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Abstract: Complex molecular mechanisms define our responses to environmental stimuli. Beyond
the DNA sequence itself, epigenetic machinery orchestrates changes in gene expression induced
by diet, physical activity, stress and pollution, among others. Importantly, nutrition has a strong
impact on epigenetic players and, consequently, sustains a promising role in the regulation of
cellular responses such as oxidative stress. As oxidative stress is a natural physiological process
where the presence of reactive oxygen-derived species and nitrogen-derived species overcomes the
uptake strategy of antioxidant defenses, it plays an essential role in epigenetic changes induced by
environmental pollutants and culminates in signaling the disruption of redox control. In this review,
we present an update on epigenetic mechanisms induced by environmental factors that lead to
oxidative stress and potentially to pathogenesis and disease progression in humans. In addition, we
introduce the microenvironment factors (physical contacts, nutrients, extracellular vesicle-mediated
communication) that influence the epigenetic regulation of cellular responses. Understanding the
mechanisms by which nutrients influence the epigenome, and thus global transcription, is crucial for
future early diagnostic and therapeutic efforts in the field of environmental medicine.

Keywords: DNA methylation; ncRNAs; histone modifications; nutrition; antioxidants; 2D culture;
extracellular vesicles

1. Introduction

The epigenome encompasses multiple interacting regulatory elements that define
phenotypic variation beyond what the DNA sequence encodes [1–3]. In addition to their
roles in development and differentiation, epigenetic mechanisms play a fundamental role in
transcriptional regulation during disease progression, further underscoring the importance
of understanding their molecular bases [4,5]. Chromatin is a complex of proteins and
nucleic acids found in the eukaryotic cell nucleus and is subjected to continuous changes to
accommodate cellular metabolic needs. As chromatin is the physiological template of the
majority of the epigenetic mechanisms, it refers to heritable and reversible changes that
mediate all DNA-dependent processes, including replication, repair, recombination and
transcription, without altering the DNA sequence. In a versatile and highly coordinated
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manner, epigenetic regulation of transcription establishes cell-specific gene expression sig-
natures from the same genome. It allows the cell to change these gene expression signatures
in response to stimuli, such as changing conditions from their environment [2]. Some of
the best-characterized epigenetic mechanisms of transcriptional regulation involve DNA
methylation, histone modifications, nucleosome remodeling, regulation via noncoding
RNAs (ncRNAs) and nuclear matrix interactions [5–8].

2. Epigenetics in the Context of Environmental Exposure

DNA methylation in eukaryotes is mediated by DNA methyltransferases (DNMTs)
and refers to the covalent transfer of a methyl group to the C5 position of cytosine forming
5-methylcytosine (5mC), most frequently at the dinucleotide sequence CG (mCG) [9].
DNA regions that are ≥200 bp long and show a CG:GC ratio ≥0.6 are defined as CpG
(citosine-phosphate-guanosine) islands (CGIs), which are often located within the promoter
of protein-coding genes [10]. It is noted that methylation reprogramming can result from
the inhibition of DNMTs or de novo DNMTs activity. This mechanism is reversible and can
be mediated by different mechanisms involving DNA repair and ten-eleven translocation
(TET) enzymes, which catalyze the oxidation of 5mC, forming several intermediates such
as 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC)
until its full conversion to cytosine [11,12]. Although 5hmC, 5fC and 5caC are less abundant
than 5mC, they contribute to a sensitive and dynamic read-out of cell state as their profiles
are in part determined by an active gene–body transcription and enhancer activity, which
are rapidly altered upon environmental challenge [13].

The genomic landscape of 5mC is the product of the constant activity of both DNA
methylation and demethylation processes, resulting in a dynamic equilibrium that can be
shifted in response to stimuli, including changes in the external environment of the cell.
While the loss of 5mC is associated with genomic instability and cancer, the gain of 5mC has
been associated with several congenital defects and other diseases, thus highlighting not
only the importance of the balance of DNA methylation but also the possible consequences
of their alteration [14–16]. Changes in nutritional status and environmental exposure to
several agents can modify genomic DNA methylation patterns, thereby affecting chromatin
structure and gene expression toward disease [15,17]. Patterns of 5hmC directly correlate
with gene expression profiles and can be rapidly altered following short-term exposure
to environmental agents, in a proportional manner to the duration of the exposure. For
instance, several 5hmC changes induced by the nongenotoxic carcinogen phenobarbital (PB)
were shown to persist in PB-driven tumors; thus, such changes represent early exposure
biomarkers that are maintained across cellular progenies [13]. Interestingly, loci enriched
with 5hmC after exposure to PB correspond mostly to enhancers and in less quantity to
promoters and gene bodies. Furthermore, PB-induced aberrant levels of 5hmC have been
associated with liver tumors in mice, therefore suggesting that PB exerts its pathological
effect through epigenetic regulation, leading to disease [18,19].

Posttranslational modifications of histone proteins (further referred to as histone mod-
ifications) constitute another level of epigenetic mechanisms of transcriptional regulation.
Histone proteins (H1, H2A, H2B, H3 and H4) are relatively small and basic proteins that
are abundant in the cell nucleus and are an essential part of the nucleosome. The nucleo-
some is the basic repeating structural and functional unit of chromatin, consisting of the
nucleosome core particle, the linker DNA between two nucleosome core particles and
an H1 molecule [20]. The nucleosome core particle consists of approximately 146 base
pairs of genomic DNA wrapped around a histone octamer of two H2A-H2B dimers and
one (H3-H4)2 tetramer [21]. Due to the structural features of the nucleosome, histone
proteins can undergo posttranslational modifications at their N-terminal tails, which com-
prise acetylation, methylation, phosphorylation, ubiquitination and sumoylation, among
others [22–25]. While DNA methylation is relatively stable in somatic cells, histone modifi-
cations are more diverse and dynamic, changing rapidly during the cell cycle [6,8,22,23].
Acetylation at specific amino acids of histones (e.g., histone 3 lysine 9 acetylation, H3K9Ac)
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is generally associated with active chromatin. It is mediated by histone acetyltransferases
(HATs) and removed by histone deacetylases (HDACs). Histone methylation also occurs at
specific amino acids of histone proteins and can be associated with both repression (e.g.,
H3 lysine 27 trimethylation, H3K27me3) or activation (e.g., H3 lysine 4 trimethylation,
H3K4me3) of gene expression. Various enzymes mediate histone methylation (histone
methyltransferases; HMTs) and histone demethylation, represented mainly by histone
lysine demethylases (KDMs) [26,27].

Several environmental agents induce changes in histone modifications, thereby lead-
ing to changes in gene expression signatures. It has been reported that tobacco smoke
influences histone methylation patterns. Further, the cadmium contained in tobacco smoke
has been reported to have an impact on epigenetic landscapes in fetuses from smoking
mothers. Similarly, exposure to lead (Pb) has been reported to have an impact on neurolog-
ical disease via alterations in epigenetic regulation [28–30]. On the other side, epigenetic
modifications require metabolites as substrates. S-adenosylmethionine (SAM) is a common
donor of methyl groups. The sources of SAM can be obtained from several metabolic
routes such as glycolysis, amino acid metabolism, as well as folate and choline. It has been
observed that a reduced methionine intake is associated with a decrease in methylation
levels. In addition, the demethylation process requires α-ketoglutarate as a substrate.
Furthermore, acetylation processes require acetyl-CoA as a substrate. When there is a
high availability of acetyl-CoA, an increase in histone acetylation levels is also observed.
The evidence strongly suggests that epigenetic regulation is closely related to nutritional
factors [31–33]. Perhaps one of the best-known examples of the effects of nutrition on epige-
netics and health is the Dutch famine. In a harsh winter during World War II, caloric intake
was severely reduced from what is recommended as healthy for human beings. Fetuses
gestated under these circumstances showed as adults a higher incidence of obesity, type 2
diabetes, cardiovascular diseases, a propensity to dyslipidemias and even mental disorders.
Remarkably, individuals exposed to these conditions showed differentially methylated
loci in their genome, known as malnutrition-associated differentially methylated regions
(P-DMRs). Such P-DMRs are frequently located in regulatory elements and particularly in
regions associated with birth weight and LDL-cholesterol levels [29,34].

