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Abstract: Schizophrenia is a worldwide mental illness characterized by alterations at dopaminergic
and glutamatergic synapses resulting in global dysconnectivity within and between brain networks.
Impairments in inflammatory processes, mitochondrial functions, energy expenditure, and oxida-
tive stress have been extensively associated with schizophrenia pathophysiology. Antipsychotics,
the mainstay of schizophrenia pharmacological treatment and all sharing the common feature of
dopamine D2 receptor occupancy, may affect antioxidant pathways as well as mitochondrial protein
levels and gene expression. Here, we systematically reviewed the available evidence on antioxidants’
mechanisms in antipsychotic action and the impact of first- and second-generation compounds on
mitochondrial functions and oxidative stress. We further focused on clinical trials addressing the
efficacy and tolerability of antioxidants as an augmentation strategy of antipsychotic treatment.
EMBASE, Scopus, and Medline/PubMed databases were interrogated. The selection process was
conducted in respect of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) criteria. Several mitochondrial proteins involved in cell viability, energy metabolism,
and regulation of oxidative systems were reported to be significantly modified by antipsychotic
treatment with differences between first- and second-generation drugs. Finally, antioxidants may
affect cognitive and psychotic symptoms in patients with schizophrenia, and although the evidence
is only preliminary, the results indicate that further studies are warranted.

Keywords: antipsychotics; mitochondria; antioxidants; dopamine; synapse; treatment resistant;
schizophrenia; glutamate; postsynaptic density; glutathione

1. Introduction

The “quantal” alteration at both structural and functional levels of schizophrenia
pathophysiology is believed to reside in the dynamics of synapse microdomains with spe-
cific involvement of dopaminergic and glutamatergic sites and a dysfunctional dopamine-
glutamate interaction [1–5]. Alterations at the synaptic level can impair integrative pro-
cesses on brain macroscale networks, ensuing in a global dysconnectivity pattern, which
may be associated, at least in part, with the pathophysiology and clinics of the disor-
der [4,6,7].

Antipsychotics are the cornerstone of the pharmacological treatment of schizophrenia.
Despite the complexity of their receptor profiles and individual receptor affinity, they all
share a common feature believed to be the core of antipsychotic action: the occupancy of the
dopamine D2 receptor (D2R) [8]. This feature intersects coherently with one major landmark
of schizophrenia pathophysiology, which is the increased release of dopamine in the
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striatum as demonstrated through dynamic positron emission tomography (PET) by means
of 11C-raclopride [9,10] and increased dopamine capacity detected via 3,4-dihydroxy-6-
[18F]fluoro-l-phenylalanine (18F-DOPA) PET [11] in psychotic patients compared to healthy
controls. Antipsychotics can be divided into first- (introduced in the 1950s and 1960s) and
second-generation (introduced in the 1990s with the exception of clozapine introduced first
in 1970s, withdrawn, and the reintroduced in therapy again), also known as typical and
atypical antipsychotics respectively, based on clinical features and receptor signature [12].
First-generation antipsychotics (e.g., haloperidol, chlorpromazine, perphenazine, etc.)
have a medium-high D2R affinity [12]. Second-generation antipsychotics (e.g., clozapine,
risperidone, olanzapine, quetiapine, paliperidone, lurasidone, etc.) have a multimodal
receptor profile with few exceptions (i.e., amisulpride and other benzamides) and a low
ratio of D2R/serotonin 2A receptors (5HT2AR) affinity, responsible for the low liability
to induce extrapyramidal symptoms (EPS) and believed to be partially associated to the
moderate effect on negative symptoms [12,13]. Clozapine, synthesized in 1959, was soon
considered different from other antipsychotics in both preclinical and clinical studies. At the
preclinical level, clozapine did not induce cataplexy in rodents, while, at the clinical level,
it was not associated with EPS, considered at that time an indirect marker of antipsychotic
activity [14–19]. Quantification of D2R occupancy by PET and radioligand binding clearly
demonstrated that the efficacy of antipsychotics could be achieved with D2R occupancy
lower than the one responsible for the onset of EPS [8]. Elevated Kon/Koff and consequent
fast dissociation from the D2R have been proposed as an alternative hypothesis to explain
atypicality [20].

