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Abstract: Mitochondria are one of the organelles undergoing rapid alteration during the senescence
process. Senescent cells show an increase in mitochondrial size, which is attributed to the accumula-
tion of defective mitochondria, which causes mitochondrial oxidative stress. Defective mitochondria
are also targets of mitochondrial oxidative stress, and the vicious cycle between defective mito-
chondria and mitochondrial oxidative stress contributes to the onset and development of aging and
age-related diseases. Based on the findings, strategies to reduce mitochondrial oxidative stress have
been suggested for the effective treatment of aging and age-related diseases. In this article, we discuss
mitochondrial alterations and the consequent increase in mitochondrial oxidative stress. Then, the
causal role of mitochondrial oxidative stress on aging is investigated by examining how aging and
age-related diseases are exacerbated by induced stress. Furthermore, we assess the importance of
targeting mitochondrial oxidative stress for the regulation of aging and suggest different therapeutic
strategies to reduce mitochondrial oxidative stress. Therefore, this review will not only shed light on
a new perspective on the role of mitochondrial oxidative stress in aging but also provide effective
therapeutic strategies for the treatment of aging and age-related diseases through the regulation of
mitochondrial oxidative stress.

Keywords: mitochondrial oxidative stress; mitochondria; ROS; aging control

1. Introduction

When somatic cells reach a certain number of mitotic levels, they begin to lose their
ability to proliferate, which is one of the hallmarks of senescence [1]. Along with losing the
capacity to divide, senescent cells show dramatic changes, such as enlarged and flattened
cell morphology, increased production of reactive oxygen species (ROS), the accumulation
of consequent ROS-mediated damage derivatives (e.g., lipofuscin and granules), and the
senescence-associated secretory phenotype (SASP) [2]. Senescent cells accumulate with age,
negatively impacting regenerative capacity and creating a proinflammatory environment
conducive to the onset and development of aging and age-related diseases [2]. This causal
relationship is supported by the finding that the selective removal of senescent cells in vivo
reduces inflammation and improves immune system function, slowing the development of
aging and thereby extending lifespan [3]. Furthermore, senolytic therapies that eliminate
senescent cells prevent age-related bone loss and fragility, supporting the causal link
between senescence and aging [4].

Changes in organelle morphology or function are another characteristic of senescence,
among which mitochondrial degeneration is most prominent [5,6]. Mitochondria exhibit

Antioxidants 2023, 12, 934. https://doi.org/10.3390/antiox12040934 https://www.mdpi.com/journal/antioxidants

https://doi.org/10.3390/antiox12040934
https://doi.org/10.3390/antiox12040934
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0001-9340-7974
https://orcid.org/0000-0003-2396-9108
https://doi.org/10.3390/antiox12040934
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox12040934?type=check_update&version=2


Antioxidants 2023, 12, 934 2 of 21

structural changes such as significant increases in volume and size due to the buildup of
defective mitochondria [7]. Defective mitochondria generate ROS as a byproduct of electron
leakage from the electron transport complex (ETC) [8]. Not only are defective mitochondria
ROS generators, but they are also targets of mitochondrial oxidative stress, which then
boosts mitochondrial ROS production. Mitochondrial ROS generated by defective mito-
chondria deteriorate the morphology and function of organelles, consequently leading to
aging and age-related diseases [9]. Therefore, strategies to reduce mitochondrial oxidative
stress may be beneficial as therapeutic approaches to aging and age-related diseases [10,11].
The finding that treatment of senescent cells with ROS scavengers restored the senescent
phenotype supports the usefulness of this strategy [11]. Mitochondrial oxidative stress is a
major cause of senescence and the consequent development of age-related diseases, so a
deeper comprehension of the mechanisms that target and control mitochondrial oxidative
stress is needed.

This review discusses mitochondrial alterations and the consequent increase in mi-
tochondrial oxidative stress and proposes ways to reduce mitochondrial oxidative stress
to treat aging and age-related diseases. Using search terms including “mitochondrial
alterations”, “mitochondrial oxidative stress”, and “mitochondrial ROS”, a thorough lit-
erature search was conducted in PubMed (a database of life sciences and medical journal
articles). Based on previous and current studies derived from the literature, we provide a
new perspective on the causal link between mitochondrial oxidative stress and aging and
suggest potential therapeutic options for treating aging and age-related diseases.