Another component of epigenetic mechanisms that plays a significant role in mediat-
ing transcription involves ncRNAs. The majority of RNAs transcribed from the mammalian
genomes are ncRNAs, which are not translated into proteins [35]. ncRNAs can be classified
based on their nucleotide length into small noncoding RNAs (sncRNAs, 21–34 nucleotides
long) and long noncoding RNAs (lncRNAs, >200 nucleotides long) [36,37]. Further clas-
sification of the ncRNAs can be done based on the biological processes in which they are
involved, leading to a variety of ncRNA subtypes, including short interfering RNAs (siR-
NAs), transfer RNAs (tRNAs), Y RNAs, PIWI-interacting RNAs (piRNAs) and microRNAs
(miRNAs) in the fractions spanning 15–40 nucleotides, while ribosomal RNAs (rRNAs)
and lncRNAs are predominant in the fractions spanning ≥40 nucleotides [38]. Epigenetic
regulation of gene expression signatures by ncRNAs has been mainly related to lncRNAs
and miRNAs. miRNAs constitute an RNA subtype of 21 to 25 nucleotides in length that act
primarily in the cytosol by inhibiting translation [39]. However, accumulating reports in the
last decade demonstrate the presence of functional miRNAs in the cell nucleus as regulators
of various biological processes, including transcription [7,40–44]. For lncRNAs, different
mechanisms have been characterized in detail for their roles in the nucleus [35,45–48].
Through their interaction with specific genomic regions and proteins, they tether their regu-
lated genes to specialized regions of the nucleus in which specific biological processes take
place. For example, ncRNAs provide a framework for the assembly of defined chromatin
structures at specific loci, thereby modulating gene expression, centromere function and the
silencing of repetitive DNA elements. Exposure to diverse environmental factors also influ-
ences the epigenetic mechanism of the regulation of gene expression mediated by ncRNAs.
Recent evidence suggests that heavy metals carry out their toxic action through miRNAs,
particularly related to altered epigenetic mechanisms of gene expression in neurological
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diseases. Lead (Pb) and cadmium (Cd) are good examples of heavy metals that have been
associated with the development of Alzheimer’s disease (AD), Parkinson’s disease (PD)
and amyotrophic lateral sclerosis (ALS) [28,30,49]. From a nutritional perspective, it has
been described that glucose intake activates thioredoxin-interacting protein (TXNIP), which
induces miR-204 expression. In turn, miR-204 targets MAFA, a key transcription factor for
insulin production, contributing to type 2 diabetes mellitus development [50].

3. Relationship between Epigenetics and Oxidative Stress in the Context of
Environmental Exposure

Exposure to different environmental factors, including pollutants, can change the
epigenome and lead to adverse health effects. Pollutants such as heavy metals, endocrine
disruptors (EDC), particulate matter (PM) and titanium oxide (TNM), among others, have
been linked to epigenetic changes, including DNA methylation, histone modifications and
ncRNA aberrant expression [51,52]. However, oxidative stress (OS) is arguably the most
common mechanism in the toxicology of environmental agents, unifying the action of
broad classes of disparate environmental physicochemical pollutants, including oxidant
gases, organic compounds, particulate surfaces and metal ions [53].

OS results from environmental disturbance, which is known to modify cellular pro-
cesses such as apoptosis, signal transduction cascades and DNA repair mechanisms [54].
As OS is a natural physiological process where the presence of oxidants (reactive oxygen-
derived species, ROS and nitrogen-derived species, RNS) overcome the uptake strategy
of antioxidant defenses, it plays an essential role in epigenetic changes induced by en-
vironmental pollutants and culminates in signaling the disruption of redox control
(Figure 1) [55,56].
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Figure 1. Role of oxidative stress in epigenetic modifications induced by environmental pollutants.
ROS potentially interfere with the activity of DNMTs (1), their ability to methylate cytokines (2) or
their union with the MBP complex (3). Guanine oxidation makes the methylated cytokine more
susceptible to oxidation by TET enzymes (4). In addition, ROS deplete SAM by oxidizing MAT and
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MS (5) or by using homocysteine to regenerate GSH (6) causing DNA hypomethylation. However,
ROS can also inhibit TETs (7). ONOO- nitrates histones (8), while reactive aldehydes modify histones
by carbonylation (9). Glutathionylation is a relevant modification in histones due to oxidative
stress (10). In addition, ROS either inhibit JmjC demethylases (11) or attenuate HMTs activity by
decreased SAM (12). Additionally, ROS inhibit HDACs (13) and stimulate HATs (14). However, ROS
could activate HDACs through an increase in NAD+ (15). Histones can be phosphorylated upon
DNA damage (16). ROS causes deregulation of transcription factors (17), pre-miRNA synthesis by
interaction with Fe3+ (18) and Dicer activity inhibition, which impairs miRNA maturation (19) and
NRF2 levels (20). Created with biorender.com.

It is noted that mitochondria are the primary intracellular source of ROS generation
due to electron transfer during adenosine triphosphate (ATP) production [57–59]. Com-
plexes I and III of the electron transport chain (ETC) have been described as important sites
of ROS production [60–62]. These sites within ETC can leak even under normal conditions.
The electron leak from the ETC reduces molecular oxygen (O2) to superoxide anion (O2

−),
which triggers the production of hydrogen peroxide (H2O2), which, in turn, can receive
another electron and form the hydroxyl radical (-OH) [63]. On the other hand, O2

− can
also react with nitric oxide (NO), generating peroxynitrite anion (ONOO−) [64]. ONOO−

and OH are highly reactive ROS that induce oxidative damage to proteins, lipids and DNA
when their production is exceeded [65]. Therefore, to reduce the cellular damage caused by
ROS, a cellular redox balance is needed. This balance is achieved by different antioxidants,
including enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx),
catalase (CAT) and nonenzymatic antioxidants such as glutathione (GSH) and vitamins
A, C and E [66]. The expression of antioxidant enzymes and those associated with GSH
production depends on different transcription factors, such as nuclear-erythroid-factor-
related factor 2 (NRF2) and hairpin box O (FOXO). They both respond rapidly to oxidative
environments to induce a redox balance, such as the expression of the abovementioned
antioxidant enzymes [66].

3.1. DNA Methylation and Oxidative Stress

Various studies have shown that environmental pollutants alter DNA methylation by
inducing OS. Environmental factors, especially plastic-derived EDCs (bisphenol A, BPA;
phthalate di-2-Ethylhexyl phthalate, DEHP; and bisphenol-A bis-diphenyl phosphate, BDP),
generate OS and induce transgenerational epigenetic modifications through abnormal DNA
methylation involving male and female gametes [67–69]. OS was previously shown to
be one of the mechanisms by which BPA causes alteration in DNA methylation, affecting
development and fertility function in male rat pups and grass carp ovary (GCO) cells [70,71].
In addition, prenatal and ancestral exposure to DEHP has been shown to disrupt DNA
methylation in the ovaries of CD-1 mice in each generation by altering the activity of
enzymes such as DNA methyltransferases (DNMT) and ten-eleven translocation (TET), thus
changing gene expression in several pathways critical to ovarian cell growth, proliferation
and function. These pathways include the sex steroid hormone synthesis pathway, the
phosphoinositide 3-kinase (PI3K) pathway, cell cycle regulators, apoptosis and OS factors,
steroid hormone receptors and insulin-like growth factors [72]. Moreover, embryonic
exposure to DBP causes hypomethylation of genes involved in heart development, which
induces congenital cardiac defects [73].