Third-generation agents, such as aripiprazole, cariprazine, and brexpiprazole, have
shown the common feature of occupying D2R as partial agonists as well as showing
a multifaced receptor profile [12]. Cariprazine is demonstrated to be a D3R-preferred
partial agonist and significantly more efficacious in schizophrenia with prevalent negative
symptoms compared to D2R antagonists [21,22]. A more complex conceptualization of
dopamine receptor partial agonists prompts from the observation that these drugs also
work as biased ligands or functional selective molecules [23].

Apart from and beyond their action at dopaminergic and other central receptors, an-
tipsychotic treatment has been demonstrated to modify brain expenditure energy metabolism
and impact mitochondria function [24–26]. The relevance of regulating mitochondrial
functions lies in the possible modulation of antioxidant intracellular pathways and other
mechanisms involved in cell viability and survivance [26–28]. The potential modulation
of mitochondria function and oxidative stress by antipsychotics is in line with a role for
oxidative stress in schizophrenia and related psychosis [29–32].

Together with neurotransmitter dysfunction, neuroinflammatory processes, as well as
mitochondrial alteration and oxidative stress reported in schizophrenia and animal models
of psychosis, are believed to be involved in the pathophysiology of the disorder [26,28].
Inflammation has been associated with alterations in neurotransmission, neuronal signaling,
synapse organization, and brain connectivity by increasing oxidative stress, inducing
activation of microglia, and reducing gray matter volume [33–37]. Inflammatory processes
and changes in oxidative pathways are highly relevant as they emerge during the early
phases of life [28,38]. In line with the neurodevelopmental hypothesis of schizophrenia,
exposure to pre- and postnatal stressors, including the cytokine storm and free radicals,
could result in impairments in neuronal migration and neurite outgrowth [38–40].

The role of the gut microbiome in the pathogenesis of schizophrenia has been inves-
tigated, and a significant elevation of Lactobacillus group bacterial numbers was detected
in psychotic patients compared to controls, which even correlated with symptom severity
and treatment outcomes [41]. Gut dysbiosis could be implicated in the pathophysiology
of schizophrenia by enhancing both intestinal and blood-brain barrier permeability, thus
increasing the availability of circulating cytokines and regulating other brain signalings,
such as the kynurenine and brain-derived neurotrophic factor (BDNF) pathways [42].
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Aims of the Study

Despite the recent evidence that supports the role of mitochondria in the action of
antipsychotics, many aspects of this class of drugs on energy expenditure and oxidative
stress remain unclear.

First, how and to what extent the effects of antipsychotics on mitochondria function
are related to the efficacy of this class of drugs?

Second, considering the complexity of the receptor profile of antipsychotics and the
occupancy of D2R as the main mechanism of their efficacy, is the antioxidant effect related
to central modulation of dopamine or other receptor mechanisms?

Third, both antioxidant function and antipsychotic action have been demonstrated to
affect the structure and dynamics of the synapse; which is the possible overlap, if any?

With these objectives in mind, we decided to use a comprehensive review of the avail-
able evidence on the role of antioxidants’ mechanisms in antipsychotic action with specific
attention to mitochondrial dysfunction. We aimed to describe the potential differences
between typical and atypical antipsychotics in modulating oxidative balance. We also
focused on the interaction of dopamine and synaptic structure with oxidative stress and
mitochondria, considering the effects exerted by antipsychotic compounds. Further, we sys-
tematically reviewed clinical trials conducted on psychotic patients exploring the efficacy
and tolerability of antioxidant compounds as add-on treatments to antipsychotic medication.

There is a growing interest in exploring new therapeutic strategies that might bypass
the current deadlock in antipsychotic therapy, especially for those patients who do not re-
spond or respond poorly to available antipsychotics and are considered treatment-resistant
schizophrenia (TRS) patients.

