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Abstract: A variety of physical, emotional, and mental factors can induce a stress response in pet
dogs and cats. During this process, hypothalamus–pituitary–adrenal (HPA) and sympathetic–adrenal
medulla (SAM) axes are activated to produce a series of adaptive short-term reactions to the aversive
situations. Meanwhile, oxidative stress is induced where there is an imbalance between the production
and scavenging of reactive oxygen species (ROS). Oxidative damage is also incorporated in sustained
stress response causing a series of chronic problems, such as cardiovascular and gastrointestinal
diseases, immune dysfunction, and development of abnormal behaviors. In this review, the effects
and mechanisms of dietary regulation strategies (e.g., antioxidants, anxiolytic agents, and probiotics)
on relieving stress in pet dogs and cats are summarized and discussed. We aim to shed light on future
studies in the field of pet food and nutrition.
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1. Introduction

With the improvement of living standards and changes in population structure (i.e., in-
creasing single and geriatric populations), the number of domestic pets has largely increased
in recent years, accompanied by the rapid growth of the pet industry and pet-related econ-
omy [1]. Meanwhile, welfare concerns for pets have become increasingly prominent [2].
Stressors exist ubiquitously along the pet industry chain, such as exposure to transportation
and novel environments, and inappropriate caretaking strategies [3]. Diseases, behavioral
problems, and even death can occur in animals if stress is not properly managed [4]. Being
part of the stress response, oxidative stress is an important factor in the pathogenesis of
many diseases, such as neural dysfunction and inflammatory bowel disease [5], and there
is a complicated interaction between oxidative stress and disease progression [6]. In turn,
aversive consequences from the stress response can challenge the animal’s welfare, damage
the pet–owner relationship, and increase the abandonment of pets, which could exert a
threat to public safety [7] and biodiversity [8]. Appropriate management of stress in pets is
therefore necessary and urgent.

The current paper attempts to comprehensively describe stress in pet dogs and cats,
summarizing its causes, mechanisms, and potential consequences, and mainly focusing
on dietary strategies for relieving pet stress. The hypothesis is that dietary ingredients
that can address physiological and behavioral changes of stress response may serve as
effective modifying strategies for stress management. The aim of this review was to identify
the potential of some substances in relieving stress in pet dogs and cats and to provide a
reference for the development of new functional pet foods targeting stress management.

2. Causes of Stress in Pets

Causes of stress (i.e., stressors) can be classified as physical (e.g., infection, hemorrhage)
or psychological (e.g., restraint and threat). Stress in pets rises most commonly in situations
when predictability is lacking or when the animal’s needs are not met.
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2.1. Environmental Factors

Uncomfortable environments can cause chronic stress in dogs and cats. Extreme
temperature may lead to cold and heat stress [9]. At the same time, interruption of daily
routines [10,11], vet visits [12], and novel environments [13] can also cause stress and
anxiety, especially in cats. Abrupt environmental accidents such as sudden noise [14] and
falling objects [15] usually result in panic and fear in pets. Even some common feeding
practices, such as water-softened dry food can present stress in pets [16]. Psychological
stress can occur when space allowance for activity and behavioral needs are not met [17,18].
Dogs and cats kept mostly or strictly indoors with little environmental enrichment may not
able to fully perform natural behaviors such as playing and hunting, the frustration from
which can cause anxiety and depression, and the exhibition of behavioral and physical
problems [19,20].

2.2. Social Conflicts

Pets living with humans can be exposed to imbalanced power because we are the
ones that control their physical and social environment. Good human–pet relationships
and the forming of bonds between pets and owners can provide mutual benefits [21,22].
Inappropriate or aversive interactions with pets can result in compromised or even broken
relationships and cause additional stress in pets. Examples include the use of punish-
ment [23,24], social deprivation [25,26], and some seemingly normal or intimate owner
behaviors such as restraint [27] and forced interaction [4].

Pets may also encounter other inter- or intraspecific social conflicts, such as territorial
disputes and miscommunication [28]. Conditions of limited space or resources (e.g., food)
further increase the possibility of conflict outbreak [29]. The introduction of a new cat to
a stable colony may interrupt the original social dynamic and cause fighting [30,31]. In
addition, non-contact aversive social stimuli, such as exposure to dog barking, can also
cause stress in cats [28].

3. Mechanisms of Stress

Stress response is elicited when an actual or potential threat to the homeostasis of the or-
ganism is perceived [32]. The process involves the activation of the hypothalamus–pituitary–
adrenal (HPA) and sympathetic–adrenal medulla (SAM) axes as shown in Figure 1 [33,34].
As a result, changes in various physiological processes and behaviors are induced [33,34].
Oxidative damage is also incorporated in sustained stress response causing a series of
chronic problems [6].

3.1. SAM and HPA Axis

Excitement of the sympathetic nervous system in the SAM axis promotes the release
of acetylcholine from preganglionic fiber endings and the postganglionic neurotransmit-
ter noradrenaline, which acts on the adrenal medulla that is located above the kidneys
on both sides of the spine in the retroperitoneal space, thereby promoting the release of
catecholamine (i.e., adrenaline and noradrenaline) into the bloodstream [35]. Blood redistri-
bution occurs after SAM axis activation, leading to vasoconstriction in many microvascular
networks and vasorelaxation in skeletal muscle and liver [36]. This accelerates cardiac
contraction, thereby increasing blood output and blood pressure. The SAM axis responds
to stress rapidly to get the animal ready for the “flight or fight” reaction.