Cigarette smoke is another pollutant that induces high levels of ROS, which leads to
alterations in DNA methylation and the development of diseases such as chronic obstruc-
tive pulmonary disease (COPD) in humans [74]. Squamous metaplasia of the respiratory
epithelia occurring in tobacco smokers is a typical outcome of such epigenetic changes [75].
Furthermore, growing evidence reveals that environmental exposure to heavy metals in-
volves alterations in DNA methylation [76]. For instance, Cd pollution in the Lean River
was observed to cause OS and a significant increase in global DNA methylation in the
zebrafish liver [77]. Studies have consistently shown that Cd load in fish, in consequence,
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is an important health hazard due to human consumption due to an increase in the levels
of this toxic element (and others such as Pb and MeHg) from 1 × 10−6 to 1 × 10−3, cor-
related with an exponential increase in cancer risk from 1 case per million to 1 case in a
thousand individuals, which clearly highlights the necessity of environmental regulations
worldwide [78]. Cd also suppresses the activity of the tumor suppressor p16 through
hypermethylation of its gene in rats exposed to cadmium chloride (CdCl2) [79]. In addition,
exposure to environmental arsenic is prominently related to hypomethylation in blood
DNA [80]. Using a similar approach, another study showed that environmental Pb sig-
nificantly decreased LINE-1 promoter gene methylation, which resulted in pathological
consequences in workers from a battery plant [81]. Furthermore, tetranitromethane (TNM)
exposure has been shown to cause reduced global DNA methylation while increasing ROS
and malondialdehyde (MDA) [82]. Therefore, TNM treatment well explains the association
of oxidative blockade with hypermethylation of poly(ADP-ribose) polymerase-1 (PARP-1),
a sealed DNA-binding protein that regulates various cellular mechanisms [83].

PM2.5 is another environmental factor capable of inducing epigenetic modifications via
pro-oxidant activity [84–86]. PM2.5 has been shown to increase ROS production through up-
regulation of the aryl hydrocarbon receptor (AHR) in skin keratinocytes. Such ROS increase
was related to hypomethylation of the p16INK4A promoter due to the downregulation of
DNMTs and the upregulation of TET enzymes. Of note, the antioxidant N-acetylcysteine
(NAC) could reverse the epigenetic modifications induced by PM2.5, which exposes the role
of OS in mediating such an effect [84]. Another study found that PM exposure increased
ROS levels and concomitantly activated stress kinase cascades to inhibit p16 transcription in
alveolar epithelial cells, both in vivo and in vitro. The decreased expression of p16 resulted
in the loss of cyclin D-dependent kinases (CDK4 and CDK6) inhibition and cell cycle arrest
in the G1 phase. Thus, PM-induced DNA methylation of the tumor suppressor p16INK
could favor the development and progression of lung cancer [56]. In addition, PM-induced
ROS produces 5-hmC and causes DNA demethylation, suggesting a significant correlation
between oxidative stress, methylation processes and epigenetic alterations (Figure 1) [87].

There are different mechanisms by which OS causes alterations in the methylome [88,89].
One of them is the formation of DNA lesions. For example, -OH generation causes DNA
damage such as base modifications, deletions, strand breaks and chromosomal rearrange-
ments [90,91]. These DNA lesions caused by -OH interfere with DNMT activity since
the damaged DNA cannot be used as a substrate for the enzyme, resulting in global hy-
pomethylation [92]. On the other hand, ROS can also cause hypomethylation by oxidizing
DNA bases in CpG, cytosine-guanosine dinucleotide (CG) DNA sequences where cytosine
is the preferred base for DNA methylation and guanine is the site of oxidative damage.
Some of the ROS, such as -OH, can oxidize guanine forming mainly (but not exclusively)
8-oxoguanosine (8-oxoG) [93–95]. The formation of 8-oxoG decreases the ability of DNMT
to methylate an adjacent cytosine [96,97]. The formation of 8-oxoG also causes the N7 posi-
tion of guanine to become a hydrogen bond donor rather than a hydrogen bond acceptor,
substantially decreasing the binding of methyl-CpG-binding proteins (MBPs) [98,99]. Fur-
thermore, if the cytosine next to the oxidized guanine is methylated in the CpG sequence,
forming 5-mC, it becomes more susceptible to oxidation by TET, generating 5-hmC [100].
It is noteworthy to mention that oxidation of 5-mC to 5-hmC also causes a reversal of
the binding affinity for MBPs [99]. MBPs interact with methylated DNA to drive gene
expression and maintain or alter DNA architecture [101]. Therefore, by impairing the
MBP–DNA interactions, oxidation of 5-mC may result in hereditary epigenetic alterations.

OS also directly blocks DNA methylation by depleting S-adenosylmethionine (SAM)
and oxidizing methionine adenosyltransferase (MAT) and cobalamin in methionine syn-
thase (MS), leading to the inactivation of SAM and MS enzymes [102–104]. SAM is
formed by MAT from methionine and is the donor of the methyl group used by DN-
MTs to methylate cytosine. After donating the methyl group to cytosine, SAM becomes
S-adenosylhomocysteine (SAH), which hydrolyzes to homocysteine. Homocysteine can
be regenerated to methionine by the action of MS. Furthermore, the trans-sulfuration
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pathway to regenerate glutathione under OS conditions causes the transformation of SAM
to homocysteine, cystathionine and cysteine, thus eventually depleting the reservoir of
SAM [105,106]. Lastly, OS can also induce DNA hypermethylation by inhibiting TET
proteins. TETs are iron- [Fe](II) and α-ketoglutarate- (α-KG)-dependent dioxygenases
responsible for 5-mC oxidation. During the TET catalytic cycle, Fe(II) is oxidized to Fe(III)
and Fe(IV) [107]. The oxidized iron is regenerated by ascorbate [108]. However, under OS
conditions, reduced ascorbate decreases and, consequently, TET is inactivated, increasing
overall methylation levels [109].

3.2. Histone Modifications and Oxidative Stress

Histones that are part of chromatin nucleosomes can be altered by OS, which is induced
by environmental factors [110,111]. Histones can undergo posttranslational modifications
such as acetylation, methylation, phosphorylation, nitration, ribosylation, ubiquitination,
sumoylation or glycosylation [112,113]. Various studies have shown that OS and nitrosative
stress extensively modify histones, affecting their folding and stability and their posttrans-
lational modifications [109]. For example, RNS like ONOO− can use nitrated histones.
Nitrated histones show an increase in structured domains, specifically β-sheet structures,
and greater thermostability. The increase in thermostability has been related to protecting
DNA from OS. Furthermore, in vivo nitration-denitration of histones could be involved
in the control of cellular events, including apoptosis [114,115]. The effects of nitration
by environmental contaminants have been depicted in cancer models. For instance, in
mice with fibrosarcoma caused by methylcholanthrene, a polycyclic aromatic hydrocarbon,
histones H4, H3 and H2B were nitrated at their tyrosine (Tyr) residues [116].

Alternatively, reactive aldehydes generated intracellularly during OS can also modify
histones by carbonylation. ROS promotes the formation of α-dicarbonyls or α-oxoaldehydes,
including methylglyoxal (MGO) and 3-deoxyglucosone [117,118]. In an interesting study,
Ashraf et al. showed that histones that were modified by the action of 3-deoxyglucosone
in vitro become less thermostable due to partial unfolding. However, in vivo, this effect
would lead to alterations in chromatin structure and gene expression [119,120]. Another
study highlighted the role of MGO in histone modification by glycation, which leads to
an increase in alpha-helical structures and protein stabilization in vitro [121]. Moreover,
Kreuz and Fischle proposed that these differences may be due to different target residues
of the different reactive aldehydes or the formation of different end products [89].