2. Mitochondrial Alterations during the Process of Senescence and Aging

Mitochondria maintain their morphology, quality, and function through mitochondrial
dynamics consisting of fusion and fission (Figure 1A). Mitochondrial fusion occurs in two
steps. Mitofusin 1 (Mfn1) and mitofusin 2 (Mfn2), mitochondrial dynamin-like GTPases,
fuse the outer mitochondrial membrane (OMM) [12,13] (Figure 1A). Then, OPA1 mitochon-
drial dynamin-like GTPase fuses the inner mitochondrial membrane (IMM). Mitochondrial
fusion allows the mixing of the components of healthy and partially damaged mitochondria,
resulting in a mitochondrial network with more uniform components [14]. Mitochondrial
fission is regulated by receptors on OMM, including a mitochondrial dynamics protein
of 49 kDa and 51 kDa (MiD49 and MiD51, respectively), mitochondrial fission factor
(Mff), and fission 1 protein (FIS1) [15] (Figure 1A). The endoplasmic reticulum (ER) initi-
ates mitochondrial fission by constricting the mitochondrial membrane, and then MiD49
and MiD51 recruit dynamin-related protein 1 (Drp1) to the mitochondrial surface [16,17]
(Figure 1A). This binding allows higher-order Drp1 oligomers to form around the mito-
chondrial surface, leading to separation into two mitochondria [15,17]. A recent study
subdivides mitochondrial fission into fission occurring in the mid-zone and periphery [18].
Mitochondrial fission at the mid-zone occurs when ER tubules contact mitochondria and
constrict [18]. Then, Mff recruits Drp1 to scission sites. Mitochondrial fission at the periph-
ery precedes lysosomal contact and is regulated by FIS1, which recruits Drp1 to scission
sites [18]. Both types of mitochondrial fission are mediated by Drp1, inducing the formation
of higher-order Drp1 oligomers around the scission site, splitting one mitochondrion into
two mitochondria [18]. Mitochondrial fission at the mid-zone creates new mitochondria
to provide necessary mitochondria during cell growth and division [18]. Mitochondrial
fission at the periphery serves as quality control by isolating defective mitochondria from
the mitochondrial network and allowing them to be eliminated by mitochondria-specific
autophagy (mitophagy) [18]. Senescent cells show changes in mitochondrial morphology,
such as increased mitochondrial mass and size [19,20]. Specifically, age-related lysosomal
dysfunction prevents lysosomes from fusing with autophagosomes, limiting the efficient
clearance of defective mitochondria via mitophagy and leading to the accumulation of
defective mitochondria with aberrant and large morphology [21,22]. The causal role of
senescence on mitochondrial morphology is corroborated by the finding that both senescent
and H2O2-induced senescent cells express low levels of FIS1, resulting in an imbalance
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in mitochondrial fusion–fission [23] (Figure 1B and Table 1). This imbalance promotes
the formation of large mitochondria with highly interconnected network structures [23]
(Figure 1B and Table 1). This observation is supported by the discovery that senescent cells
exhibit lower FIS1 and Drp1 expression, mediating the formation of large mitochondria
and the resistance to oxidative stress through PTEN-induced putative kinase protein 1
(PINK1) [24]. Furthermore, FIS1 knockdown cells exhibit large mitochondria with con-
comitant senescence-related phenotypic changes [25]. Large mitochondria also limit the
efficiency of clearing damaged mitochondria through mitophagy, reducing mitochondrial
turnover. This phenomenon is evidenced by the finding that a 60% increase in mitochon-
drial size and a considerable rise in the percentage of large mitochondria were observed in
cells from aged mice [26].
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Figure 1. Mitochondrial alterations during the process of senescence and aging: (A) Mitochondria
maintain their morphology, quality, and function through mitochondrial dynamics consisting of
fusion and fission. Proteins involved in mitochondrial fusion: mitofusin 1 (Mfn1), mitofusin 2 (Mfn2),
and OPA1. Proteins involved in mitochondrial fission: mitochondrial dynamics protein of 49 kDa and
51 kDa (MiD49 and MiD51, respectively), mitochondrial fission factor (Mff), mitochondrial fission 1
protein (FIS1), and dynamin-related protein 1 (Drp1). (B) Senescent and H2O2-induced senescent
cells express low levels of FIS1, forming large mitochondria with highly interconnected network
structures. ROS: reactive oxygen species. The lightning bolt represents senescence-associated stress.

Mitochondrial homeostasis is primarily regulated by mitochondrial Ca2+ concentra-
tion. Ca2+ enters the mitochondria from the ER through mitochondrial porins known
as voltage-dependent anion channels (VDACs) in the OMM (Figure 2A). Specifically, G
protein-coupled receptor 75 (Gpr75) connects the inositol 1,4,5-triphosphate receptor (IP3R)
in the ER with VDACs, facilitating Ca2+ influx from the ER into the mitochondria [27–29]
(Figure 2A). Ca2+ passes via the mitochondrial calcium uniporter (MCU) in the IMM and
is then taken up into the mitochondrial matrix. On the other hand, Ca2+ efflux occurs
through channels that are distinct from those of Ca2+ influx. The Na+/Ca2+ exchanger
(NCLX) and H+/Ca2+ exchanger (HCX) found in the IMM are responsible for Ca2+ efflux
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(Figure 2A). Senescence is characterized by Ca2+-overloaded mitochondria and is exac-
erbated by mitochondrial Ca2+-overload-induced mitochondrial oxidative stress [30–33]
(Figure 2B and Table 1). Specifically, during oncogene-induced senescence, IP3R triggers a
sustained increase in IP3R-mediated Ca2+ release [31]. Ca2+ then starts to be transported
to the mitochondria through the VDAC/MCU channel [31] (Figure 2B and Table 1). Mito-
chondrial Ca2+ overload induces mitochondrial ROS generation and senescence [31]; the
detailed mechanism will be further discussed in Section 3.
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Figure 2. Fundamental mechanism of mitochondrial Ca2+ homeostasis: (A) Mitochondrial home-
ostasis is primarily regulated by mitochondrial Ca2+ concentration. Mitochondrial Ca2+ concentra-
tion is controlled by channels in the mitochondria and in the endoplasmic reticulum (ER). VDAC:
voltage-dependent anion channels, MCU: mitochondrial calcium uniporter, HCX: H+/Ca2+ exchanger,
NCLX: Na+/Ca2+ exchanger, IP3R: inositol 1,4,5-trisphosphate receptor. Orange dots represent Ca2+.
(B) Senescence causes efflux of Ca2+ from the IP3R. Ca2+ then starts to be transported to the mitochon-
dria through the VDAC/MCU channel. Mitochondrial Ca2+ overload induces mitochondrial ROS
generation and senescence; the detailed mechanism will be further discussed in Section 3. Orange dots
represent Ca2+. Lightning bolts represent senescence-associated stress. Pink arrows represent that
large amounts of Ca2+ are being transported to the mitochondria through the VDAC/MCU channel.

Table 1. A summary of senescence-associated mitochondrial alterations.