The HPA axis includes the hypothalamic paraventricular nucleus (PVN), a hollow
funnel-like region located inside the supraoptic area of the hypothalamus, the pituitary (an
oval body located in the ventral hypothalamus), and the adrenal gland. After exposure to
stress stimulation, the PVN secretes corticotropin-releasing hormone (CRH) and arginine
vasopressin (AVP) to the portal circulation of the median eminence [37], where CRH quickly
reaches the pituitary gland and promotes its secretion of adrenocorticotropic hormone
(ACTH). ACTH acts on the adrenal cortex to promote the secretion of glucocorticoids
(GCs), such as cortisol and corticosterone. Glucocorticoid secretion negatively regulates
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CRH and ACTH secretion. The activation of the HPA axis, and the subsequent increased
content of GCs, modulates energy reserve mobilization and catabolic processes, such as to
promote gluconeogenesis and increase protein and fat metabolism through proteolysis and
lipolysis. Meanwhile, certain physiological processes are temporarily inhibited, leading
to immune suppression and the inhibition of digestion, reproduction, and growth [38,39].
The activation of the HPA axis is relatively slow [39,40]. Although the negative feedback
mechanism will restore it to its normal level, excessive cortisol from long-term chronic
stress brings serious health risks to the body [39,40].
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Figure 1. Regulatory mechanism of stress response. The components highlighted in green are 
mainly affected by the hypothalamus–pituitary–adrenal axis, and those in yellow are mainly 
affected by the sympathetic–adrenal medulla axis. It is worth noting that only the main impact is 
presented, and there is a broader and more complex relationship between the two systems. The 
elements in red indicate the possible harm of stress. Stress can induce oxidative stress to cause 
ubiquitous damage to cells, tissues, and organs. ROS, reactive oxygen species; CRH, 
corticotropin-releasing hormone; AVP, arginine vasopressin; ACTH, adrenocorticotropic 
hormone. 
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Figure 1. Regulatory mechanism of stress response. The components highlighted in green are mainly
affected by the hypothalamus–pituitary–adrenal axis, and those in yellow are mainly affected by the
sympathetic–adrenal medulla axis. It is worth noting that only the main impact is presented, and
there is a broader and more complex relationship between the two systems. The elements in red
indicate the possible harm of stress. Stress can induce oxidative stress to cause ubiquitous damage to
cells, tissues, and organs. ROS, reactive oxygen species; CRH, corticotropin-releasing hormone; AVP,
arginine vasopressin; ACTH, adrenocorticotropic hormone.

3.2. Oxidative Stress

Oxidative stress refers to when the production of oxidants exceeds the antioxidative
capacity of the body, leading to the disruption of redox (i.e., oxidation/reduction reactions)
homeostasis and ubiquitous damage to cellular, tissue, and organ systems [41]. The
mechanism of oxidative stress is shown in Figure 2.

Reactive oxygen species (ROS) widely refers to oxygen-derived free radicals and non-
free radicals. In normal cellular activities, oxygen in the mitochondrial inner membrane
will gain electrons under the action of the respiratory chain and produce ROS with high
chemical reactivity due to unpaired electrons [42]. Other main sources of ROS include
enzymes such as NADPH enzyme oxidation [42], cytochrome P450 in the endoplasmic
reticulum, lipoxygenase, xanthine oxidase, and cyclooxygenase [43].

Meanwhile, the body is endowed with a defensive reducing system to combat ROS,
which consists of antioxidant proteins, antioxidant enzymes, and small-molecule antiox-
idants. Antioxidant proteins include mainly albumin, haptoglobin, ferritin, ceruloplas-
min, etc. [44]. Antioxidant enzymes include superoxide dismutase (SOD), catalase (CAT),



Antioxidants 2023, 12, 545 4 of 22

glutathione peroxidase (GPx), and some coenzymes. Small-molecule antioxidants are
divided into lipid-soluble and water-soluble antioxidants [6].
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Under normal circumstances, ROS and the antioxidant system maintain a relative
balance. However under stressful conditions, ROS will be overproduced, which may lead
to oxidative stress [45]. The increased respiratory rate [46], blood glucose [47], and the
secretion of glucocorticoids [48] and catecholamines [49] during stress response are all
proven to induce ROS production. On one hand, the production of ROS promotes the
activities of antioxidant enzymes through the Nrf2-Keap1 pathway [41]. On the other hand,
an inflammatory reaction is induced, mainly through the Nf-κB pathway [50].

The level of oxidative stress can be reflected by the typical byproducts from the process
of oxidative damage. For example, malondialdehyde, 4-hydroxynonel, F2-Isoprostane, and
oxygenated low-density lipoproteins are derived from polyunsaturated fatty acids during
lipid peroxidation [6,41]. The sulfhydryl group in protein is also easily attacked by ROS,
which is converted to carbonyl protein [51]. Reactive carbon groups, such as advanced
glycation end products (AGEs), may be generated during glycosylation of protein under
the action of glucose ROS [52]. With nucleic acid, ROS may also attack guanine to generate
8-oxo-2’-deoxyguanosine (8-oxo-dG) in DNA and 8-oxo-guanine (8-oxo-G) in RNA [53].
Reduced glutathione (GSH) and glutathione disulfide (GSSG) are two forms of glutathione
that play important roles in protein redox [54]. GSH is oxidized to form GSSG [55], and an
increase in ROS usually leads to a loss in GSH; therefore, the ratio of GSH/GSSG also can
serve as a measure of oxidative stress [55].

The brain has high oxygen consumption and is rich in lipid content, which makes it
vulnerable to oxidative stress [56]. As a result, chronic ROS accumulation presents a threat
to the integrity of brain cells and neural functions, disrupting neural circuits, impairing
connections between the hippocampus, amygdala and cortex, and ultimately leading to
behavioral and cognitive deficits [57].

In addition, oxidative stress can induce inflammatory responses through the NF-κB
pathway [50]. Inflammatory responses can induce inflammatory bowel disease (IBD)
and affect the kynurenine pathway to worsen neurological and intestinal health, thus
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aggravating stress or increasing sensitivity to stressors [58]. IBD is a chronic gastrointestinal
disease that is usually associated with stress [59]. Although the exact mechanism remains
to be explored, more and more studies have shown that oxidative stress plays a crucial role
in the pathogenesis and progress of IBD [50]. Oxidative stress caused by excessive ROS may
stimulate the initial inflammatory reaction and lead to additional ROS production which
may result in further damage to the intestinal tissue [50]. In the intestinal tract, tryptophan
can be used to synthesize 5-hydroxytryptamine and kynurenine (KYN); the latter can be
further broken down to produce kynurenic acid (KYNA) and neurotoxic quinolinic acid
(QUIN) [60,61]. Under inflammatory conditions, increased QUIN synthesis results in the
depletion of gamma-aminobutyric acid (GABA) and adenosine triphosphate (ATP), which
further aggravates damage to nerve cells [62].