ROS can also oxidize lipids to form highly reactive α- and β-unsaturated aldehy-
des, such as glyoxal, MDA, acrolein, 4-hydroxy-2-nonenal (4-HNE) or 4-oxo-2-nonenal
(4-ONE) [122]. It has been described that 4-ONE forms adducts with histones causing
inhibition of nucleosome assembly [123]. Furthermore, HNE has been shown to alter
histone binding to DNA [124]. Glutathionylation is another modification that can occur in
histones due to OS. It refers to the interaction of GSH with the thiol (SH) groups of histones,
causing nucleosome instability, gene expression and DNA replication changes [125]. In
particular, glutathionylation occurs on cysteine residue 110 in histone variants H3.2/H3.3,
producing structural changes in the nucleosome, as shown by circular dichroism stud-
ies [126]. OS also alters histone methylation. For example, OS has been shown to inhibit
the demethylases of the Jumonji C domain-containing (JmjC) family of proteins, which,
like TET, use Fe(II). However, ROS oxidize Fe(II) to Fe(III), causing the attenuation of JmjC
histone demethylases [109]. Moreover, it has been proposed that -NO can bind directly
to the catalytic iron causing the inhibition of the JmjC family and, therefore, a decrease in
demethylation [127,128].

Reduced levels of SAM also cause histone hypomethylation. As explained above, OS
inhibits SAM synthesis enzymes; thus, histone methyltransferases (HMTs) are blocked [105,129].
Heavy metals such as nickel, arsenic and chromium impact the posttranslational modi-
fication (mainly acetylation, methylation and ubiquitination) of histones [130,131]. The
primary mechanism related to this epigenetic modification is the OS generated by these
metals, but it has also been observed that nickel can replace iron in its catalytic center in
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enzymes of the JmjC family. In addition, chromium and/or arsenic can affect ascorbate
levels, necessary to reduce Fe and thus attenuate demethylase enzymatic activity in cells.
In addition to heavy metals, hypoxic conditions can also catalyze ROS to increase histone
methylation marks [130,132].

Several studies have also shown the effect of OS on the balance between histone acety-
lation and deacetylation. Histone deacetylases (HDACs) can be inhibited by carbonylation,
phosphorylation, nitrosylation or glutathionylation because of increased ROS [133] and
reactive aldehydes [134–136]. Cigarette smoke has been shown to reduce HDAC2 activity
by phosphorylation [137,138]. Inactivation of HDAC2 results in its ubiquitination and pro-
teasomal degradation and, consequently, an increase in histone acetylation. In patients with
COPD exacerbated by cigarette smoke, an increase in the acetylation of histones H3 and
H4 at the NF-κB promoter is directly responsible for the deregulation of proinflammatory
genes [139]. Similar effects of cigarette smoke have been observed in macrophages, in which
sirtuin 1 (SIRT1), an enzyme belonging to HDAC class III, was inhibited by the action of
ROS, RNS and reactive aldehydes generated by OS [140]. Subsequently, ROS derived from
NADPH oxidase 2 (NOX2) causes a marked elevation in histone H3 acetylation through
the activation of histone acetyltransferases (HATs) located within the promoter regions of
the Slug gene (SNAI2) [141]. However, ROS can also stimulate HDAC expression [142,143]
or enhance HDAC activity to decrease acetylation. For example, it has been observed
that H2O2 leads to an increase in lactate dehydrogenase, an enzyme that catalyzes the
reduction of lactate to pyruvate, producing NAD+, an essential HDACs cofactor, therefore
stimulating deacetylation [144].

OS can also phosphorylate histones. ROS cause double-strand breaks, leading to
histone phosphorylation to trigger DNA repair [145,146]. Furthermore, H2O2 can in-
crease histone phosphorylation in an ATR-dependent manner, independent of the presence
of double-strand breaks, suggesting that it fulfills a different signaling function in OS
cells [147]. However, the role of OS in histone phosphorylation is controversial since it
was found that the catalytic metal ion within protein phosphatases can be oxidized under
OS conditions [148]. Because histones are the most abundant chromatin proteins, any
change in their quantity, structure or posttranslational modifications will severely impact
the overall chromatin structure, influencing gene expression, genome stability and cellular
stability replication.

3.3. Noncoding RNAs and Oxidative Stress

ncRNAs are epigenetic regulators that can modify gene expression without altering
the DNA sequence. ncRNAs are known to be sensitive to ROS and function in accor-
dance with the cellular redox state [149]. Today, transcriptional ncRNAs are classified
into small ncRNAs and long ncRNAs (lncRNAs). Small ncRNAs can be classified into
microRNAs (miRNAs), PIWI (P-element induced wimpy)-interfering RNAs (piRNAs) and
small interfering RNAs (siRNAs) [149]. Various studies have revealed that miRNA-targeted
transcription factors (e.g., c-MYC, p53, NF-KB) are redox-sensitive. Therefore, abnormal
miRNA expression can be attributed, at least partially, to the deregulation of transcription
factors induced by an increase in ROS [150,151]. In a similar study, the transformation of
human embryonic lung fibroblast (HELF) cells by chronic exposure to arsenite is mediated
by the increased expression of miR-21 and the activation of the ERK/NF-κB pathway in a
ROS-dependent manner [152].

The Drosha-DGCR8 complex regulates the processing of miRNAs from their primary
form. ROS have been reported to impact the processing capacity of DGRC8, which is
dependent on Fe(III) for its action and thus enables the generation of pre-miRNAs [151,153].
The pre-miRNAs then translocate from the nucleus to the cytoplasm, undergoing Dicer
processing. ROS inhibit Dicer activity, hence delaying the production of mature miRNAs,
which reflects cell behavior [151]. Oxidative modifications can also influence the shape
and size of pre-miRNA in bulges and loops [154]. ROS can also modulate the methylation
status of specific promoter regions of miRNA genes, imposing epigenetic regulation on
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miRNA expression patterns. Hypomethylation of the promoter region of miR-199a and
miR-125b in the presence of ROS is stimulated by the upregulation of DNMT1 [155]. On the
other hand, it was observed that most ROS-responsive miRNAs influence the NRF2 system.
For example, cisplatin/OS-induced loss of miR-34a leads to the overexpression of SIRT1,
which is required to activate the NRF2 system [156]. NRF2 and its negative regulator kelch-
like ECH-associated protein (KEAP1) constitute a pivotal signaling axis for the regulation
of genes involved in redox homeostasis, conferring cellular protection against ROS and
tumorigenesis [157]. Under physiological status, KEAP1 acts as an adaptor between NRF2
and the ubiquitination ligase Cullin-3 (CUL3), but upon modification of specific thiols,
KEAP1 allows NRF2 to translocate to the nucleus in order to activate the expression of
antioxidative, metabolizing and detoxifying genes by binding to the antioxidant response
element (ARE) in their regulatory regions. Indeed, class I HDAC enzymes and p65 inhibit
ARE-dependent gene expression, in the case of p65 via selective deprivation of the CREB-
binding protein (CBP) from NRF2 and recruitment of H3 [158]. Among the genes regulated
by the NRF2 system, heme oxygenase (HO-1), UGT1A1, glutathione S-transferase Mu1
(GSTM1) and NQ01 have been reported to be significantly reduced among human cancer
subtypes [159,160]. In consequence, epigenetic modifications in the NRF2 system, including
abnormal KEAP1 promoter methylation, could promote carcinogenesis in organs such as
the breasts, lungs, thyroid, prostate, skin, brain, colon and prostate [161,162].