2. Materials and Methods
2.1. Screening and Selection Process

The present systematic review aims to provide an updated overview of the available
evidence on the putative action of antipsychotics on mitochondrial function in the setting
of schizophrenia and their potential antioxidant role. The selection process was conducted
according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) criteria [43] to identify eligible clinical and preclinical studies related to the
topic. The articles from the primary search were selected independently by two authors
(GDS and BM), and in the case of an inconsistent evaluation, the opinion of a third author
(AdB) was sought. Other papers were searched manually by checking the reference lists
of included articles as well as by matching multiple keywords emerging from the reading
of the articles retrieved. The search returned a total of 6366 articles. After removing
duplicates, 3968 references were identified. At the end of the screening process, 177 articles
were included in the systematic review. The PRISMA flowchart is shown in Figure 1 to
specify the individual steps of the selection procedure. The protocol of the present study
was pre-registered on the International Platform of Registered Systematic Review and
Meta-analysis Protocols (INPLASY202320106).

2.2. Search Strategy

EMBASE, Scopus, and Medline/PubMed databases were queried on 18 January 2023.
The latest update was conducted on 15 February 2023. The search string adopted for the
Medline/Pubmed database is reported as follows: (((((“schizophrenia”[Title/Abstract])
OR (“schizophrenia spectrum and other psychotic disorders”[MeSH Terms])) OR (“psy-
chosis”[Title/Abstract])) OR (“psychotic disorder”[Title/Abstract])) OR (“antipsychotic”
[Title/Abstract])) AND (((((“mitochondria”[Title/Abstract]) OR (mitochondrion[Title/
Abstract])) OR (“mitochondria”[MeSH Terms])) OR (“free radical”[Title/Abstract])) OR
(“antioxidant”[Title/Abstract])). The search strings for the other databases are reported in
the Supplementary Materials.
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Figure 1. PRISMA flow diagram outlining the selection process through the different phases of the
systematic review.

2.3. Inclusion and Exclusion Criteria

We considered eligible English-language articles published in peer-reviewed jour-
nals, exploring potential oxidant/antioxidant effects of antipsychotics, the involvement
of mitochondrial dysregulation in schizophrenia, and their implication in antipsychotic
treatment. Clinical studies exploring the antioxidant/oxidant effects of antipsychotics in
patients affected by psychotic disorders, such as chronic schizophrenia, FEP, and early
psychosis, were included in the qualitative analysis. No time constraints were applied, and
original clinical and preclinical research studies and reviews were included. Conference
abstracts, commentaries, and letters to the editor were excluded. The PRISMA checklist
has been provided in Supplementary Table S1.

3. Molecular Abnormalities Driven by Inflammation and Oxidative Stress Relevant
to Schizophrenia
3.1. Relevance of Inflammation in Schizophrenia

The possibility that inflammation may significantly impact the neurobiology of schizophre-
nia, contributing to alterations in neurotransmission, neuronal signaling, synapse organiza-
tion, and brain connectivity, has emerged [33–36,44–46]. Consistent with multiple pieces
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of evidence, it has been reported that these alterations involve increased dopaminergic
transmission in the striatal areas (putamen, caudate, and nucleus accumbens) and hip-
pocampus [47–50]. In contrast, reduced dopaminergic transmission has been reported in the
prefrontal cortex (PFC) with a subsequent clinical association of cognitive and behavioral
disorders in schizophrenia [51]. The cooperation of the immune system and inflammatory
response within the central nervous system (CNS) in several cognitive and behavioral
functions has been proposed to be relevant in the association between schizophrenia and
inflammation [52]. Dopamine may regulate inflammation through modulating migration,
differentiation, and proliferation of immune cells (e.g., T cells, microglial cells, and pe-
ripheral monocytes) involved in cognitive function [45]. Alterations in dopamine levels
associated with schizophrenia might influence the inflammatory/immune response and
behavior, including spatial memory and learning, social behavior, and stress resilience [45].
On the other hand, the influence of inflammation on dopaminergic function has been
demonstrated [53] with the increase of dopamine release and modulation of postsynaptic
effects following inflammatory mechanisms in the CNS [54,55]. These findings suggest the
putative implication of an active cross-talk between the dopaminergic and inflammatory
processes in the pathophysiology of schizophrenia [45]. Another line of evidence linking
dopamine and the inflammatory process via oxidative stress points to changes in subcorti-
cal dopaminergic activity as one of the circuits responsible for enhancing glutamatergic
neurotransmission abnormalities in the substantia nigra [56]. The link between inflam-
mation and glutamatergic transmission appears evident in models of maternal immune
activation (MIA), where altered glutamate release and N-methyl-D-aspartate receptor (NM-
DAR) expression in the PFC and hippocampus [57] support the role of glutamate storm in
the inflammatory process of neuroprogression [35]. The hypoglutamatergic hypothesis of
schizophrenia could be integrated by the inflammatory contribution in the etiology of the
disease, explaining the excessive synaptic pruning that occurs during late adolescence or
early adulthood in schizophrenia [35,58,59]. Growing observations suggest that genetic and
environmental risk factors for schizophrenia converge toward altered microglial function
as a source of pro-inflammatory cytokines, nitric oxide (NO), and pro-oxidants during
development in response to systemic and central oxidative and inflammatory events [60].
In this framework, targeting modulators of microglia activation could emerge as a potential
early therapeutic intervention for schizophrenia treatment [61–63]. In summary, brain
and systemic inflammation may contribute significantly to the development and progres-
sion of schizophrenia, placing oxidative stress and inflammatory mediators as potential
biomarkers and targets for treating schizophrenia [64].