Generally speaking, damage caused by oxidative stress has a negative impact on many
tissues and organs, and if it is not alleviated, it may cause or mediate the progression of a
series of problems or diseases [63].

4. Adverse Consequences of Stress
4.1. Gastrointestinal Diseases

Studies have shown that the number of gastroenteritis cases in cats during the SARS-
CoV-2 pandemic was higher than in the pre-pandemic period, due to stress as a result of
the changes especially influencing the daily routine of cats [64]. Chronic stress may lead to
gastrointestinal ulcers (i.e., lesions of the gastric and duodenal mucosa), which manifest as
mucosal erosion, bleeding, and even perforation [65]. Secretion of catecholamines during
stress response decreases the blood flow to the gastrointestinal system causing mucosal
ischemia [66]. Meanwhile, intestinal hypoxia can lead to ATP depletion, acidosis, and the
destruction of the gastric mucosal barrier [67]. The H+ in the gastric cavity diffuses reversely
into the mucosa and further aggravates the gastrointestinal injury. Studies have also shown
that glucocorticoids can increase gastrointestinal permeability [68]. Although varied in
different stress models and species, it is generally believed that acute stress will lead to the
delayed gastric emptying and accelerated transport of the large intestine [69], resulting in
diarrhea, vomiting, and other digestive tract problems [70]. The effect of chronic stress on
the gastrointestinal tract seems to be sustained even after the stressor is removed. Some
studies show that when the stressors are eliminated, the colon still accelerates transport
of digesta [69,71], which may be closely related to sustained diarrhea observed in chronic
stress. In addition, oxidative stress is considered to be involved in different gastrointestinal
diseases in pets, such as feline panleukopenia [72] and inflammatory bowel disease (IBD)
in dogs [5].

4.2. Immune Dysfunction

Acute stress can enhance innate immunity in order to better cope with adverse changes.
The underlying mechanism may be that norepinephrine and other stress hormones induce
the recruitment of dendritic cells and the increase in macrophages at antigen exposure sites,
thereby enhancing the primary immune response [73]. Under acute stress conditions, the
total number of white blood cells also increases [74]. However, continuous activation of
the HPA axis will lead to leukopenia [75]. Increased glucocorticoids have been shown to
exert a strong immunosuppressive effect by inhibiting cytokine production, macrophage
function, lymphocyte proliferation and differentiation, and natural killer cell activity [76,77].
Therefore, chronic stress can lead to immunosuppression and increase the risk of pathogen
invasion. For example, contraction of feline infectious peritonitis due to feline coronavirus
has been linked to oxidative stress and decreased antioxidant status in cats [78].

4.3. Urinary Tract Diseases

Stress can lead to urinary tract problems such as dysuria, hematuria, pollakiuria
(i.e., increased frequency of urination), and periuria (i.e., urination in inappropriate loca-
tions). On the urethral side, the activation of the renin–angiotensin–aldosterone system and
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the secretion of catecholamines from the SAM axis lead to renal vasoconstriction and re-
duced glomerular filtration rate and urine output. Moreover, the increase in the secretion of
antidiuretic hormone enhances the reabsorption of water and further reduces urine volume.
In the lower urethra, feline idiopathic cystitis is mostly of type I neurogenic origin [79]. It
was found that plasma catecholamine concentration at rest in cats with idiopathic cystitis
was significantly higher than that in healthy cats [80]. In addition, plasma catecholamine
concentrations decreased with stress adaption in healthy cats but remained high in cats
with idiopathic cystitis [81]. Collectively, stress can affect urinary tract health through
neuroendocrine pathways.

4.4. Cardiovascular Problems

The cardiovascular system often reacts to stress with accelerated myocardial contrac-
tion and heart rate, and increased blood pressure and cardiac output. The reaction is
induced through catecholamines interacting with their β-receptors on myocardial cells [82].
In the long run, the threshold of ventricular fibrillation is reduced due to over-secretion
of catecholamines, causing abnormal myocardial activity and arrhythmia [83]. An ear-
lier study in infarcted dogs showed that stressful stimuli provoked diverse ventricular
arrhythmias including ventricular tachycardia and early extrasystoles [17]. The more
worrying situation with chronic stress is that prolonged secretion of GCs can lead to a
permanent increase in cardiac sympathetic tension and hypertension, resulting from ele-
vated blood cholesterol levels and sodium retention in vascular smooth muscle cells [84].
Therefore, high-intensity, high-frequency, or long-term hypertension induced by stress can
have adverse effects on the cardiovascular system and even lead to heart disease [84,85].
Meanwhile, oxidative stress seems to be highly correlated with cardiovascular disease. The
activity of SOD in cats with hypertrophic cardiomyopathy was decreased significantly [86].
The serum antioxidant capacity of dogs with heart failure also decreased [87].

4.5. Acute Stress Behavior and Behavioral Abnormalities
4.5.1. Acute Stress Behavior

When facing acute stress, cats or dogs often exhibit “flight or fight” responses. Cats
will try to hide or flee. The typical hiding posture in cats is freezing while squatting and
crouching their body [88]. If avoidance of the threat is not achieved, cats will exhibit
intimidating and aggressive behaviors, such as hissing, growling, slapping, scratching,
and biting [89]. When dogs suffer from acute stress, there will be body shaking, lowering
of the posture, mouth licking, and restless walking and standing [15]. They will even
show aggressive behaviors, such as barking, lunging, growling, and biting/snapping [90].
Fortunately, mild, transient acute stress does not cause substantial damage to the body.
If not alleviated, acute stress may evolve into chronic stress [91], which in turn leads to
abnormal behaviors (e.g., stereotypic behavior, urinary marking, aggression).