Mitochondrial Alteration Outcome(s) Experimental Model and References

Mitochondrial morphology

Formation of large mitochondria with highly
interconnected network structures MRC-5 human embryonic lung fibroblasts [19,20]

A considerable rise in the percentage of large
mitochondria C57/BL6 mice aged 30 months [26]

Mitochondrial Ca2+

homeostasis

Senescent cells show a sustained increase in
IP3R-mediated Ca2+ release Human endometrium-derived stem cells [30]

Ca2+ then starts to be transported to the
mitochondria through the VDAC/MCU channel

Human endometrial adenocarcinoma cells and
WI38 human fibroblasts [31]

Mitochondria overloaded with Ca2+ exhibit
increased electron leakage from the ETC and
consequently generate mitochondrial ROS

Human endometrial adenocarcinoma cells and
WI38 human fibroblasts [31]
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3. Defective Mitochondria Are a Major Cause of Mitochondrial ROS Generation

More than 90% of oxygen is utilized by the mitochondria, and in complexes I and
III of the ETC, 1–5% of oxygen is converted into short-lived superoxide anions (O2

−) [34].
Complexes I and III convert oxygen to superoxide anions (O2

−) in the mitochondrial
matrix. In addition, complex III generates superoxide anions (O2

−) in the mitochondrial
intermembrane space. The aging-related deterioration of complex I activity occurs due
to decreased expression and increased oxidation of complex I [35,36]. Consistent with
these findings, neurodegenerative diseases such as Parkinson’s disease (PD) have reduced
complex I activity, leading to increased mitochondrial ROS production and complex I
oxidation [37–40]. Complex I damaged by oxidative stress inefficiently transports electrons
and subsequently increases electron leakage to oxygen, generating superoxide anions (O2

−)
(Figure 3A and Table 2). Superoxide dismutase (SOD) converts superoxide anions (O2

−) to
hydrogen peroxide (H2O2), a non-radical derivative that is relatively stable and permeable
to the mitochondrial membrane. Then, hydrogen peroxide (H2O2) is partially reduced by
the Fenton reaction and converted to a more harmful free radical, the hydroxyl radical
(•OH), which eventually causes severe mitochondrial oxidative stress [41] (Figure 3A).
During the Fenton reaction, mitochondrial ROS is generated by mitochondrial iron that
can be used for heme and iron–sulfur (Fe–S) cluster biosynthesis [42]. Mitochondrial
dysfunction manifests as defects in heme and Fe–S cluster biosynthesis [43,44]. Alterations
in iron homeostasis due to these defects lead to mitochondrial iron overload, resulting in
the overproduction of free radicals via the Fenton reaction [45–47] (Table 2).
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Figure 3. Defective mitochondria are a major cause of mitochondrial ROS generation: (A) Complex I
damaged by oxidative stress inefficiently transports electrons and subsequently increases electron
leakage to oxygen, generating superoxide anions (O2

−). Superoxide dismutase (SOD) converts
superoxide anions (O2

−) to hydrogen peroxide (H2O2). Then, hydrogen peroxide (H2O2) is partially
reduced by the Fenton reaction and converted to a more harmful free radical, the hydroxyl radical
(•OH). e: electron. (B) Mitochondrial Ca2+ overload stimulates the mitochondrial permeability
transition (PT) and opens PT pores (mPTP), allowing ions and other solutes to move freely. Enlarged
mitochondria readily lose cytochrome c that is loosely bound to the IMM. Loss of cytochrome c
impedes electron transport from complex I to IV, resulting in increased electron leakage from ETC.
The leaked electrons react with oxygen to generate large amounts of mitochondrial ROS. Purple dots
represent ions and solutes. Purple arrows represent that large amounts of ions and solutes are being
transported to mitochondria via mPTP.
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Mitochondrial Ca2+ overload is one of the main causes of mitochondrial ROS produc-
tion. Specifically, mitochondrial Ca2+ overload stimulates the mitochondrial permeability
transition (PT) and opens PT pores (mPTP), allowing ions and other solutes to move
freely [48,49] (Figure 3B). The osmotic pressure of the mitochondrial matrix is increased
by mPTP opening, which causes swelling of the mitochondria. Enlarged mitochondria
readily lose cytochrome c that is loosely bound to the IMM [50–53] (Figure 3B and Table 2).
Because cytochrome c plays a key role in electron transport in the ETC, the loss of cy-
tochrome c impedes electron transport from complex I to IV, resulting in increased electron
leakage (Figure 3B and Table 2). The leaked electrons react with oxygen to generate
large amounts of mitochondrial ROS [50,51]. The induced increase in mitochondrial ROS
generation causes mPTP to open more frequently and for longer periods of time [54,55].
The sustained opening of mPTP triggers a rapid decrease in the mitochondrial mem-
brane potential and ATP synthesis. Furthermore, the continuous influx of ions and other
solutes through mPTP causes electron leakage, which increases mitochondrial ROS produc-
tion [53,55,56] (Figure 3B). Mitochondrial Ca2+ overload also increases hydrogen peroxide
(H2O2) formation in mitochondria through the activation of α-glycerophosphate dehy-
drogenase (α-GPDH) located on the outer surface of the IMM [32]. This discovery is
corroborated by the observation that the activation of α-GPDH by mitochondrial Ca2+

increases mitochondrial ROS production by providing more electrons to the ETC and
creating favorable conditions for reverse electron transport [33].

Table 2. Defective mitochondria are a major cause of mitochondrial ROS generation.