3.1.1. Evidence from Preclinical Studies

Inflammatory-induced modifications at the level of postsynaptic density (PSD) scaf-
fold proteins may affect downstream NMDAR signaling, leading to synaptic aberration
and disruption of the dopamine–glutamate interaction [65]. Synaptic plasticity is possibly
associated with abnormal learning, memory, and neural circuit maturation affected in
schizophrenia [28,65]. It has been hypothesized that disrupted glutamatergic synaptic
activity could impact the dysregulation of interneurons’ function in cortical circuits by
disinhibiting control over dopamine release [66–68]. Integration of recent translational clin-
ical evidence provides the hypothesis of synaptic overpruning in schizophrenia during a
critical period of neurodevelopment due to an imbalance between excitatory glutamatergic
pyramidal neurons and inhibitory gamma-aminobutyric acid (GABA)ergic interneurons,
resulting in a localized glutamate storm that triggers excessive dendritic pruning and
apoptosis [69,70]. It has been proposed that parvalbumin (PV+) interneurons are highly
sensitive to NMDAR antagonism and vulnerable to oxidative stress, depending on an-
tioxidant system regulation to neutralize the overproduction of mitochondrial reactive
oxygen (ROS) species [71,72]. In experimental models, such redox dysregulation may
induce abnormalities in neural connectivity and synchronization similar to those observed
in patients with schizophrenia through hypoactive NMDARs, impairment of fast-spiking
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PV+ interneurons, and myelination deficits [71]. In this context, antipsychotic treatment
counterbalancing alteration in the redox system could improve negative symptoms in
patients with chronic schizophrenia [71]. Notably, dysfunction of GABAergic inhibitory
interneurons induced a glutamate storm from excitatory glutamatergic cortical pyramidal
neurons and a hyperdopaminergic subcortical state [35], corroborating the hypothesis that
prenatal exposure to inflammation would result in an altered gene expression profile in
the hippocampal structures and disruption in GABAergic, glutamatergic, and serotonergic
neuronal circuits relevant to a model of inflammation-mediated psychosis [53,73,74]. In-
creased susceptibility to apoptotic mechanisms in schizophrenia with relevance to synaptic
or dendritic loss [75,76] could be the consequence of both glutamate excitotoxicity and
oxidative stress playing a prominent role, as well as the lack of neuroprotective factors
(e.g., BDNF) [77,78]. A recent meta-analysis has indicated that reduced levels of the pre
and postsynaptic proteins, such as synaptosome-associated protein of 25 kDa (SNAP-25),
PSD-95, synapsin, and rab3A in the hippocampus and a reduction of synaptophysin in the
hippocampus and frontal cortical regions are consistent with models involving a synaptic
loss in schizophrenia [76,79–83]. Apoptotic loss of dendritic spines could be exacerbated by
the inflammatory event of microglial activation from immune system responses (e.g., pro-
teins of the MHC class I family and complement cascade protein C4) [59,84,85]. Microglia,
astrocytes, and peripheral immune response cells are involved in the inflammatory pro-
cesses and oxidative and nitrosative stress in schizophrenia [78]. Excessive reduction of
dendritic spines and subsequent aberrant synaptic plasticity could be associated with
brain disconnections and both negative and cognitive symptoms in schizophrenia [35]. An
animal model of schizophrenia—using neonatal ventral hippocampal lesion (nVHL) in
rats—evaluated the effect of the antipsychotic olanzapine, which was shown to correct the
hyperlocomotion and impaired working memory of nVHL rats but did not improve their
social behavior disorders [86]. This preclinical evidence suggests that in the PFC, olanzap-
ine potentially reverses the structural plasticity of pyramidal cells, increasing the length of
dendritic arches, spinogenesis, and the percentage of mature spines, as well as attenuates
astrogliosis, oxidative stress, and apoptosis in the PFC [86]. MIA models involving cy-
tokine network dysfunction culminate in microglia activation, impacting glial cell survival
and contributing to morphological and functional changes in the brain [87,88]. Microglia
activation leads to a mechanism by which both immunological and neuroplasticity-related
factors via the elimination of weak or inactive synapses contribute to gray matter decline
and altered functional connectivity reminiscent of schizophrenia [53,66,89]. Consistent
with these findings, the activation of microglia leads to structural changes at the PSD and
altered expression of genes involving NMDAR-dependent plasticity by decreasing the
density of spines and synapses of glutamatergic cortical pyramidal neurons below the
critical threshold for neural network functioning [90,91].