4.5.2. Behavioral Abnormalities

Stress can cause anorexia nervosa, leading to decreased appetite and food intake
in dogs and cats [92]. The neural circuits regulating food intake converge on the par-
aventricular CRH-releasing nuclei and neurons containing urocortin [93]. CRH exerts an
anorexigenic effect by inhibiting the release of neuropeptide Y and other hypothalamic neu-
ropeptides, such as growth-hormone-releasing hormone and somatostatin. The orexigenic
effects of glucocorticoids are counteracted by a steroid-induced rise in leptin levels that
close a regulatory loop regarding food consumption [94,95]. On the other hand, studies in
rats and humans show that stress may also lead to overeating [96,97], an eating disorder
involves the brain reward system [98].

Some common obsessive–compulsive behaviors in pets include feline hyperesthesia
syndrome, psychogenic alopecia and pica in cats [99], and acral lick dermatitis in dogs [100].
Studies have shown that stress can lead to obsessive–compulsive behavior in dogs and cats,
which may be related to the dysfunction of neurotransmitters (e.g., 5-hydroxytryptamine
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and dopamine). Mami Irimajiri et al. partially confirmed this in dogs and showed that
5-hydroxytryptamine reuptake inhibitors (e.g., clomipramine and fluoxetine) exhibit reli-
able mitigation effects on obsessive–compulsive disorder [100].

Urine marking is considered a territorial behavior in dogs and cats as urine contains
odor information for individual and sex identification [101]. Inappropriate urine marking is
especially common in multi-cat households where incompatible or unfamiliar individuals
live together [4]. The exhibition of urine marking in response to social conflict is the
attempt of cats to gain control of the environment by leaving behind familiar odors [4].
Urine marking is often accompanied by other behavioral problems, such as aggression
in cats [24], indicating a close relationship between a general stressful environment and
behavioral problems [102].

5. Dietary Strategies for Relieving Stress in Pets

Current strategies for relieving stress in cats and dogs commonly include managing
their environment, training techniques [103], pheromonotherapy [101,104], and some other
olfactory stimuli such as plant-extracted essential oils [105]. Pharmacotherapy may be
necessary when the case is severe, but drug administration itself may provoke stress [4]. In
recent years, more and more studies have focused on relieving stress through nutritional
regulation, which have been mainly focused on effectiveness in anti-oxidation, anti-anxiety,
and/or maintaining intestinal health. Studies on the nutritional management of stress in
cats and dogs have been summarized in Table 1.

Table 1. Dietary strategies for stress alleviation in cats and dogs.

Active
Ingredients Resources Mechanism Species Dosage Measurements Supportive/

Negative Reference

Gallic acid

Fruits,
vegetables,

and medicinal
plants

Antioxidants;
intestinal

health
Dog 500 mg/kg

SOD and CAT ↑; TNF- α ↓;
IL-1 β ↓; diarrhea rate ↓;

SCFAs-producing
bacteria ↑; serum cortisol

and HSP70 ↓

Regulate
intestinal flora

to alleviate
oxidative stress

and
inflammatory

reaction

[32]

Tannic acid Gallnut
Antioxidants;

intestinal
health

Dog 2.5 g/kg

Serum COR ↓; GC ↓;
ACTH ↓; HSP70 ↓;

beneficial bacteria ↑;
pathogenic bacteria ↓;

fecal butyrate ↑

Regulate
intestinal flora

to alleviate
stress injury

[106]

Pinus taeda
hydrolyzed

lignin (PTHL)
P. taeda (tree) Antioxidants Dog / SOD, CAT, and

GPx activity ↑ Antioxidation [107]

Curcumin Curcuma longa Antioxidants Dog 32.9 mg/kg

ROS ↓; CAT, SOD and
GPx ↑; total antioxidant
capacity ↑; lymphocytes

and globulin levels ↓

Enhance
antioxidant

capacity and
alleviate

inflammatory
reaction

[108]

A blend of
essential oils

and vitamin E

Essential oils
(cloves,

rosemary, and
oregano)

Antioxidants Dog /
Non-protein self-sustaining

group ↑; glutamate
S-transfer ↑; ROS ↓

Antioxidation [109]

Vitamin E Commercial
sources Antioxidants Dog 500 mg

Prevent the decrease in
PON1 activity and EMF,

and the increase in
plasma MDA.

Alleviate
oxidative stress [110]

Vitamin C Commercial
sources Antioxidants

Dog / SOD, GPx, and CAT ↑; Antioxidation [111]

Dog/cat /

ROS ↓; improve the blood
flow distribution, promote
the synthesis of catalamine
and arginine vasopressin,
regulate immunity, and

inhibit the activity of
cytotoxic T cells

Relieve the
damage caused

by oxidative
stress and

inflammatory
reaction

[112]
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Table 1. Cont.

Active
Ingredients Resources Mechanism Species Dosage Measurements Supportive/

Negative Reference

VE and VC
and

beta-carotene

Commercial
sources Antioxidants Cat

VE: 742 mg/kg;
VC: 84 mg/kg;
beta-carotene:

2.1 mg/kg

Serum 8-OHdG ↓
Reduce DNA

oxidative
damage

[113]

Selenium Selenium
yeast Antioxidants Dog 0.3 mg/kg MDA ↓; GPx, SOD,

and CAT ↑ Antioxidation [114]

Radioiodine Commercial
sources Antioxidants Cat / Urinary free

8-isoprotenates ↓
Alleviate lipid
peroxidation [115]

Saccharomyces
cerevisiae

fermentation
product

S. cerevisiae
fermentation Antioxidants Dog 0.13%

Serum MDA and
8-isoprotenates ↑; the

expression of blood COX-2
and MPO mRNA ↓

Inhibit innate
immune

activation to
alleviate

inflammation

[116]

Fish-oil-based
foods

Commercial
sources Antioxidants Dog /

GPx and CAT activity ↑;
blood glucose and total and

LDL cholesterol ↓

Antioxidation
and reduce
blood sugar

and blood lipid

[117]

Melatonin Commercial
sources Antioxidants Dog 0.3 mg/kg Serum SOD, GPX, and

CAT ↑; MDA ↓

Enhance
antioxidant
capacity to

relieve
oxidative
damage

[118]