Cause of
Mitochondrial

ROS Generation
Outcome(s) Experimental Model

and References ROS Related Information

Defective
mitochondria

Neurodegenerative diseases such as PD have
reduced complex I activity, leading to
increased mitochondrial ROS production and
complex I oxidation

Fibroblasts from the
patient with PINK1
mutation [40]

• ROS sources:
mitochondrial ROS

• Type of ROS: superoxide
anions (O2

−), hydrogen
peroxides (H2O2)

• Enzymes involved in ROS
generation: complex I

Mitochondrial dysfunction manifests as defects
in heme and Fe–S cluster biosynthesis.
Alterations in iron homeostasis due to these
defects lead to mitochondrial iron overload,
resulting in the overproduction of free radicals
via the Fenton reaction

Chondrocyte C-20/
A4 cell lines [47]

• ROS sources:
intracellular ROS

• Type of ROS: total ROS
• Enzymes involved in ROS

generation: not specified

Mitochondrial Ca2+

overload

Mitochondrial Ca2+ overload stimulates the
mitochondrial permeability transition (PT) and
opens PT pores (mPTP), allowing ions and
other solutes to move freely

Isolated heart
mitochondria from
the bovine
heart [48,49]

The osmotic pressure of the mitochondrial
matrix is increased by mPTP opening, which
causes swelling of the mitochondria. Enlarged
mitochondria readily lose cytochrome c that is
loosely bound to the IMM

Astrocytes newborn
C57BL/6 mice [53]

• ROS sources:
intracellular ROS

• Type of ROS: total ROS
• Enzymes involved in ROS

generation: not specified

Loss of cytochrome c impedes electron
transport from complex I to IV, resulting in
increased electron leakage from the ETC. The
leaked electrons react with oxygen to generate
large amounts of mitochondrial ROS

Isolated heart
mitochondria from
male Wistar rats [50]

• ROS sources:
mitochondrial ROS

• Type of ROS: hydrogen
peroxides (H2O2)

• Enzymes involved in ROS
generation: not specified
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4. Vicious Feedback Loop between Mitochondrial Oxidative Stress and
Senescence/Aging

ROS at physiologically low-to-moderate concentrations play biological roles in differ-
entiation and proliferative responses [57,58]. For example, mild doses of oxidative stress
induced by dietary restriction have been demonstrated to extend lifespan in various model
organisms [59,60]. These results suggest that mild doses of oxidative stress can reduce
chronic oxidative damage by increasing endogenous antioxidant defenses, triggering an
adaptive response that enhances overall stress resistance [61]. Not only the level of ROS
is important for cellular function, but the place where ROS is generated is also important.
Mitochondrial ROS generation in complex I via reverse electron transport serves as a cata-
lyst for preserving mitochondrial function and lengthening the lifespan in Drosophila [62].
However, in the same study, the mitochondrial ROS generation by preventing the activity
of coenzyme Q (CoQ), which transports electrons from complex II to III, accelerates aging
and shortens the lifespan in Drosophila [62]. These two conflicting results suggest that
further studies are needed to understand how each ROS-producing site determines lifespan
in Drosophila and whether each site plays a similar role in other organisms.

The physiological levels of ROS mediate important cellular functions, as shown in
several studies, whereas the pathological levels of ROS cause irreversible damage to
DNA, RNA, lipids, and proteins, which is a major contributor to aging and age-related
diseases [63]. For example, accumulating oxidative damage over time activates the p53
and retinoblastoma protein pathways, resulting in persistent cell cycle arrest and senes-
cence [9,64–67] (Figure 4). These findings are strengthened by recent studies showing
that mitochondrial ROS activates a nicotinamide adenine dinucleotide (NAD+)-consuming
enzyme called polyADP-ribose polymerase 1 [68,69]. Increased NAD+ consumption by
polyADP-ribose polymerase 1 significantly reduces NAD+ levels [68]. As NAD+ is a crucial
regulator allowing cells to respond to environmental changes, such as genotoxic factors
and oxidative stress [70], a decrease in NAD+ levels leads to cellular dysfunction and
aggravates age-related pathologies [71–73] (Figure 4). The role of mitochondrial oxida-
tive stress on aging is further substantiated by the finding in the Caenorhabditis elegans
(C. elegans) aging model caused by a mev-1 (complex II ortholog) mutation. The biochemical
pathology of mev-1 mutants includes two-fold more mitochondrial ROS production than
the wild type [74]. Increased mitochondrial ROS levels in mev-1 mutants led to premature
age-dependent physiological alterations, including the accumulation of lipofuscin and pro-
tein carbonyl derivatives [75,76]. Moreover, the average and maximum lifespans of mev-1
mutants in oxygenated conditions were significantly decreased compared with those of the
wild type [74]. Support for this phenomenon is seen in other studies targeting complex II.
An iron chelator, deferoxamine, decreases complex II activity by inhibiting the conversion
of Fe–S clusters in complex II [77]. Decreased complex II activity increases mitochondrial
ROS production, resulting in senescence-like growth arrest [77,78]. Similar to these findings,
transforming growth factor β-1 (TGF-β-1) activates mitochondrial ROS production by inac-
tivating complex IV activity. The accumulation of mitochondrial oxidative stress through
TGF-β-1-mediated inhibition directly causes degenerative changes [79–81]. The effect of
mitochondrial oxidative stress on aging is further supported by findings in mice lacking
superoxide dismutase 1 (SOD1), a protein found in both the mitochondrial matrix and the
mitochondrial intermembrane space [82]. The absence of SOD1 increases superoxide anion
(O2

−) production and consequent oxidative damage, resulting in symptoms commonly
seen in aged mice, such as the premature loss of skeletal muscle mass [82].

