependent response, promoted protein crosslinking when incubated with 
albumin, which may explain the slight crosslink formation in the presence of EEVc. The 
results found in the literature suggest that the antioxidant activity of EEVc and brickellin 
favor directly MGO. However, in vivo studies and kinetic analysis of the adduct formation 
may explain this mechanism of action. 

Supplementary Materials:  The following supporting information can be downloaded at: 
www.mdpi.com/xxx/s1, Figure S1: Chromatoplates (A and B) and chromatograms (C) of EEVc and 
its fractions; Figure S2: Spectrometric data of brickellin; Figure S3: 1H NMR spectrum of brickellin 
obtained at 400 MHz in CDCl3 (20 mg/mL); Figure S4: 13C NMR spectrum of brickellin obtained at 
75 MHz in CDCl3 (20 mg/mL); Figure S5: Spectrometric data of cordialin A; Figure S6: ¹H NMR 
spectrum of cordialin A obtained at 400 MHz in CDCl3 (20 mg/mL); Figure S7: Expansions of the 
¹H NMR spectrum of cordialin A obtained at 400 MHz in CDCl3 (20 mg/mL); Figure S8: 13C NMR 
spectrum of cordialin A obtained at 100 MHz in CDCl3 (20 mg/mL); Figure S9: Effects of different 
concentrations of EEVc (A), brickellin (B) and cordialin A (C) on the formation of fluorescent AGEs 
in vitro protein glycation model system with BSA alone; Figure S10: Absorbance plots of the controls 
used in the in vitro protein glycation model system; Figure S11: Absorbance plots of EEVc 250; 125 
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on day 0 and day 8 in an in vitro protein glycation model system using BSA and MGO. BSA: bovine
serum albumin; MGO: methylglyoxal; AG: aminoguanidine; EEVc: ethanolic extract of V. curassavica.

As previously stated, the formation of crosslinking causes structural damage to the
proteins and, thus, with electrophoresis, it is possible to visualize a band above that
corresponding to BSA (66 kDa). With this, the relative density generated by this new
band is directly related to the oxidative damage suffered by BSA [56]. The densitom-
etry values generated in the bands corresponding to crosslinking were also calculated
(Figure S18 Supplementary Material).

Figure 5 also shows the data obtained on day 0 and day 8. On day 0, it is possible to
note that, visually, none of the tested samples interacted with the BSA in a relevant manner
that resulted in the formation of protein crosslink. On day 8, the last day of analysis, the
formation of protein crosslinking in BSA + MGO was noticeable, a process that did not
occur in BSA incubated alone and in the presence of AG on the same day of analysis.

The densitometric data of the incubation of BSA + AG and BSA alone were similar;
therefore, as reported in the literature, the AG does not contribute to the formation of
crosslinking. The same was observed with BSA + brickellin at concentrations of 0.125
and 0.031 mM, which were the same as the BSA + AG on day 8 (Figure 5C on day 8);
however, the opposite happened with cordialin A (Figure 5B on day 8). The crosslinking
promoted by cordialin A was directly proportional to its concentration, where the con-
centration of cordialin A 0.102 mM promoted greater crosslinking in BSA than cordialin
A 0.025 mM incubated with BSA alone, which reinforces the hypothesis that cordialin A
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interacts with BSA, influencing the damage caused by the exposure to MGO. In general,
the best performance was observed with brickellin, where all of the tested concentrations
generated the minor damage to the BSA. The EEVc also promoted the formation of protein
crosslinking (Figure 5A on day 8), which can be justified by the fact that the extract contains
cordialin A and other compounds still unknown in its composition; however, it still had a
satisfactory performance.

4. Conclusions

The ethanolic extract of V. curassavica leaves (EEVc) and the two compounds isolated
from EEVc (brickellin and cordialin A) showed to be potent candidates against the inhibition
of AGE formation by reducing the oxidative damage and its deleterious effects. It should be
noted that there was no significant difference between the inhibition promoted by brickellin
and EEVc at the highest concentrations (0.0125 mM and 250 µg/mL) within the first hours
of the experiment, while cordialin A (0.102 mM), with a concentration-dependent response,
promoted protein crosslinking when incubated with albumin, which may explain the slight
crosslink formation in the presence of EEVc. The results found in the literature suggest
that the antioxidant activity of EEVc and brickellin favor directly MGO. However, in vivo
studies and kinetic analysis of the adduct formation may explain this mechanism of action.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox12020522/s1, Figure S1: Chromatoplates (A and B) and
chromatograms (C) of EEVc and its fractions; Figure S2: Spectrometric data of brickellin; Figure S3:
1H NMR spectrum of brickellin obtained at 400 MHz in CDCl3 (20 mg/mL); Figure S4: 13C
NMR spectrum of brickellin obtained at 75 MHz in CDCl3 (20 mg/mL); Figure S5: Spectromet-
ric data of cordialin A; Figure S6: 1H NMR spectrum of cordialin A obtained at 400 MHz in CDCl3
(20 mg/mL); Figure S7: Expansions of the 1H NMR spectrum of cordialin A obtained at 400 MHz in
CDCl3 (20 mg/mL); Figure S8: 13C NMR spectrum of cordialin A obtained at 100 MHz in CDCl3
(20 mg/mL); Figure S9: Effects of different concentrations of EEVc (A), brickellin (B) and cordialin A
(C) on the formation of fluorescent AGEs in vitro protein glycation model system with BSA alone;
Figure S10: Absorbance plots of the controls used in the in vitro protein glycation model system;
Figure S11: Absorbance plots of EEVc 250; 125 and 62.5 µg/mL used in the in vitro protein glycation
model system; Figure S12: Absorbance plots of brickellin 0.125; 0.062; and 0.031 mM used in the
in vitro protein glycation model system; Figure S13: Absorbance plots of cordialin A 0.102; 0.051;
and 0.025 mM used in the in vitro protein glycation model system; Figure S14: Effects of different
concentrations of EEVc (A), brickellin (B) and cordialin A (C) on dityrosine formation in BSA-only
protein glycation model system in vitro; Figure S15: Effects of different concentrations of EEVc (A),
brickellin (B) and cordialin A (C) on N’-formylkynurenine formation in BSA-only protein glycation
model system in vitro; Figure S16: Effects of different concentrations of EEVc (A), brickellin (B) and
cordialin A (C) on the formation of Quinurenin in BSA-only protein glycation model system in vitro;
Figure S17: Quantification of carbonylated proteins obtained on day 8 in vitro protein glycation
model system using BSA and MGO; Figure S18: Graphical representation of densitometry calcula-
tion generated by ImageJ® 1.53k program regarding crosslinking formation of EEVc, brickellin and
cordialin A samples at different concentrations incubated with BSA+MGO on day 8.
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