α-casozepine
A tryptic
bovine

αs1-casein
hydrolysate

Anxiolytic
agents

Dog / Anxiety behavior ↓;
serum cortisol ↓

Relieve anxiety
and improve

behavior;
reduce stress

hormone
secretion

[119]

Dog Closely
15 mg/kg BW

Score of emotional disorder
evaluation in dogs ↓;

Relieve anxiety
and improve

behavior
[120]

Cat 15 mg/kg BW

anxiety score ↓; different
items (fear of strangers,
contact with familiars,

general fears, fear-related
aggressions, and

autonomic disorders) ↓

Relieve anxiety
and improve

behavior
[121]

α-casozepine
and

tryptophan

Commercial
diet

Anxiolytic
agents

Cat

α-casozepine:
15 mg/kg;

tryptophan:
3.6 g/kg DM

The ratio of plasma
tryptophan to large neutral

amino acids ↑;
urinary cortisol ↓

Promote
tryptophan

utilization and
reduce stress

hormone
secretion

[122]

Cat /

The duration of cat
inactivity decreases

when placed in
unfamiliar positions

Relieve anxiety
and improve

behavior
[123]

Tryptophan Commercial
sources

Anxiolytic
agents

Dog 5.7 g/kg DM Plasma Trp ↑; Trp/(large
neutral amino acids) ↑

Promote
tryptophan

utilization; the
impact on

anxiety and
behavior

remains to be
determined

[124]

Dog Trp:
LNAA = 0.075:1

Serum serotonin ↑;
improved stool scores

Relieve anxiety
and reduce

diarrhea
[125]

Dog Add extra
1.45 g/kg

Attacks related to
territorial domination ↓

Reduce the
stress of

territorial
competition

[126]

Dog / Stress-related
abnormal behavior ↓

Relieve anxiety
and improve

behavior
[127]
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Table 1. Cont.

Active
Ingredients Resources Mechanism Species Dosage Measurements Supportive/

Negative Reference

L-theanine Commercial
sources

Anxiolytic
agents

Dog

50 mg (less
than 10 kg),

100 mg
(10–25 kg),

200 mg (more
than

25 kg)/day

Anxiety scores ↓; drooling,
following people, pacing,

panting, and hiding ↓

Relieve anxiety
and improve

behavior
[128]

Dog

50 mg (less
than 10 kg),

100 mg (more
than

10 kg)/day

Interactive behavior ↑
Relieve anxiety

and improve
behavior

[129]

Cat 50 mg/day

Stress score ↓;
inappropriate

urination/defecation,
fear-induced

aggressiveness,
hypervigilance/tenseness,

or physical/functional
manifestations of stress ↓

Relieve anxiety
and improve

behavior
[130]

Medium
chain

triglyceride
diet

Commercial
diet

Anxiolytic
agents Dog 5.5% ADHD-related

anxiety behavior ↓

Relieve anxiety
and improve

behavior
[131]

Medium
chain

triglyceride
and Brain
Protection

Blend (BPB)

BPB including
B vitamins,

antioxidants,
omega-3 fat
acids, and
arginine

Anxiolytic
agents Dog 6%/9%

Blood DHA, EPA, total
omega-3 PUFAs, and

omega-3/omega-6 ratio ↑;
symptoms of cognitive

dysfunction syndrome ↓

Promote brain
health and
improve
behavior

[132]

Fish
hydrolysate
and melon

juice
concentrate

Commercial
sources

Anxiolytic
agents Dog

F: 500 mg, M:
11 mg; double

(BW more
than 10 kg)

Interactive behavior ↑;
stress behavior ↓

Relieve anxiety
and improve

behavior
[133]

Lemon balm,
fish peptides,
oligofructose,

and
L-tryptophan

Commercial
diet

Anxiolytic
agents Cat

L: 0.1%;
F: 0.1%;
O: 0.5%;

Trp: 0.08%

Average 24 h urinary
cortisol/creatinine ratio ↓

Reduce stress
hormone
secretion

[134]

Bacillus amy-
loliquefaciens
CECT 5940

Commercial
bacteria

Intestinal
Health Dog 1 × 106 CFU/g

DM
The bacillus ↑;
the coliforms ↓

Regulate
intestinal flora [135]

Polyphenols
and omega-3

fatty acids

Fish oil and a
polyphenol
blend (citrus
pulp, carrot,
and spinach)

Intestinal
Health;

anxiolytic
agents

Dog /

Plasma 4-EPS ↓;
anxiety-related

metabolites ↓; Blautia,
Parabacteroides,

and Odoribacter ↑

Regulate
intestinal flora

to relieve
anxiety

[136]

S. boulardii Commercial
bacteria

Intestinal
Health Dog 1 × 109 CFU

di/kg of feed
Fecal calprotectin ↓; IgA ↓;

fecal cortisol ↓

Reduce
intestinal

inflammation
and stress
hormone
secretion

[137]

A fiber–
prebiotic–
probiotic

blend

Commercial
sources

Intestinal
Health Dog / Fecal score ↓; blood lipid ↓;

fecal IgA ↑

Enhance
intestinal

immunity and
improve stool

quality

[138]

Enterococcus
faecium SF68

Commercial
bacteria

Intestinal
Health Cat/Dog 2.1 × 109

CFU/day
Diarrhea rate ↓ Reduce

diarrhea [139]

↑, increase; ↓, reduction; IgA, immunoglobulin A; NO, nitric oxide; COR, cortisol; GC, glucocorticoid; ACTH,
adrenocorticotropic hormone; HSP70, heat shock protein 70; SOD, superoxide dismutase; CAT, catalase; GST,
glutathione-S-transferase; GPx, glutathione peroxidase; ADHD, attention-deficit/hyperactivity disorder; ROS,
reactive oxygen species; GSH, reduced glutathione; MDA, malondialdehyde; PON1, paraoxonase-1; EMF, erythro-
cyte membrane fluid; 4-EPS, 4-ethylphenyl sulfate; PUFA, polyunsaturated fatty acids; COX-2, cyclooxygenase-2;
MPO, myeloperoxidase; LNAA, large neutral amino acids; Trp, tryptophan.
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5.1. Antioxidants

Exogenous antioxidants are substances that can improve immune function, boost the
endogenous antioxidant system, and balance the cellular oxidative status by scavenging
free radicals and by interrupting the lipid peroxidation process [140]. The protective role of
different natural antioxidants in chronic diseases has been documented in various animal
species and humans [140].