Mitochondrial oxidative stress easily damages mitochondrial proteins involved in
proteostasis, which is important for preserving and regulating protein quality in mitochon-
dria [83]. Mitochondrial proteostasis consists of proteases that clearly damage mitochon-
drial proteins and chaperones that promote protein folding [84] (Figure 4). It has evolved
to combat various mitochondrial stresses, including mitochondrial ROS-mediated damage.
The impact of mitochondrial oxidative stress on mitochondrial proteostasis is shown in a
PD mouse model [85]. The increase in ROS levels in the PD mouse model inactivates the
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Lon Peptidase 1, a mitochondrial protease, initiating an early event in PD pathogenesis [85].
The detrimental effects of mitochondrial oxidative stress on mitochondrial proteostasis
are also shown in Alzheimer’s disease (AD) patients and transgenic AD mice [86]. In-
creased oxidative stress underlies the reduced activity of mitochondrial proteases, which
aggravates AD pathogenesis by accumulating β-amyloid peptides in the mitochondria [86].
Furthermore, the prolonged disturbance of mitochondrial proteostasis by intracellular and
mitochondrial ROS causes the accumulation of misfolded or aggregated mitochondrial
proteins and triggers cellular senescence [87,88] (Figure 4).
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Figure 4. Vicious feedback loop between mitochondrial oxidative stress and senescence/aging.
(A) Accumulating oxidative damage over time activates the p53 and Rb (retinoblastoma protein)
pathways, resulting in persistent cell cycle arrest and senescence. Mitochondrial ROS also activates
polyADP-ribose polymerase 1, which increases NAD+ consumption, thereby reducing NAD+ levels.
A decrease in NAD+ levels leads to cellular dysfunction and aggravates age-related pathologies.
(B) Mitochondrial proteostasis consists of chaperones that promote protein folding and proteases that
clearly damage mitochondrial proteins. The prolonged disturbance of mitochondrial proteostasis
by intracellular and mitochondrial ROS causes the accumulation of misfolded or aggregated mito-
chondrial proteins and triggers cellular senescence. (C) Mitochondrial oxidative stress activates the
secretion of inflammatory cytokines and proinflammatory senescence-associated secretory pheno-
type (SASP). Different colored dots represent inflammatory cytokines and proinflammatory SASP.
(D) Mitochondrial oxidative stress directly damages mtDNA, as mitochondrial ROS is produced in
the mtDNA-containing mitochondrial matrix.
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Mitochondrial oxidative stress contributes to inflammation and proinflammatory
secretory phenotypes (Figure 4). Specifically, superoxide anion (O2

−) reacts with SOD in
the mitochondrial matrix to produce H2O2, which can pass through the OMM and react
with cytoplasmic targets. This response activates the secretion of inflammatory cytokines
(TNF-α and IL-1β) and proinflammatory SASP (IL-6 and IL-8) [89–91]. Mitochondrial ROS-
mediated inflammatory responses exacerbate senescence, promoting chronic inflammation
and age-related diseases in the long term [92]. Support for the causal link is evident in the
discovery that mitochondria-targeted depletion inhibits the mitochondrial ROS production
and secretion of key SASP factors such as IL-6 and IL-8 [93].

Mitochondrial DNA (mtDNA) is a circular chromosome found inside the mitochon-
dria. mtDNA contains 37 genes encoding 2 rRNAs, 22 tRNAs, and 13 mitochondrial
proteins, all essential for mitochondrial homeostasis [94]. Mitochondrial oxidative stress
directly damages mtDNA, as mitochondrial ROS is produced in the mtDNA-containing
mitochondrial matrix [95] (Figure 4). The increased production of mitochondrial ROS cor-
relates linearly with the accumulation of mtDNA mutations [96]. Furthermore, mutations
in mtDNA reduce the expression of essential proteins required for the ETC, leading to
the amplification of mitochondrial oxidative stress [97]. This amplification results in a
vicious cycle between mitochondrial oxidative stress and organelle degeneration [97]. The
causal relationship between mtDNA mutation and aging is substantiated by the finding
that the accumulation of mtDNA damage reduces ATP levels and triggers the recycling
of β-amyloid toxicity, ultimately exacerbating neurodegeneration [98–100]. Support for
this causal connection is evident in the finding that oxidative damage to mtDNA, but not
to nuclear DNA, is inversely associated with maximal longevity in the heart and brain of
mammals [101].

5. Targeting Mitochondrial Oxidative Stress as a Therapeutic Strategy for Aging and
Age-Related Diseases

As described in Sections 3 and 4, defective mitochondria are major sources of mitochon-
drial oxidative stress, and mitochondrial oxidative stress causes premature deterioration
of tissue and organ function. The causal relationship suggests that the proper control of
mitochondrial oxidative stress can be one of the effective therapeutic strategies for ag-
ing and age-related diseases. Here, we propose several therapeutic strategies targeting
mitochondrial oxidative stress (Table 3).

Reducing mitochondrial oxidative stress with antioxidants represents an effective
treatment strategy for aging. In mammals, an age-related decline in CoQ has been observed
in the heart, liver, kidney, and skeletal muscle [102–104] (Figure 5A; green CoQ indicates
CoQ deficiency). Cells deficient in CoQ exhibit electron leakage as electron transport in
the ETC is hindered. Premature electron leakage from the ETC combines with oxygen to
generate mitochondrial ROS [105] (Figure 5A). Considering that CoQ depletion triggers
mitochondrial ROS production, mitochondria-targeted CoQ (MitoQ) treatment is tested
in rat models of neurodegeneration [106]. As a mitochondria-specific antioxidant, MitoQ
significantly lowers mitochondrial ROS production. Furthermore, MitoQ treatment is
beneficial in treating neurodegeneration, showing reductions in mitochondrial swelling,
cristae loss, and oxidative cell death [106] (Figure 5A; pink CoQ indicates high levels of
CoQ). The benefit of CoQ supplementation in lowering mitochondrial oxidative stress is
further supported by findings from an accelerated aging model using mice [107]. CoQ
supplementation reduces mitochondrial ROS production by promoting the activity of
complexes I and IV. Furthermore, a reduction in mitochondrial oxidative stress by CoQ
supplementation delays the onset of age-related symptoms, indicating that therapeutics
aimed at reducing mitochondrial oxidative stress might be effective [107]. In line with
these findings, the treatment of senescent fibroblasts with N-acetylcysteine (NAC), a ROS
scavenger, ameliorates senescence-associated phenotypes [11]. Moreover, antioxidant
therapy with NAC ameliorates chondrocyte senescence and alleviates osteoarthritic pheno-
types [108]. The justification of therapeutic strategies targeting mitochondrial oxidative
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stress is reinforced by experimental findings using SS-31, a cell-permeable antioxidant tar-
geting the IMM [109]. Treatment with SS-31 boosts electron transport in the ETC, reducing
the generation of hydroxyl and peroxynitrite free radicals in the mitochondria [109]. The
reduction in mitochondrial oxidative stress by SS-31 has been implicated in delaying or
reversing senescence in age-related diseases including AD and PD [110–112]. Additional
experimental evidence for reducing mitochondrial oxidative stress with antioxidants is
shown in findings using mice overexpressing mitochondria-targeted catalase (mCAT), an
enzyme that breaks down hydrogen peroxide (H2O2) into H2O and O2 [113]. Two separate
lines of mice overexpressing mCAT reduce hydrogen peroxide (H2O2) production and sub-
sequent oxidative damage [114]. Moreover, these reductions delay cardiac pathology and
cataract development, concomitant with a significant increase in the median and maximum
lifespan [114].