Numerous studies show that air pollutants alter the miRNA expression profile and
OS could play an important role in this scenario [163]. For example, exposure to metal-
rich particles significantly altered the miRNA expression profile among steel production
workers [164]. Furthermore, miRNAs that actively participate in inflammation, endothelial
dysfunction and coagulation are significantly altered in subjects exposed to environmental
black carbon, organic carbon, PM2.5 and sulfates [165]. Subchronic exposure to cigarette
smoke also affected miRNA expression in rat lungs [166]. Authors identified 484 miRNAs,
of which 126 were significantly downregulated and 7 were upregulated. Additionally,
the lncRNA HOTAIR has been shown to be involved in the epithelial-to-mesenchymal
transition of human bronchial epithelial (HBE) cells associated with inflammation and
OS induced by cigarette smoke extracts [167]. In summary, OS is one of the mechanisms
involved in epigenetic alterations induced by environmental factors. Among others, OS
generated by heavy metals, PM and endocrine disruptors modifies DNA methylation,
causing DNA damage, oxidizing guanine, decreasing SAM concentration and interfering
with Fe homeostasis. The production of ROS, RNS and reactive aldehydes also leads to
alterations in histone modifications such as acetylation, methylation, phosphorylation,
nitration, ribosylation, ubiquitination, sumoylation or glycosylation. In summary, an
ROS increase also influences alterations in the expression of ncRNAs by modulating their
transcription factors and the enzymes necessary for their production and maturation.

4. Microenvironment and Nutritional Influence on the Preservation of Epigenetic Marks

When cells are cultured in vitro, they live and grow in conditions very different from
the physiologic environment. Therefore, facing the need to adapt, cells use metabolic routes
that allow them to survive and even thrive in the new media. Such adaptations result from
epigenetic events [168]. Several studies have demonstrated that cells that proliferate in
culture tend to show changes in their epigenetic landscape [169–173]. These changes are
not random but, in fact, positively selected for the cell to adapt to the new media and thrive
in it [171].

4.1. Epigenetic Response to Culture Conditions

Human pluripotent stem cells (hPSC) display a significant change in the pattern of
DNA methylation when grown in prolonged in vitro culture [167,172,173]. Even chang-
ing the conditions within the culture medium leads to a new period of adaptation and
epigenetic modifications (Figure 2). Most of the epigenetic changes induced by culture
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conditions occur in early stages and are stable and inheritable, even after differentiation
events, as has been proven in human embryonic stem cells (hESC) [174,175].
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In recent years, hPSC and hESC have been studied as potential therapies for several
diseases. Cell therapy, however, faces several important obstacles [176]. One important
aspect is that these epigenetic changes could be permanent [169]. Moreover, several of the
acquired epigenetic patterns were shown to resemble those of cancer [171]. Weissbein et al.
reported changes in the methylation and expression patterns of hPSC, the entity of which
strongly correlated with the number of passages in culture. Particularly, it was found that
the level of methylation in the cells increases and, in parallel, gene expression decreases
in a chronological manner [171]. Additionally, the hypermethylation and downregulation
of TSPYL5 were reported, a pattern common in several types of cancers [177,178] and
correlating with cell proliferation [179].

Furthermore, it has been reported that mouse embryonic fibroblasts (MEFs) show a
change in the pattern of global lysine acetylation in a matrix-mechanics-dependent manner.
MEFs cultured in a stiff hydrogel matrix show a higher general content of lysine acetylation,
which might correspond to an open, decondensed, active chromatin [180]. A recent study
by Cox et al. showed that culture conditions affect the histone methylation pattern [170]. To
characterize H3K4me3 profiles in glioblastoma, U251 cells differed depending on whether
the cells were cultured in 2D or 3D microenvironments and were influenced by oxygen
levels [163]. Switching from a 2D to a 3D culture was associated with 11,863 differentially
methylated loci when cultured in hypoxic and with 11,303 differentially methylated loci
when cultured under normoxic conditions. The switch from normoxic to hypoxic caused
methylation changes in 1000 regions, and in 1246 regions in 3D cultures. When analyzing
the position of H3K4me3 marks within the gene structure, it was observed that in the 3D
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culture, there was an enrichment in TSS and promoter regions, while in the 2D culture, the
distribution was more uniformly distributed in the gene structure. This study supports the
idea that the histone methylation landscape is affected by the culture microenvironment.
Clearly, it is necessary to study in more detail how mechanotransduction in 3D culture
influences cell nuclear phenotypes since the epigenetic organization strongly depends on
tissue architecture [181–183].

As said above, DNA methylation changes also depend on cellular aging. Consistently,
the levels of H3K4me2 and H3K27me2 marks and DNA methylation increased in porcine
oocytes cultivated for several generations compared to fresh oocytes. Interestingly, the
authors also found that supplementing the medium with melatonin, a known antiaging
hormone, attenuated the methylation marks in cultured oocytes to a level similar to that in
fresh oocytes [184].

Unfortunately, the changes in ncRNA regulation have not been directly addressed
yet in the context of cell culture adaptation. This leaves an unexplored field with a lot
of potential, given that many of the experimental models are developed in cell culture
and we still lack much knowledge about how much the adaptation process affects the
results. However, some initial efforts have shown that it is possible to reprogram cardiac
fibroblasts into cardiomyocytes in culture when using a miRNA combination containing
miR-1, miR-133, miR-208 and miR-499. Interestingly, cells showed significantly higher
expression levels of matrix metalloproteinases (MMPs) when cultured in a 3D fibrin-based
hydrogel as well as a higher rate of reprogramming, suggesting a strong influence of the
matrix on the process mediated by an MMPs-dependent mechanism [185].

4.2. The Role of Extracellular Vesicles and Additional Cofactors

Cells typically receive external signals such as growth factors, hormones, cytokines,
metabolites and other extracellular factors through their sensors (receptors) on the mem-
brane and subsequently commence a cascade of signaling molecules that transmits the
signals to the nucleus or other internal organelles. Cells then translate and use these
transmitted signals to control many basic functions such as proliferation, growth and dif-
ferentiation. Furthermore, these signals can trigger posttranslational modification (PTMs)
of various proteins, epigenetic changes and chromatin remodeling as an adaptive strategy
to the stimuli and, in some cases, this communication can result in abnormal growth and
differentiation leading to tumorigenesis. Extracellular vesicles (EVs) that are released
by many cell types in different physiological conditions (cancerous and noncancerous),
transport signaling biomolecules in the form of proteins, nucleic acids (DNA/RNA), lipids
and metabolites that can directly or indirectly regulate a diverse range of cellular pro-
cesses through long-term epigenetic reprogramming involving DNA methylation, histone
modification and posttranscriptional regulation of RNA [186].

Hence, the content of EVs can reflect the cell status and might be clinically relevant to
disease progression, diagnosis or assessment of prognosis. For instance, EVs isolated from
pancreatic cancer patients were shown to contain genomic double-stranded DNA (dsDNA)
bearing mutated KRAS and p53 genes [187]. Microvesicles (EVs of 100–1000 nm in diameter)
released from leukemia cells were shown to increase the levels of DNMT3a, DNMT3b
and AICDA (a deaminase involved in DNA demethylation) in hematopoietic recipient
cells [188]. Moreover, the recipient cells incubated with leukemia-derived microvesicles
exhibited a leukemia-like malignant phenotype with increased global DNA methylation
levels and hypermethylation of tumor suppressor genes such as p53 and RIZ1, indicating
that microvesicles can initiate the malignant transformation of normal hematopoietic
transplants through genomic instability.

The role of EVs regulating histone methylation remains elusive. Nevertheless,
Schiera et al. discovered that oligodendroglioma cells, but not normal astrocytes, are
released in the culture medium EVs containing the differentiation-specific linker histone
variant H1◦ [189]. To be noted, the deregulation of H1◦ histone expression can be associated
with tumorigenesis [189]. Accordingly, H1◦ is a linker histone variant with a prominent role
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during terminal differentiation [190,191]. Moreover, studies indicated that tumor-derived
factors could inhibit the expression of H1◦, which will cause defective dendritic cell dif-
ferentiation [191]. EVs are quite stable and can be detected in serum. Since ncRNAs are
essential regulators of important biological processes and can be packaged in EVs secreted
by tumor cells, it follows that EVs in serum can affect the behavior of cells and tissues
distant from the primary tumor [192].