5.1.1. Polyphenols and Other Plant Extracts

Antioxidant phytochemicals are commonly found in fruits (e.g., berries, apples, grapes,
and pomegranates), cereal grains, vegetables, and plants. The main group is polyphenols,
the chemical structure of which contains one or more aromatic rings and can act as free
radical scavengers and metal chelators [141].

Gallic acid (GA) is a naturally occurring polyphenol commonly exist in fruits, veg-
etables, and herbal medicines. GA can positively affect intestinal health and immune
response [142], and may alleviate stress through the brain–gut axis [32]. In humans, GA has
been reported to reduce the formation of free radicals and enhance innate immune activa-
tion [143], inhibit the production of ROS, nitric oxide, and the release of pro-inflammatory
cytokines [144], and increase macrophage phagocytosis to improve immune regulation
activity [145]. In addition, GA can induce a shift of intestinal microbial groups toward more
favorable composition and promote the production of short-chain fatty acids (SCFAs) [146],
which can serve as neuroactive substances further affecting the nervous and immune
systems of the body [147]. Collectively, these activities of GA have positive significance
for reducing the damage from oxidative stress. Yang et al. (2022) verified this in dogs by
showing that GA markedly reduced diarrhea and caused a moderate decline of serum
cortisol and heat shock protein (HSP) 70 levels in puppies after transportation [32]. The
same study also reported that GA alleviated the oxidative stress and inflammatory response
induced by transportation, and maintained the stability of intestinal flora and the content
of short chain fatty acids [32]. In addition, the fecal and serum metabolomic analyses
revealed that GA markedly reversed the abnormalities of nutrient metabolism caused
by stress [32]. Tannic acid extracted from gallnut (a widely used traditional medicine in
China) inhibited the secretion of serum stress hormones (i.e., COR, GC, and ACTH) and the
expression of heat shock protein 70 to protect dogs from stress-induced oxidative damage
and inflammatory response [106]. Dietary supplementation with pomegranate peel extract
(PPE) had a positive impact on the antioxidant status in dogs, improving indices of ery-
throcytic antioxidants, namely, reducing glutathione, catalase, glutathione peroxidase, and
glutathione S-transferase, together with a reduction in lipid peroxidation [148]. Resveratrol,
a natural phytoalexin contained in wine, can reduce the level of ROS and MDA, improve
the activities of SOD, GPX, and CAT activities, and improve the ratio of reduced glutamate
to oxidized glutamate in cat models in which hepatotoxicity was induced [149]. Pinus
taeda hydrolyzed lignin is a polyphenol mixture that can increase the activity of SOD, CAT,
and GPx to improve antioxidant capacity in healthy dogs [107]. Curcumin extracted from
curcuma longa can also enhance total antioxidant capacity by improving the activities of
ROS, CAT, SOD, and GPx, and relieve inflammation by reducing lymphocytes and globulin
level in dogs [108].

In vitro experiments with canine and feline cells have also revealed the antioxidative
potential of some other plant or seed extracts. For example, quercetin is a natural occurring
bioflavonoid that can increase GSH and decrease ROS in methimazole-induced oxidative
stress in feline kidney epithelial cells [150]. Morin, also a flavonoid, can enhance the an-
tioxidant capacity of hydrogen-peroxide-induced oxidative-stressed canine kidney cells
by increasing the activities of SOD and CAT, and reduce mitochondrial oxidative damage
and apoptosis [151]. Grape seed proanthocyanidin extract, alone or together with resvera-
trol, has also been proved to reduce ROS production in canine lens epithelial cells [152].
However, the antioxidative effects of some substances require further verification through
in vivo studies.
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5.1.2. Vitamins

Vitamin C has a strong antioxidant capacity that can reduce the damage of free radicals
to cells by actively removing superoxide and other ROS [112]. Decreased vitamin C levels
have been detected in dogs with naturally occurring gastric dilatation–volvulus [153].
However, in dogs with chronic heart failure, the concentration of vitamin C increases,
which is considered to be a compensatory increase induced by chronic oxidative stress [154].
One study on kidney transplant dogs showed that the activities of SOD, GPx, and CAT
were increased after feeding vitamin C, indicating improved antioxidative capacity [111].
However, another study showed that when fed an adequate diet, additional vitamin
C supplementation had no significant impact on the antioxidant capacity and immune
function of healthy dogs [155]. Lipid-soluble vitamin E is a chain-breaking antioxidant
that reacts with lipid oxygen or lipid peroxide free radicals [156]. A study on dogs showed
that vitamin E can prevent the increase in plasma malondialdehyde caused by exercise,
which indicates that vitamin E has a positive role in preventing lipid peroxidation [110].
When vitamin E and C, and beta-carotene, were fed together to cats with renal insufficiency,
the concentration of serum 8-OHdG decreased, indicating alleviated DNA damage from
oxidative stress [113]. Vitamin B plays an important role in the health of the central nervous
system [157]. Some mixed foods rich in vitamin B, fish oil, and other antioxidants have
been shown to improve the cognitive function of cats [158] and dogs [159]. However, the
direct effect of vitamin B on stress in dogs and cats remains to be explored. Taken together,
the addition of vitamins B, C, and E may have a positive effect on the antioxidative capacity
and health of the nervous system in pets [6,113].

5.1.3. Minerals

The antioxidant and anti-stress abilities of minerals have long been investigated and
applied, especially in combination with vitamins [160,161]. Representative trace elements
include Fe, Zn, Se, and Mn. The role of these elements has been widely verified in a
variety of species [162,163]. Studies have also shown that some dog skin diseases may be
related to oxidative stress and zinc deficiency [164]. Organic selenium can reduce blood
malondialdehyde levels and improve the activities of glutathione peroxidase, superoxide
dismutase, and catalase, thus enhancing the antioxidant capacity of dogs with induced
renal calculi [114]. In hyperthyroid cats, radioiodine can reduce urinary isoprostane, the
high level of which reflects renal oxidative stress [115].