3.1.2. Evidence from Clinical Studies

It has been postulated that increased pro-inflammatory mediators may alter brain
development [92], consistent with the finding of multisystem biological dysregulation in in-
dividuals with schizophrenia [93]. Substantial evidence suggests that acute-phase immune
signaling proteins are altered in first-episode psychosis (FEP) and high-risk psychosis sub-
jects [94,95]. Furthermore, a meta-analytic study showed a relationship between oxidative
stress markers and inflammatory cytokines and negative symptom severity in the FEP pop-
ulation naïve to antipsychotics, suggesting that early anti-inflammatory and antioxidant
pharmacological interventions may have beneficial effects [96]. Schizophrenia is associated
with aberrant redox regulation early in brain development [97]. Growing evidence reported
that the antioxidant defense system could be closely associated with the therapeutic re-
sponse to antipsychotics [98,99]. A clinical trial of FEP patients naïve to antipsychotics
found higher total antioxidant status (TAS) levels than healthy controls. Baseline TAS
levels were a predictor of symptom reduction after monotherapy of risperidone treatment,
with a significant association between increased TAS levels and cognitive factor reduction,
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suggesting antioxidant protection related to risperidone treatment [100]. Sex differences
in response to antipsychotic treatment and antioxidant defense system (ADS) have been
reported. A clinical study showed that ADS enzymes were related to the antipsychotic treat-
ment response in FEP patients. Specifically, female patients responded better to risperidone
treatment than male patients, including changes in plasma glutathione peroxidase activi-
ties resulting as a favorable predictor of the response to risperidone treatment in female
patients [101]. Oxidative stress plays a prominent role in antipsychotic-induced weight
gain in schizophrenia; however, antioxidant enzymes might be involved in the weight gain
caused by risperidone therapy. In this context, it has been reported that poor ASD may
have a predictive value for weight gain in FEP patients after monotherapy of risperidone
treatment [102]. A down-regulation of endogenous antioxidant and anti-inflammatory
mechanisms has been reported in biological samples of schizophrenia patients, with a
differential degree and progression from onset to full-blown illness [78]. In line with this
evidence, the slow progression to FEP would represent a window of vulnerability to re-
dox dysregulation and an opportunity for therapeutic interventions [77]. Clinical studies
have shown in the early and late stages of chronic schizophrenia that serum mediators of
oxidative stress and inflammation may act as biomarkers, reinforcing the value of early
assessment of individuals at very high risk of developing psychosis and FEP subjects [96].
During the onset of psychosis, it has been reported that the antioxidant blood levels fall
in schizophrenia patients with oxidative stress levels correlated with the severity of the
symptoms. Redox imbalance could be a therapeutic target for preventive or adjuvant
treatments, as well as biomarkers of disease progression, playing a role in the pathophysi-
ology of emerging psychosis [103]. It has been reported that levels of thiobarbituric acid
reactive substances (TBARS) and protein carbonyl content (PCC) are significantly higher in
patients with schizophrenia than in healthy controls, with no differences in total reactive
antioxidant potential (TRAP) and TNF-α levels between patients in the early and late stages
of illness [96]. These findings support the hypothesis that the increased redox status and
impaired antioxidative stress defense may accelerate synergistically neuronal degeneration
in schizophrenia [96].