Among ncRNAs, miRNAs are probably the most prevalent RNA species found in
exosomes, as assessed by deep RNA sequencing accounting for 42.32% of all raw reads
and 76.20% of all mappable reads [186,193]. miRNAs are stable in circulation and resistant
to RNase digestion in serum [185]. Moreover, miRNA sequences are conserved across
species and their expression variations in circulation are linked to different malignancies
and disease stages, thus being potential biomarkers [193–197]. In addition, some miRNAs
known as “epi-miRNAs” can directly control epigenetic machinery by directly targeting
DNA methyltransferases [198]. For instance, miR-101 represses DNMT3a by directly tar-
geting its 3′-UTR and reducing global DNA methylation, with the consecutive expression
of the tumor suppressor CDH1 via hypomethylation of its promoter, hence suppressing
lung tumorigenesis [199]. Moreover, miR-29b was shown to regulate TET3 levels, which is
necessary for the regulation of 5-hmC during memory formation in adult brains [200].

In addition, miRNAs modulate histone deacetylases (HDACs). For instance, the
pro-inflammatory activity of miR-22 was attributed to the posttranslational suppression
of HDAC4, influencing the expression of many immune-related genes such as IL6 and
CD40 [201]. Additionally, miR-22 was found to be associated with increased macrophage
and neutrophil infiltration in the lungs and to be a critical regulator of both emphysema and
T(H)17 responses. In addition, miR-22 was predicted to target HDAC4, REST corepressor1
(RCOR1) and G-protein signaling 2 (RGS2). Overall, the suppression of HDAC4 by miR-
22 promotes neuronal survival and inhibits neurodegeneration in an in vitro model of
Huntington’s disease (HD) [202]. In addition, EVs from metastatic cancer cells contain
miRNAs contributing to malignancy. For instance, EVs from melanoma cells were shown
to carry high levels of prominin-1, which contributed to metastatic progression [203–205].
Additionally, the prominin-1-expressing exosomes (prom1-Exo) derived and purified from
melanoma and colon carcinoma cells were shown to carry 20 cancer-related miRNAs
as well as various prometastatic proteins, including MAPK4K, GTP-binding proteins,
CD44, annexin A2 and ADAM10 [206]. In addition, prominin-1-loaded exosomes from
melanoma and colon carcinoma cells increased the invasiveness of bone-marrow-derived
stromal cells (MSCs) in coculture, highlighting the role of tumor-derived EVs as vehicles
to exchange genetic information between tumor and stromal cells, creating a permissive
microenvironment for tumor growth and progression. Similarly, the metastatic gastric
cancer cell line AZ-P7a, but not the low metastatic AZ-521 cell line, showed high levels
of the mir-let7 family secreted into the extracellular environment via exosomal transport,
which induced a prometastatic phenotype in the target cells [207].

The exosomal transport of miR-126 from chronic myelogenous leukemia cells (CML)
into endothelial cells (EC) was shown to modulate their motility and adhesion, under-
scoring the role of exosomal miRNA shuttling in tumor-endothelial crosstalk in the bone
marrow microenvironment [208]. Intriguingly, Grange et al. showed that CD105+ MVs, but
not CD105−MVs, from renal cancer cells retained their pro-angiogenic properties [209].
In this study, CD105+ MVs were shown to carry multiple proangiogenic mRNAs coding
for FGF, VEGF, ephrin A3, angiopoietin1, MMP2 and MMP9, therefore enhancing tumor
vascularization. In addition, various cancer-associated miRNAs were detected in CD105+
MVs, including miR-200c, miR-92, miR-141 and prometastatic miR-29a, miR-650 and miR-
151, hence forming a premetastatic niche when administered to a renal tumor cell line.
In another study, fibroblast-secreted exosomes were shown to enhance breast cancer cell
(BCC) migration by activating autocrine Wnt-planar cell polarity (PCP) signaling, indicat-
ing that stromal cells can act to promote cancer progression and metastasis in a specific
manner [210]. In addition, co-injection of fibroblasts and BCCs in orthotopic mouse models
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of breast cancer enhanced metastasis, which was dependent on PCP signaling and, particu-
larly, on the exosome component CD81 from fibroblasts [210]. On the contrary, exosomes
isolated from bone marrow mesenchymal stem cell (BM-MSC) cultures positively impacted
the behavior of the human breast cancer cell line BM2 in coculture, suppressing the pro-
liferation, decreasing the stem-cell-like surface markers, inhibiting the invasion through
Matrigel transwell assay and decreasing the sensitivity to chemotherapy agents such as
docetaxel [211]. These effects were attributed to the exosomal transfer of miR-23b and the
suppression of its target gene, MARCKS, that encodes a protein promoting cell proliferation
and motility. Furthermore, the same phenotype was observed when miR-23 was specifically
overexpressed in BM2 cells that induced a dormant phenotype by MARCKS suppression.

The lncRNA ANRIL is known to recruit the polycomb repressor complex 2 (PRC2)
through binding to its SUZ12 subunit, thereby mediating H3K27 trimethylation and form-
ing heterochromatin around loci with the tumor suppressor genes INK4b (p15), ARF (p14)
and INK4a (p16) [212]. In addition, ANRIL can also recruit PRC1 by directly binding to its
CBX7 subunit and directing H3K27me3 to stimulate H2AK199 ubiquitination [213]. Like
exosomal miRNAs, the content of lncRNAs in EVs might reflect tumor oncogenic hallmarks
such as tumor growth, metastasis and response to treatment. Recent studies show that four
lncRNAs (SNHG16, ZFAS1, OIP-5 AS1 and ERVK3-1) were significantly upregulated in
exosomes derived from breast cancer tumor cells (TDEs) [214]. Moreover, among them, the
exosomal lncRNA SNHG16 secreted by breast cancer (BC) cells can specifically increase
CD73 expression on Vδ1 Treg cells, which are the predominant regulatory T-cell popula-
tion in BC through the SNHG16/miR-16-5p/SMAD5 regulatory axis. HIF-1α-stabilizing
long noncoding RNA (HISLA) was demonstrated to be transmitted from tumor-associated
macrophages (TAMs) to breast cancer cells via secreted exosomes causing metabolic re-
programming by enhancing aerobic glycolysis and apoptosis resistance of breast cancer
cells [215]. In addition, the release and transfer of exosomal metastasis-associated lung ade-
nocarcinoma transcript 1 (MALAT1) from epithelial ovarian cancer (EOC) cells to recipient
HUVEC cells enhanced the expression of angiogenesis-related genes [216], a vital process
that was shown to supply tumor cells with nutrients and oxygen for continuous tumor
growth and a prerequisite for metastasis.

While emerging shreds of evidence indicate the critical role of exosomal lncRNAs
in multiple processes of cancer development, such as hyperproliferation of cancer cells,
metastasis, apoptotic resistance, angiogenesis, drug resistance and immunomodulation,
the discovery of significant biological information from exosomal lncRNAs can help us to
better comprehend and manage the development and progression of cancer. In this context,
one of the most promising research areas is the one addressing the association between
EVs, oxidative stress and the pathogenesis of multiple diseases, including cancer. Several
studies have indicated that when the organism’s homeostasis is altered (for instance, upon
an increase in oxidative stress), EVs cargoes radically change and, consequently, so do
their downstream effects [217–219]. Nevertheless, the relationship between oxidative stress
and oxidative modifications inside EVs is still not clearly understood, which limits the full
appreciation of the clinical potential of EVs.