5.1.4. Polyunsaturated Fatty Acids

Polyunsaturated fatty acids (PUFAs) are fatty acids with more than one double bond in
their backbone. Omega-3 PUFAs are among the most commonly used in dogs and cats. The
antioxidative effect of PUFAs is achieved through either the component of cell membranes
to decrease their sensitivity to free radicals, or boosting the endogenous antioxidative
system (e.g., increasing cellular concentration of super oxide dismutase or gluthatione
peroxidase) [165]. Feeding fish oil, which is rich in omega-3 PUFAs, to police dogs can
promote the activities of GPx and CAT, and reduce the levels of blood glucose, and total
and LDL cholesterol, indicating that fish oil can improve the antioxidant capacity and
alleviate oxidative stress caused by strenuous exercise in dogs [117]. Additionally, due to its
critical role in the development and function of the central nervous system, PUFAs are often
included in brain protection formulae, which have been shown to improve the cognitive
function and behavioral health of cats [158] and dogs [132,159,166]. In rodent models, it
has been approved that omega-3 PUFAs can reduce anxiety-like behaviors and improve
cognition in animals subjected to early life stress [167], possibly through the regulation of
intestinal microbiota and the function of the brain–gut axis, including HPA [168]. Even
though not verified in pet dogs and cats, we suggest similar mechanisms involved with the
behavioral improvements and dietary intake of PUFAs exist as in rodents.
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5.1.5. Thiols

Thiols or mercaptans are a class of organic compounds with antioxidative capacity
because their chemical structure contains a sulfhydryl group that is easily oxidized. The
representative ones are N-Acetylcysteine and α-lipoic acid [169]. Studies on cats showed
that feeding N-Acetylcysteine can increase the important cytosolic antioxidant, reduced glu-
tathione, under the oxidative stress induced by onion powder [170]. N-Acetylcysteine can
also protect liver tissue from the oxidative damage induced by acetaminophen in cats [171].

Lipoic acid is a small molecule of both animal and plant resources that contains two
thiol groups that may be oxidized or reduced. Lipoic acid and its reduced form, dihy-
drolipoic acid, are powerful antioxidants with amphiphilic character [172]. They can easily
quench radicals, chelate metals, interact with and regenerate other antioxidants, increase
endogenous glutathione activity, and attenuate the release of free radicals and cytotoxic
cytokines by regulating the second messenger nuclear factor κB [172]. The powerful an-
tioxidant properties of α-lipoic acid make it helpful in the ancillary treatment of many
human diseases, such as cardiovascular diseases and neurodegenerative diseases [172].
As summarized in a review study, supplementation of α-lipoic acid in appropriate doses
(i.e., 1–5 mg/kg/day) can be beneficial in dogs, helping to reduce and delay lens opacities
in diabetic dogs, reduce biomarkers of osteoarthritis, and when supplemented together
with other antioxidants, reduce cognitive dysfunction and improve learning in senior
dogs [173]. Even though α-lipoic acid can be safe and well tolerated by humans or animals,
the recommendation of use in cats is rare because they are extremely sensitive to the toxic
effect of α-lipoic acid compared to other species [174].

In humans and other animal species, additional substances and/or dietary formulae
have been identified and investigated for their antioxidative function, such as saccharicter-
penin, which is a new natural additive mainly extracted from Camellia plants [175], and the
methionine/lysine proportion in the diet [176]. This evidence indicates that there are still
many nutritional strategies with antioxidant potential that remain to be developed, and
their application in relieving oxidative stress in cats and dogs requires further verification.
Additionally, studies have suggested the use of a combination of different ingredients to
achieve better antioxidative effects. For example, dietary supplementation of an antioxidant
mixture containing quercetin (Q), resveratrol (R), curcumin, and vitamin E was shown to
counteract both the oxidative stress and the related side effects elicited by methimazole
treatment in hyperthyroid cats [177].

5.2. Anxiolytic Agents
5.2.1. Gamma-Aminobutyric Acid and Its Receptor Agonists

Gamma-aminobutyric acid (GABA) is a small non-protein amino acid that is produced
in the brain and other parts of the body (e.g., β cells of the pancreas, gastrointestinal tract,
and endothelium) [178]. In the mammalian brain, GABA acts as the main inhibitory neuro-
transmitter and is widely known for its effect on anxiety- and stress-related disorders [179].
Peripheral administration of GABA is not effective in increasing its concentration in the
brain due to the high polarity of the structure which limits its passage through the blood–
brain barrier (BBB) [180]. Alternatively, many anxiolytic drugs/substances were developed
to target GABA receptors [181]. Studies have shown that oral administration of alpha-
casozepine, a milk-sourced lipophilic decapeptide that can cross the BBB and act on GABA
receptors as an agonist, was effective in the management of anxiety disorders such as
social phobias in domestic cats [121]. Alpha-casozepine was also shown to decrease the
score of emotional disorder evaluation in dogs (EDED) [120] and reduce anxiety behavior
and serum cortisol in anxious dogs [119]. The mixed addition of alpha-casozepine and
L-tryptophan in diet reduced the urinary cortisol of cats [122] and reduced the inactive time
of cats in unfamiliar environments [123]. The above evidence shows that alpha-casozepine,
as a GABA receptor agonist, can alleviate anxiety and reduce stress in dogs and cats.
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5.2.2. L-Tryptophan