The regulation of mitochondrial oxidative stress through the induction of mitophagy
represents a promising and powerful strategy. Mitophagy, the selective degradation of
damaged mitochondria through autophagy, is an essential mechanism to maintain mito-
chondrial homeostasis [115]. Specifically, the mitochondria damaged by high levels of
mitochondrial ROS recruit PTEN-induced putative kinase protein 1 (PINK1) and ubiquitin
ligase PARKIN, initiating the early phase of PINK1/PARKIN-dependent mitophagy [116]
(Figure 5B). PINK1 activates PARKIN recruitment to the OMM for the ubiquitylation
of OMM proteins in damaged mitochondria. The creation of polyubiquitin chains in
OMM proteins recruits autophagy receptor proteins that interact with LC3 (microtubule-
associated protein 1A/1B light chain 3) in the phagophore. Then, damaged mitochondria
are eliminated by the subsequent formation of phagophores, autophagosomes, and au-
tolysosomes, consequently resulting in reduced mitochondrial ROS production (Figure 5B).
The significance of reducing mitochondrial oxidative stress by the activation of mitophagy
has been validated by other findings. For example, the overexpression of PARKIN reduces
mitochondrial oxidative stress with the protection of age-related loss of skeletal muscle in
aged mice [117], whereas knocking out PARKIN accumulates markers of oxidative stress
and deteriorates the contractile function of skeletal muscles [118]. Furthermore, PARKIN-
mediated mitochondrial clearance suppresses mitochondrial ROS production and abrogates
the development of senescence phenotypes such as pro-oxidant/inflammatory signaling
and cyclin-dependent kinase inhibitors (p21 and p16) [93]. It is well known that PINK1
plays a key role in the interaction between OMM proteins and LC3 in the autophagosome,
but recent studies have also shown that mitophagy can occur through a PINK1-independent
mechanism. BNIP3 (BCL2 and adenovirus E1B 19-kDa-interacting protein 3) and NIP3-like
protein X (NIX), which are localized to the OMM, serve as LC3 receptors, which contribute
to the induction of mitophagy [119]. BNIP3 or NIX-mediated mitophagy also plays a crucial
role in slowing and mitigating aging. For example, in Drosophila, the neuronal activation of
BNIP3-mediated mitophagy delays systemic aging [120]. Moreover, NIX overexpression
mitigates senescence by activating the degradation of mitochondrial proteins [121].

Consistent with these findings, mice that were given the mitophagy inducer trehalose
were found to have reduced superoxide production and improved age-related atheroscle-
rosis [122]. Similarly, therapy with the autophagy inducer lithium in C. elegans activates
mitochondrial turnover with a decrease in mitochondrial oxidative stress [123]. A reduc-
tion in mitochondrial oxidative stress through lithium treatment consequently leads to an
increase in the lifespan and healthspan without significantly changing death rates [123].
Furthermore, trehalose, a mitophagy inducer, has the effect of slowing down the aging
process when it is administered to mice with age-related neurological symptoms induced
by Atg7 knockdown [124]. The importance of mitophagy induction for regulating mi-
tochondrial oxidative stress is further emphasized by findings related to nicotinamide
riboside (NR) supplementation. NR supplementation raises NAD+ levels, which are
compromised in aged animals [71–73]. Elevated NAD+ levels activate sirtuin 1, an NAD+-
dependent histone/protein deacetylase that uses NAD+ to deacetylate forkhead box O3
and peroxisome proliferator-activated receptor co-activator 1-α (PGC-1α), transcriptional
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regulators that activate the genes involved in mitophagy [125,126]. Activated mitophagy
then removes damaged mitochondria and reduces mitochondrial ROS levels, consequently
alleviating disease pathology and prolonging lifespan in animal models [125,126]. Recent
studies have provided new evidence that mitophagy induction through the modulation
of ataxia telangiectasia mutagenesis (ATM) activity might be an effective treatment op-
tion for aging [127,128]. The inhibition of ATM activity increases V1–V0 assembly in the
V-ATPase proton pump found at the lysosomal membrane, allowing re-acidification in
lysosomes [127]. Acidified lysosomes activate mitophagy to clear damaged mitochondria
and consequently lower mitochondrial ROS levels [127]. Reducing mitochondrial oxidative
stress by simultaneously regulating ATM activity restores various senescence-associated
phenotypes to the level of young cells [127,128].