Interestingly, a recent study showed that treatment with the oxidative-stress-inducing
and chemotherapy agent, doxorubicin (DOX), resulted in increased EV production (DOX-
EVs) [220]. Moreover, DOX-EVs exhibited an aberrant morphology with increased levels
of 4-hydroxynonenal (4-HNE) adducted proteins, which is a lipid peroxidation product
that appears in cell membranes during oxidative stress and is linked to DOX-induced
cardiotoxicity. In addition, DOX-EVs exhibited tissue-specific protein isoforms, for instance
tissue-specific haptoglobin (Hp) and glycogen phosphorylase (GP) isoforms from the
brain (PYGB), skeletal muscle (PYGM) and liver (PYGL). Importantly, pretreatment with
a mitochondrial-selective antioxidant-enhancing drug (MnP) significantly reduced the
levels of EVs-associated protein-bound 4-HNE when compared to DOX treatment alone.
However, another antioxidant-enhancing drug, DRZ, had a weaker effect on the release of
EVs than MnP, which might be explained by the higher affinity to mitochondria. Overall,
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EVs could be used as a predictive tool for the antioxidant reactivity of individual patients
upon chemotherapy, as well as a tool to determine the chemotherapy dose that will avoid
normal tissue injury.

4.3. Nutrigenomics Impacts Epigenomics

In addition to cofactors, cellular metabolism is a key modifier of multiple epige-
netic modifications, including DNA methylation, histone methylation and acetylation.
Many metabolic intermediates, including SAM, 2-hydroxyglutarate (2-HG), acetyl-CoA, α-
ketoglutarate (α-KG), uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc), succinate,
fumarate and lactate, provide substrates for epigenetic modifications of histones as well
as various nonhistone proteins that have an impact on tumor development. As described
earlier, the transfer of the methyl group from SAM to the substrate results in the production
of SAH and methylated amino acid. Both SAM and SAH can bind to methyltransferases.
However, SAH was reported to bind to some methyltransferases much more tightly than
SAM and is a potent inhibitor of many (SAM-)dependent methyltransferases [221,222],
which inhibits the conversion of methionine to SAM. Increasing lines of evidence suggest
that metabolic changes and histone methylation are highly correlated in cancer cells. For
instance, the enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) was
demonstrated to promote histone H3 lysine 27 trimethylation (H3K27me3), affecting tumor
cell metabolism, including carbohydrate, lipid and amino acid metabolism associated
with tumorigenesis and cancer development [223]. In another study, EZH2 was shown to
promote glycolysis in pancreatic cancer mediated by H3K27me3 and the suppression of
LINC00261, which acts as a tumor suppressor in pancreatic cancer [224].

Cellular metabolism is oxidative in nature and produces reactive oxygen species as
byproducts [48]. Oxidative stress has been proposed as a potential mediator of nutrition-
induced epigenetic changes that could be passed on to offspring [225]. Dietary intake of
macronutrients, such as protein, carbohydrates and lipids, causes postprandial oxidative
stress in several organs and tissues, mainly in vascular-endothelial tissue, adipose tissue,
skeletal muscle, nervous tissues and liver and pancreatic β-cells [226–228]. Additionally,
their metabolism provides intermediates, such as acetate, S-adenosylmethionine (SAM),
α-ketoglutarate, uridine diphosphate, (UDP)-glucose, adenosine triphosphate (ATP), nicoti-
namide adenine, dinucleotide (NAD+) and fatty acid desaturase (FAD), which are utilized
for chromatin modification and thus impact epigenetic changes [229].

Micronutrients like vitamins (and minerals) act as cofactors to regulate cell metabolism.
These cofactors contribute to the enzymatic activity of epigenetic modifiers and their
dietary deficiency has various health consequences affecting physiological growth, immune
response, endocrine response and other processes [230,231]. Overall, nutrition acts as an
epigenetic modifier to adapt the organism to either the excess or lack of macro- and
micronutrients, which eventually impacts the general pathophysiology leading to obesity,
cardiovascular diseases or defective growth, infertility and other unhealthy conditions [232,233].

The dietary supplementation of macro- and micronutrients, as well as of natural
substances with antioxidant properties, affects the epigenetic signature of key metabolic
genes that can prevent oxidative damage and the associated pathophysiological conditions
induced by hypercaloric nutrients [229,234]. For instance, a >3-month diet rich in polyphe-
nols (such as the Mediterranean diet) has long-lasting protective anti-inflammatory and
antioxidant effects on the cardiovascular system [235]. Moreover, nutrients and natural
products, such as amino acids, vitamins and plant/herb-derived polyphenols, can deter-
mine long-term adaptative responses to stress by switching the gene expression through
epigenetic changes (Figure 3).

The most important adaptive stress response for reestablishing cell homeostasis (thus
preventing cell damage and cell death) is macroautophagy, a pathway for lysosomal degra-
dation of oxidized, damaged and redundant cellular components [236]. Autophagy coun-
teracts the accumulation of ROS by p62-mediated sequestration and degradation of KEAP1,
which then releases NRF2 that eventually leads to the transcription of antioxidant target
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genes such as superoxide dismutase, catalase, hemeoxygenase-1 and NAD(P)H:quinone
oxidoreductase [237]. The excess of oxidative stress may cause cell damage, which even-
tually triggers inflammation, thus leading to organ disease. Autophagy also dampens
inflammation by removing NLRP3 inflammasome activators [238].

Antioxidants 2023, 12, x FOR PEER REVIEW 15 of 29 
 

conditions induced by hypercaloric nutrients [229,234]. For instance, a >3-month diet rich 
in polyphenols (such as the Mediterranean diet) has long-lasting protective anti-inflam-
matory and antioxidant effects on the cardiovascular system [235]. Moreover, nutrients 
and natural products, such as amino acids, vitamins and plant/herb-derived polyphenols, 
can determine long-term adaptative responses to stress by switching the gene expression 
through epigenetic changes (Figure 3). 

 

Figure 3. Vitamins linking oxidative stress with epigenetics. The metabolism of dietary macronutri-
ents produces ROS as side-products, which may contribute to inflammation-related diseases. How-
ever, intermediate metabolites and other dietary nutrients help the cell to face oxidative stress 
through epigenetic modulation of genes regulating the stress response. Overview of the metabolism 
of folic acid for the production of methyl donors (for DNA methylation). Created with bioren-
der.com. 

The most important adaptive stress response for reestablishing cell homeostasis (thus 
preventing cell damage and cell death) is macroautophagy, a pathway for lysosomal deg-
radation of oxidized, damaged and redundant cellular components [236]. Autophagy 
counteracts the accumulation of ROS by p62-mediated sequestration and degradation of 
KEAP1, which then releases NRF2 that eventually leads to the transcription of antioxidant 
target genes such as superoxide dismutase, catalase, hemeoxygenase-1 and 
NAD(P)H:quinone oxidoreductase [237]. The excess of oxidative stress may cause cell 
damage, which eventually triggers inflammation, thus leading to organ disease. Autoph-
agy also dampens inflammation by removing NLRP3 inflammasome activators [238]. 

Many bioactive compounds target oxidative stress and inflammation through their 
byproducts (conventionally considered an agro-industrial waste), which increases the va-
lue in the circular economy of products such as extra-virgin olive oil. Its secondary meta-
bolites, including simple phenols, phenolic acids, secoiridoids, flavonoids and lignans, 
have shown anti-inflammatory effects (decreased C-reactive protein, interleukin-6 and tu-
mor necrosis factor TNFα) in randomized clinical trials with colon cancer patients who 
consumed them in their diet [239,240]. Importantly, olive mill wastewater extracts drasti-
cally decrease the levels of prostaglandin PGE2, lactate dehydrogenase (LDH), nitric oxide 

Figure 3. Vitamins linking oxidative stress with epigenetics. The metabolism of dietary macronu-
trients produces ROS as side-products, which may contribute to inflammation-related diseases.
However, intermediate metabolites and other dietary nutrients help the cell to face oxidative stress
through epigenetic modulation of genes regulating the stress response. Overview of the metabolism
of folic acid for the production of methyl donors (for DNA methylation). Created with biorender.com.