3.2. The Interaction between Oxidative Stress and Synaptic Plasticity

Preclinical studies suggest that chronic oxidative stress increases inflammatory mark-
ers, inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2) in rats, triggering
multiple intracellular changes, such as the high neuronal Ca2+ influx and the accumulation
of ROS and reactive nitrogen species (RNS), disrupting synaptic transmission [104]. It
has been proposed that oxidative stress-induced changes converge on the impairment of
Na+/K+-ATPase (NKA) activity, representing the molecular basis of stress-related neu-
ropsychiatric disorders, such as schizophrenia [104]. Although NKA plays a fundamental
role in CNS functions [104] by modulating transmembrane ion gradients, it appears sen-
sitive to the generation of NO and free radicals [105], resulting in membrane damage
consistent with schizophrenia [106]. In the offspring of MIA models, the altered balance of
Ca2+ levels and NO signaling in astroglial cells results in abnormalities of astrocyte structure
and morphology with glutamatergic excitotoxicity and reduced survival of hippocampal
neurons [107]. In addition, cytokines to acute neurodegeneration such as tumor necrosis
factor (TNF)-α may increase glutamate-mediated cytotoxicity through two mechanisms:
indirectly, by inhibiting glutamate transport on astrocytes, and directly, by triggering the
surface expression of AMPARs and NMDARs while reducing inhibitory GABA-A receptors
on neurons [108]. It has been suggested that the impact of TNF-α would alter the balance
between excitation and inhibition with a relative increase in the excitatory/inhibitory
synaptic ratio [108]. The molecular inflammatory scenario would also enhance activator
protein 1 (AP-1) via the MAPK cascade, increasing the transcription of iNOS and COX-2
with ROS and RNS generation. Although neuronal death following glutamate excitotoxicity
is also induced by activation of the AP-1 protein through non-transcriptional pathways,
the deactivation of this peptide could have potential therapeutic applications directed at
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apoptotic and necrotic neuronal death [109–111]. Based on the hypothesis that a redox
imbalance may explain the developmental alterations associated with schizophrenia, pre-
clinical studies have investigated the injection of methylazoxymethanol acetate (MAM)
in an animal model of altered neurodevelopment related to oxidative stress. Although
the offspring of rats exposed to MAM treatment presented behavioral and neurochemical
oxidative impairments in early adulthood consistent with those observed in schizophrenia,
treatment with N-acetylcysteine (NAC) reversed the behavioral deficits through a recov-
ery mechanism involving NO, suggesting a potential antipsychotic effect of NAC [112].
Combined evidence has shown that stress-induced changes in the glutamatergic system in
the PFC appear to be biphasic. The rapid response to stress suggests increased synaptic
transmission with increased numbers of excitatory synapses and working memory, whereas
adaptive changes resulting from chronic long-term stress induce opposite effects [113]. This
biphasic effect involved in stress-related disorders, such as schizophrenia, opens innovative
paths for the development of novel therapeutic approaches. Similar effects have been ob-
served in humans under chronic stress conditions and in animal models in which elevated
pro-inflammatory cytokine signaling was associated with dendritic shrinkage and impaired
neuronal functioning [113,114].