Reducing mitochondrial oxidative stress by directly targeting genes that regulate the
activity of ETC components could be an alternative therapeutic strategy. Rho-associated
protein kinase (ROCK) controls mitochondrial ROS production by regulating the connec-
tions between Rac1b and cytochrome c [129] (Figure 5C). Specifically, ROCK activation
phosphorylates Rac1b, making it easier for Rac1b to interact with cytochrome c. This
interaction steals electrons from cytochrome c and causes a partial reduction in oxygen,
triggering mitochondrial ROS production [129]. The inhibition of ROCK activity prevents
Rac1b from intercepting electrons from cytochrome c, enabling efficient electron transport
from complex III to IV [129] (Figure 5C). Then, efficient electron transport prompts com-
plex IV activity, thereby reducing mitochondrial ROS production (Figure 5C). Reducing
mitochondrial oxidative damage by regulating ROCK activity improves poor growth and
the early beginning of senescent phenotypes [129,130]. The significance of regulating the
activity of ETC components to reduce mitochondrial stress is also supported by other
studies. Long-term caloric restriction (CR) upregulates the activity of complex IV, which
partially offsets electron leak and reduces mitochondrial ROS production [131]. CR extends
average and maximum lifespan by delaying aging and preventing the development of
age-related symptoms [132,133]. Furthermore, epigallocatechin 3-gallate (EGCG), a CR
mimic, also mitigates mitochondrial oxidative stress and restores the catalytic activity of
complex I/ATP synthase [134]. EGCG treatment ameliorates the dysfunction of age-related
immune disorders and extends the lifespan in various animal models [135–138].

Maintaining mitochondrial ROS levels through mitochondrial Ca2+ homeostasis also
represents an effective therapeutic option. As described in Section 2, adequate levels of
mitochondrial Ca2+ maintain mitochondrial homeostasis [139], whereas mitochondrial Ca2+

overload generates more mitochondrial ROS [140]. Since fine-tuning the mitochondrial
Ca2+ concentrations can maintain mitochondrial ROS at an appropriate level [141], various
strategies have been attempted to control mitochondrial Ca2+. For instance, myocardial
reperfusion is an age-related disease manifested by reduced resistance to cardiac reperfu-
sion damage [142]. The major cause of myocardial reperfusion is cardiac tissue damage
due to the increased mitochondrial ROS production resulting from increased mitochondrial
Ca2+ levels in cardiomyocytes [143]. Since Ca2+ transport from the cellular cytoplasm
to the mitochondrial matrix is promoted by MCU in the IMM [144,145], ruthenium 360
(Ru360), a cell-permeable MCU inhibitor, was administered to the mitochondria in the
reperfused heart. The inhibition of MCU by Ru360 reduces the percentage of mitochon-
dria exhibiting Ca2+ overload and subsequently reduces the production of mitochondrial
ROS [146] (Figure 5D). Subsequently, the pathological signs of mitochondrial swelling
return to a steady state with reduced mitochondrial ROS production [146]. The significance
of minimizing mitochondrial oxidative damage by maintaining appropriate levels of mito-
chondrial Ca2+ is further evidenced by the finding that the microRNA-mediated silencing
of MCU shields cardiomyocytes from mitochondrial oxidative stress [147] (Figure 5D).
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Figure 5. Targeting mitochondrial oxidative stress as a therapeutic strategy for aging and age-related
diseases: (A) Senescent cells show a lack of coenzyme Q (CoQ), which transports electrons from
complex II to III (green CoQ indicates CoQ deficiency). Senescent cells deficient in CoQ exhibit
electron leakage as electron transport in ETC is hindered. Premature electron leakage from ETC
combines with oxygen to generate mitochondrial ROS. By contrast, mitochondria-targeted CoQ
(MitoQ) treatment lowers mitochondrial ROS production, consequently resulting in a significant
reduction in senescence-associated symptoms (pink CoQ indicates high levels of CoQ); e: electron.
(B) Mitochondria damaged by high levels of mitochondrial ROS recruit PTEN-induced putative
kinase protein 1 (PINK1) and ubiquitin ligase PARKIN. PINK1 activates PARKIN recruitment to the
OMM for ubiquitylation of OMM proteins in damaged mitochondria. The creation of polyubiquitin
chains in OMM proteins recruits autophagy receptor proteins that interact with LC3 (microtubule-
associated protein 1A/1B light chain 3) in the phagophore. Then, damaged mitochondria are
eliminated by the subsequent formation of the phagophores, autophagosomes, and autolysosomes.
(C) Reduction in mitochondrial oxidative damage by directly targeting genes that regulate the
activity of ETC components. ROCK activation phosphorylates Rac1b, making it easier for Rac1b
to interact with cytochrome c. This interaction steals electrons from cytochrome c and causes a
partial reduction in oxygen, triggering mitochondrial ROS production. Inhibition of ROCK activity
prevents Rac1b from intercepting electrons from cytochrome c, enabling electron transport from
complex III to IV. Then, efficient electron transport facilitates complex IV activity, thereby reducing
mitochondrial ROS production; e: electron. (D) Inhibition of MCU by ruthenium 360 (Ru360)
reduces the percentage of mitochondria exhibiting Ca2+ overload and subsequently reduces the
production of mitochondrial ROS. MicroRNA-mediated silencing of MCU shields cardiomyocytes
from mitochondrial oxidative stress.