Many bioactive compounds target oxidative stress and inflammation through their
byproducts (conventionally considered an agro-industrial waste), which increases the value
in the circular economy of products such as extra-virgin olive oil. Its secondary metabolites,
including simple phenols, phenolic acids, secoiridoids, flavonoids and lignans, have shown
anti-inflammatory effects (decreased C-reactive protein, interleukin-6 and tumor necrosis
factor TNFα) in randomized clinical trials with colon cancer patients who consumed them
in their diet [239,240]. Importantly, olive mill wastewater extracts drastically decrease the
levels of prostaglandin PGE2, lactate dehydrogenase (LDH), nitric oxide synthase (iNOS),
cycloxygenase COX2 and TNFα, as shown by ex vivo approaches of rat colon, liver, heart
and prefrontal cortex [241]. Further studies have suggested that their protective mechanism
of action involves lipid peroxidation and the restoration of glutathione concentrations [242].

At the cellular level, an excess of nutrients (e.g., glucose or fatty acids) overwhelms
the oxidative phosphorylation capacity of mitochondria, which then overproduce anion
superoxide as a side product [57]. In response to oxidative stress, macroautophagy (partic-
ularly mitophagy) is induced as a protective pro-survival action [243]. However, a chronic
excess of anion superoxide may eventually inhibit autophagy [244,245]. It is to be noted
that autophagy, and particularly mitophagy, is also induced when the cell is deprived of
oxygen or nutrients [243].

In this context, it is interesting to note that autophagy is also regulated at epigenetic
levels [246,247] and a variety of nutrients and natural dietary products with antioxidant
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properties also stimulate autophagy via epigenetic mechanisms [248–250]. Particularly,
plant- and fruit-derived polyphenols and flavonoids, such as, for example, curcumin,
resveratrol, quercetin and catechins, exert anti-inflammatory activity and protect against
disease through the epigenetic modulation of autophagy [251–254]. In the next paragraph,
we shall discuss in detail the epigenetic mechanisms through which the most relevant
nutrients and dietary phytochemicals act.

5. Effects of Dietary Nutrients on the Epigenome

Dietary vitamins can modulate the epigenome and therefore have a direct impact on
physiological and pathological processes [255,256]. Vitamin C is an essential micronutrient
that blocks oncogenic transformation induced by carcinogens [257]. The protective role of
vitamin C in cancer progression has historically been attributed to its antioxidant activity
and the prevention of DNA damage induced by oxidative stress [258]. Vitamin C is sug-
gested to affect the genome activity via regulating epigenetic processes. For example, it
has been identified that Fe and 2OG-dependent dioxygenases that catalyze the hydroxyla-
tion of methylated DNA and RNA and histones require ascorbate as a cofactor to initiate
demethylation [259,260]. It is a cofactor for TET dioxygenases that catalyze the oxidation
of 5mC into 5hmC. Ascorbate is also required for the JmjC-domain-containing histone
demethylases, serving as a cofactor for histone demethylation. In this manner, vitamin
C appears to be a mediator between the genome and the environment. These findings
demonstrate an unknown function of vitamin C in regulating the epigenome, which needs
a re-evaluation of the functions of vitamin C in human health and disease [257]. Recent
studies have shown that vitamin C, by enhancing TET activity, can directly influence DNA
methylation levels that alter chromatin structure and the expression of tumor suppressors
and DNA repair enzymes [261].

Vitamin A (retinol) and its metabolite all-trans retinoic acid reduce DNA methylation
by raising the level of TET proteins (which oxidize DNA methylation) and, in doing
so, promote stemness [262]. In embryonic stem cells, Vitamin A can displace HDACs
from binding to retinoic acid response elements within the promoter of target genes, thus
promoting their expression [263]. In neuroblastoma cells, Vitamin-A-induced transcription
of the proto-oncogene RET is associated with chromatin remodeling and demethylation of
H3K27me3 of the enhancer, as well as increased H3K4me3 at the promoter region [264].

Vitamin B12 is an essential cofactor for the synthesis of methionine (from homocys-
teine), which is critical for DNA methylation, yet methionine supplement cannot rescue
the epigenetic hypomethylation of CpG associated with vitamin B12 deficiency [265]. De-
ficiency of Vitamin B12 during pregnancy has epigenetic impacts on the next generation,
leading to decreased global DNA methylation and increased expression of certain microR-
NAs such as miR-221 and miR-133 [266].

Vitamin D is a critical nutrient essential for human health and its deficiency is nowa-
days a major health problem. It is introduced with food or as a supplement, yet it is
largely synthesized in the body upon exposure to solar ultraviolet B radiation. It has
been calculated that the vitamin D axis can regulate up to 3% of the genome [267]. The
primary epigenetic effects of vitamin D are linked to histone acetylation [268] and DNA
methylation [269]. In addition, vitamin D functioning through its receptor VDR is regulated
by ncRNAs and, most importantly, VDR itself influences the expression of oncogenic and
tumor suppressor lncRNAs [270]. Under the category of Vitamin E, saturated tocopherols
and unsaturated tocotrienols with ROS scavenging properties are included. α-Tocopherol
was reported to increase the methylation of the miR-9 promoter, a miRNA involved in the
control of glycemia [271].

Dietary phytochemicals have antioxidant and anti-inflammatory properties and their
prolonged consumption can leave long-lasting epigenetic marks on DNA [272,273] and
changes in ncRNAs levels [274,275]. Particularly curcumin, quercetin, resveratrol and
EGCG (EpiGalloCathechinGallate), among others, are well-known anti-inflammatory and
antioxidant polyphenols and are formidable epigenetic modulators capable of regulating
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the activity of DNMTs, HATs and HDACs and also the biogenesis of microRNAs [272,274].
Such epigenetic activities have been demonstrated on the basis of the curative potential of
these dietary polyphenols in inflammatory diseases [276], cardiovascular diseases [277],
metabolic disorders [278] and cancer [253,279–281].

6. Conclusions and Future Perspectives

The epigenetic regulation of gene expression is a highly regulated process, not less
a dynamic mechanism by which our cells respond to both internal and external factors,
with these being mechanistically connected. While the epigenetic profile allows the cell to
change gene expression signatures in response to stimuli, such as changing conditions from
their environment (conventionally referred to as “the exposome”), most of the epigenetic
regulators (i.e., enzymes and proteins involved in transcriptional and posttranscriptional
modifications) are vastly dependent on the use of a diversity of cofactors from dietary
sources. In consequence, a metabolite variation may cause aberrant chromatin structure
and, thus, epigenetic deregulation. Furthermore, nutrition in essence is a permanent
component of the cellular and tissue microenvironment, bridging an individual’s exposome
and genes. In parallel, epigenetics decodes them as an interplay of major impact on the
pharmacokinetic properties of bioactive dietary components on their molecular targets.

In this review, we discussed the role of different regulators of chromatin structure,
such as DNA methylation and histone-modifying enzymes in syntony with ncRNAs to
act upon oxidative stimuli, as well as how diverse nutrients modulate their function in
the context of pathophysiological conditions (with a particular focus on cancer). The
era of multi-omics approaches provides high-throughput, open platforms for nutrition-
related genomics, transcriptomics, proteomics, metabolomics, glycomics and secretomics
research. Despite its infancy and our first steps toward real translational approaches,
especially in vulnerable populations (for instance, those inevitably exposed to ambient
pollution), nutriepigenomics is a growing, promising field that could provide a better
understanding and future management of diseases, the risk and outcomes of which are
rather unpredictable even among people with similar lifestyles.
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