Tryptophan is the precursor for the synthesis of neurotransmitter 5-hydroxytryptamine/
serotonin (5-HT), and the central serotonergic system is associated with fear- and anxiety-
related states and stress responses [182]. An anxiolytic effect of a dietary addition of
tryptophan is likely achieved by facilitating central 5-HT synthesis and signaling [58]. In
cats, L-tryptophan is often tested together with alpha-casozepine [122]; therefore, the effect
of tryptophan on stress management in cats requires further verification [123]. In dogs,
the addition of tryptophan to the diet can increase the plasma tryptophan concentration
and the ratio of tryptophan to large neutral amino acids [124]. Tryptophan will compete
with large neutral amino acids (LNAAs) for transporters to cross the BBB [183]. When
tryptophan and LNAAs were supplemented at a ratio of 0.075:1, the serum serotonin
increased and the stool score improved in training dogs [125]. In addition, tryptophan
supplementation can reduce attacks related to territorial domination [126] and stress-
related anxiety behaviors [127] in dogs. Taken together, the dietary intake of tryptophan
has the potential to alleviate anxiety in cats and dogs, but other factors that are involved
in regulating tryptophan synthesis of 5-HT need to be considered, such as the ratio of
tryptophan to LNAA, the alternative kynurenine pathway, and the activity of key enzymes
including tryptophan hydroxylase [58].

5.2.3. Theanine

Theanine, chemically named N-ethyl-L-glutamine, is an amino acid unique to green
tea leaves that can compete with L-glutamic acid for the binding of glutamate receptors in
the brain to exert its anti-stress effect [184]. Relevant studies in rat models have shown that
theanine intake increases the concentration of 5-HT and dopamine in the brain [185]. In
humans, theanine was shown to reduce the heart rate and relieve elevated blood pressure
during stress, and weaken the stress response of the autonomic nervous system induced
by physical and psychological stress [184]. In cats, theanine was shown to be effective in
improving undesirable manifestations of stress, especially inappropriate elimination [130].
Theanine can also reduce the global anxiety scores in storm-sensitive dogs, as reflected by
reduced anxious behaviors (e.g., drooling, following people, pacing, panting, and hiding)
and latency to return to a baseline behavioral state after the storm ends [128]. In addition, a
study suggests that theanine is effective for reducing fearful behavior toward unfamiliar
human beings in dogs [129]. The above research shows that dietary administration of
appropriate theanine may serve as a promising strategy for relieving stress and improving
anxious behaviors in dogs and cats.

5.2.4. Diet with Differed Macronutrient Composition

The composition of certain nutrients in the diet may also impact animal behavior.
An earlier study revealed that incorporating more protein in the diet in exchange for an
isoenergetic amount of fat resulted in a trend toward decreased dominance aggression but
increased territorial (fear) aggression in dogs [186]. This change of dietary nutrients on
behavior may be associated with tryptophan concentrations since diets with different pro-
tein contents (11.8, 16.9, and 22.2 g/MJ) are linearly correlated with their tryptophan levels
(67, 105, and 115 mg/MJ). However, a ketogenic diet high in fat, but low in protein and
carbohydrate content, was shown to reduce the attention-deficit/hyperactivity disorder
and fear/anxiety of dogs with idiopathic epilepsy [131]. A possible mechanism is that the
high content of medium chain triglyceride in the diet alters the energy metabolism in the
brain which may contribute to behavioral changes [131]. More studies are required to de-
termine the mechanisms underlying the connection between dietary nutrient composition
and animal behaviors.

5.3. Probiotics and Prebiotics

Animal and human studies have shown that gut microbiota can be involved in the
regulation of stress/emotion factors such as serotonin synthesis [187], brain-derived neu-
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rotrophic factor [188], and cortisol [189], thereby participating in the management of an
individual’s stress level and related psychiatric symptoms. A microbial metabolite con-
verted from tyrosine, 4-ethylphenyl sulfate (4-EPS) has recently been shown to contribute
to the mechanism involving gut–brain interaction [190]. The metabolite can enter the brain,
damage oligodendrocytes and reduce myelination of neuronal axons, thus inducing anxiety
behavior [190]. The mixture of prebiotics, fish oil, and polyphenols can reduce the content
of plasma 4-EPS and anxiety-related metabolites in dogs [136]. Meanwhile, the relative
abundance of Blautia, Bacterioides, and Odoribacter was decreased, which are found to be
decreasing in patients with anxiety [136]. A recent study in dogs reported that S. boulardii
(1 × 109 CFU di/kg of feed) reduced fecal calprotectin, IgA, and cortisol, indicating that
S. boulardii may play an active role in alleviating intestinal inflammation and reducing
stress hormone secretion [137]. Therefore, we can infer that improving the composition
of intestinal flora may have therapeutic potential in relieving anxiety and stress. In terms
of probiotics and prebiotics that can benefit gut health in pets, there are more studies
in the literature that have provided evidence [135,138,139,191] but their direct effects on
regulating stress and related behaviors are yet to be determined. However, probiotics and
prebiotics have many positive effects on intestinal and neural health, which is expected to
also play a role in relieving stress and related symptoms [192].

6. Conclusions

In the modern domestic environment, dogs and cats are regularly faced with various
stress problems. Causes of stress include uncomfortable environments and conflicts in
social life. When dogs and cats perceive stress, a series of physiological changes occur in
the body, mainly mediated by the HPA and SAM axes. At the same time, oxidative stress
has also been proved to be highly correlated with stress response. However, intestinal
health is of great significance, especially in regulating dog and cat behaviors via the gut–
brain axis. If stress is not alleviated, it may cause gastrointestinal diseases, urinary tract
diseases, decreased immunity, abnormal behavior, and some cardiovascular problems.
Dietary supplementation (e.g., antioxidants, anxiolytic agents, and probiotics) is conducive
in alleviating the systemic changes associated with pet stress. Through this review, we
provided insight into potential future research directions. Some small peptides and amino
acids, such as alpha-casozepine and theanine, may act as agonists for receptors in the neuron
system and thus show anxiolytic effects. Plant extracts (e.g., gallic acid and tannic acid)
may have great potential in alleviating oxidative damage and promoting intestinal flora,
which may be of great significance in improving intestinal stress symptoms. However,
much remains unclear about how to apply the different dietary strategies into stress
management (e.g., exact functions, side effects, and application guidelines). Overall, stress
management and control in pets through dietary strategies is a systematic project that
requires multifaceted efforts and sustained research.
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