Antioxidants 2023, 12, 934 13 of 21

Reducing mitochondrial oxidative stress through sirtuin modulation can be an alter-
native therapy to control aging. Sirtuins respond to mitochondrial oxidative stress through
deacetylating transcription factors that control antioxidant genes. In particular, sirtuin 1
deacetylates and activates PGC-1α, which increases the function of genes that can regu-
late oxidative stress, such as catalase, glutathione peroxidase, and manganese SOD [148].
The reduction in mitochondrial ROS levels by sirtuin 1 ameliorates the symptoms of age-
related neurodegeneration by protecting cultured neurons from oxidative stress-mediated
death [148]. These findings are strengthened by other studies showing that therapy with
resveratrol, a sirtuin 1 activator, reduces H2O2-induced mitochondrial oxidative damage
and protects against H2O2-induced cell death [149]. Furthermore, the overexpression of
sirtuin 2 extends the shortened lifespan caused by hydrogen peroxide (H2O2) treatment,
supporting the claim that reducing oxidative stress by regulating sirtuins is an effective
strategy to control aging [150].

Table 3. Targeting mitochondrial oxidative stress as a therapeutic strategy for aging and age-
related diseases.

Therapeutic Strategy Outcome(s) Experimental Model and
References

Antioxidants

Mitochondria-targeted CoQ (MitoQ) treatment lowers
mitochondrial ROS production, consequently resulting in
reductions in mitochondrial swelling, cristae loss, and oxidative
cell death

Male albino rats (Wistar
strain) [106]

Treatment of senescent fibroblasts with N-acetylcysteine (NAC),
a ROS scavenger, ameliorates senescence-associated phenotypes

Laminopathy progeria
fibroblasts [11]

Treatment with SS-31 boosts electron transport in the ETC,
reducing the generation of free radicals in mitochondria

Primary neurons from C57BL/6
mice [109]

Mitophagy

Overexpression of PARKIN reduces mitochondrial oxidative
stress with the protection of age-related loss of skeletal muscle
in aged mice

Skeletal muscle of aged
mice [117]

Knocking out PARKIN accumulates markers of oxidative stress
and deteriorates the contractile function of skeletal muscles PARKIN knockout mice [118]

Mice given the mitophagy inducer trehalose showed reduced
superoxide production and improved age-related
atherosclerosis

C57/BL6 mice aged 27–28
months [122]

Therapy with the autophagy inducer lithium in C. elegans
activates mitochondrial turnover with a decrease in
mitochondrial oxidative stress

C. elegans [123]

Inhibition of ATM activity activates mitophagy and
consequently lowers mitochondrial ROS levels Human fibroblasts [127]

Genes that regulate the
activity of ETC components

Inhibition of the ROCK activity facilitates complex IV activity,
thereby reducing mitochondrial ROS production Progeria skin fibroblasts [129]

Long-term caloric restriction (CR) upregulates the activity of
complex IV, which partially offsets electron leak and reduces
mitochondrial ROS production

Female Swiss Albino balb/c
mice [131]

Mitochondrial Ca2+

homeostasis

Inhibition of MCU by Ru360 reduces the percentage of
mitochondria exhibiting Ca2+ overload and subsequently
reduces the production of mitochondrial ROS

Isolated brain mitochondria
from male Wistar rats [146]

MicroRNA-mediated silencing of MCU shields cardiomyocytes
from mitochondrial oxidative stress

Rat cardiac myoblast H9c2 cell
line [147]

Sirtuin

Reduction in mitochondrial ROS levels by sirtuin 1 ameliorates
symptoms of age-related neurodegeneration by protecting
cultured neurons from oxidative stress-mediated death

PGC-1α null cell [148]

Overexpression of sirtuin 2 extends the shortened lifespan
caused by hydrogen peroxide (H2O2) treatment Yeast cells [150]
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6. Conclusions and Perspectives

Targeting mitochondrial oxidative stress as a therapeutic strategy to treat aging and
age-related diseases has been investigated and discussed in several review articles. One
review article discussed the impacts of oxidative stress on mitochondrial function and
aging [151]. However, the discussion was limited to a specific cell type, liver cells. Another
review article did not limit the discussion to a specific type of cell but extended it to various
models of aging [152]. Although the origins and effects of mitochondrial oxidative stress
have been thoroughly investigated in various aging models, specific methods to reduce
mitochondrial oxidative stress have not been proposed. A recent review article highlighted
mitochondrial oxidative stress as a major cause of aging and a crucial determinant of
longevity [153]. In that article, the methods to reduce mitochondrial ROS were discussed,
but the strategy was exclusively focused on mitochondrial antioxidants. Given the fact that
mitochondrial oxidative stress is induced through multiple cellular signaling pathways, it
is unclear whether therapeutic strategies focused only on antioxidants will be beneficial in
treating aging and age-related disorders.

In this review, we investigated and discussed mitochondrial alterations and the con-
sequent increase in mitochondrial oxidative stress. In addition, by examining the process
through which mitochondrial oxidative stress progresses aging and aging-related diseases,
we found that mitochondrial oxidative stress acts as a vicious feedback loop for aging.
Here, we suggested mitochondrial oxidative stress as a potential target for aging and
presented several therapeutic options aimed at reducing mitochondrial oxidative stress.
Mitochondrial alterations increase with age and consequently induce mitochondrial ox-
idative stress, which has been effectively controlled using genetic and pharmacological
approaches. Therefore, the optimal regulation of mitochondrial oxidative stress that does
not depend on a single treatment strategy will effectively treat the onset and development
of aging in which multiple signaling pathways are impaired.

As explored in this review, therapeutic approaches to reduce mitochondrial oxidative
stress have proven to be an important factor in treating aging and age-related diseases.
However, clinical trials using non-mitochondria-targeted antioxidants have shown that
non-mitochondria-targeted antioxidant therapies are not effective in the treatment of aging
and age-related diseases [154,155]. To complement these clinical findings, mitochondria-
targeting antioxidants have recently been applied to various animal models, and there is
growing evidence that mitochondria-targeting antioxidants have beneficial effects on aging
and age-related diseases [156,157]. Therefore, research on how to effectively deliver genetic
and pharmacological therapeutics targeting mitochondria will provide good therapeutic
clues to break the vicious cycle leading to aging and age-related diseases.
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