3.3. Antipsychotic Modulation Induced by Inflammation and Oxidative Stress in Schizophrenia

Alterations in dopaminergic transmission implicated in schizophrenia could influence
the immune/inflammatory response and oxidative load, resulting in changes in behavioral
functions in schizophrenia [45]. The role of tetrahydrobiopterin (BH4), an essential enzyme
cofactor for tyrosine and dopamine synthesis regulated by inflammatory cytokines, could
explain the close interaction between the dopaminergic system and the inflammatory state.
In particular, cytokines and oxidative stress mediators may regulate the expression of
GTP-cyclohydrolase 1 (GCH-1), an enzyme required for BH4 production, by promoting
dopamine biosynthesis [115]. In fact, during inflammation, ROS and iNOS activity leads
to a reduction in BH4, resulting in decreased dopamine synthesis [116,117]. In addition,
vitamin C, folate, and other antioxidants would increase the bioavailability of BH4 at the
endothelial level through chemical stabilization or scavenging of ROS, thus contributing
to the maintenance of endothelial physiological homeostasis and possibly dopaminergic
ones [116]. Low levels of vitamin C, which may partly affect the dopaminergic system, have
been observed in patients with schizophrenia [118]. Although a clinical study reported that
patients with schizophrenia had lower baseline levels of vitamin C, these did not correlate
with the severity of disease symptoms [118]. Otherwise, higher levels of vitamin C at
baseline were associated with a greater improvement in negative symptoms, suggesting a
potential additional effect of vitamin C on antipsychotic treatment in schizophrenia [118].
The inflammatory/oxidative theory of the molecular pathophysiology of schizophrenia
has raised relevant questions for the treatment of the disease and those forms that are
poorly or unresponsive to canonical antipsychotic therapies such as TRS. The TRS condi-
tion may result in severe cognitive impairment and poor prognosis, which has also been
associated with oxidative stress and deregulated inflammatory responses [119,120]. The
involvement of the inflammatory system in influencing the response to antipsychotic action
has been hypothesized. New therapeutic approaches targeting aberrant synaptic plasticity,
glutamate storm, dendritic cell apoptosis, calcium channel dysfunction, and microglial
activation have been explored, especially in the early stages of the disease. Preventing
the loss of dendritic spines in high-risk individuals during the prodromal or transient
phase of psychosis may be a potential target in the treatment of schizophrenia [70,121–123].
Clozapine, the only antipsychotic drug approved for TRS, has been shown to increase
PSD proteins and promote the formation of dendritic spines [124,125]. However, clozapine
showed inhibitory effects on dopaminergic activity in the midbrain [126], mediated by its
action on the glycine binding site located on the NMDAR [127], mitigating the symptom
dimension in schizophrenia [126]. Alpha lipoic acid (ALA) has been held responsible for
reversing NMDAR hypofunction, as well as blocking dopamine receptors and increasing
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neurotrophic factors with an antioxidant effect [128]. Its potential use in TRS has been
assessed in a randomized clinical trial (RCT) study that found a significantly greater im-
provement in the test group compared with the control in the Scale for the Assessment of
Negative Symptoms (SANS) scores. ALA supplementation improved psychopathology and
decreased oxidative stress in patients with TRS [128]. In contrast, another RCT in patients
with schizophrenia under supplementation with ALA found no significant improvement
in body mass index, cognition, psychopathology, adverse effects of antipsychotics or oxida-
tive stress, and inflammation in the experimental group compared to placebo. Significant
decreases in red blood cells, white blood cells, and platelets were found in the entire ALA-
treated group [129]. It has been reported that antipsychotic drugs can reduce inflammatory
and oxidative effects by acting on the dopaminergic system [45,130,131]. On the other hand,
inflammation-induced susceptibility and oxidative stress could also explain the glutamater-
gic hypothesis of schizophrenia through the developmental abnormalities described in the
“two-hit model,” in which genetic factors combined with environmental insults contribute
to the development of the disease [132]. Anti-inflammatory and antioxidant therapy in
add-on to antipsychotics is a growing field of interest that needs further research [132–134].

4. General Appraisal of Antioxidant Pathway and Mitochondria Dysfunction
in Schizophrenia

Several alterations in mitochondrial function have been associated with the pathophys-
iology of schizophrenia, including impairments in mitochondrial complex one (MCI) and
glutathione pathway, which may represent a biological link to dysfunction of dopaminergic
and glutamatergic signaling and oxidative stress [26].

Although one postmortem study failed to show significant differences in MCI function
between patients with schizophrenia and controls [135], lower MCI activity was detected
in the prefrontal [136] and temporal [137] cortices as well as basal ganglia [137] of patients
compared to controls. In addition, reduced expression of genes encoding for MCI sub-
units has been described in postmortem studies conducted on patients with psychotic
disorders [138]. Specifically, mRNA levels of Ubiquinone Oxidoreductase Core Subunit
V1 (NDUFV1), NDUFA8, NDUFB9, NDUFS4, NDUFS7, and NDUFV2 were decreased
in the frontal cortex of patients with schizophrenia compared with controls [26,138]. In
contrast, the mRNA expression of NDUFB2, NDUFB5, and NDUFS4 was decreased in the
hippocampus [139] and the mRNAs of NDUFV1, NDUFV2, and NADUFS1 in the striatum
of patients with schizophrenia [140].

The glutathione system exerts a key survival antioxidant function in brain mitochon-
dria by scavenging free radicals and protecting intracellular membranes against oxidative
damage [141,142]. Clinical and preclinical findings have linked glutathione to schizophre-
nia pathophysiology [143]. The activity of fast-spiking parvalbumin interneurons, whose
implication in the pathogenesis of schizophrenia has been suggested, as well as dendrite
morphology in the CA1 region of the hippocampus, were altered in mice with a genet-
ically compromised glutathione synthesis [144–146]. The glutathione system was also
found to protect neuronal cells from dopamine toxicity and regulate mitochondrial func-
tions. In fact, a significant decrease in the number of neuronal processes was reported
in cultured cortical neurons incubated with dopamine in a state of low glutathione con-
centrations [147]. A correct ratio of reduced/oxidized glutathione was found essential
to regulate mitochondrial dynamics in neurons by affecting mitofusin (MFN) and optic
atrophy 1 (OPA1) activity in the fusion pathway [148]. In addition, glutathione depletion
was associated with disruptions in myelin formation and maturation [149–152]. Overall,
these alterations are consistent with the modification observed in dendritic spines reported
in schizophrenia [1] and possibly related to abnormalities in synaptic and circuit connectiv-
ity, representing the neurobiological underpinning of psychotic symptoms and a possible
target for antipsychotic treatment [6]. In preclinical models of schizophrenia, treatments
with antioxidant agents, such as NAC, that increase glutathione levels were associated
with improvement in cognitive and social behaviors [153–155], an elevation in the number
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of parvalbumin cells [156,157], prevention of deficits in evoked-related potentials mea-
sured by electroencephalography (EEG) electrodes and in the prepulse inhibition of the
acoustic startle response [157], an increase in mitochondria numbers and myelin-related
mRNA expression [155], with higher benefits if the administration occurred at an early
stage of neurodevelopment. Alterations in glutathione levels have been studied in vivo by
magnetic resonance spectroscopy (MRS) conducted on patients with psychotic manifesta-
tions [158]. Lower levels of glutathione and decreased activity of glutathione peroxidase
were found in patients affected by schizophrenia, especially in those without medications,
compared to controls [159]. A meta-analysis of MRS studies found a significant reduction
of glutathione levels in the anterior cingulate cortex (ACC) of schizophrenia patients [160].
In FEP patients, lower levels of glutamate and glutathione were detected in the ACC,
while N-acetylaspartate was found to be decreased in the orbitofrontal region [161]. Both
glutathione and N-acetylaspartate levels were reduced in the thalamus [161]. In a study
including FEP patients, higher levels of glutathione were found in the dorsal ACC and con-
sidered indicative of a more favorable prognosis [162]. Specifically, glutathione levels were
associated with inhibitory activity exerted by GABAergic neurons within the dorsal ACC
and the anterior insular cortex [162]. In this regard, the antioxidant state could be consid-
ered a mechanism to reverse the glutamate-mediated dysconnectivity and counterbalance
the hyperglutamatergic state due to the disinhibition of GABA neurons [162]. Curiously,
treatment-resistant patients showed elevated glutamate concentration in the ACC com-
pared to treatment-responsive individuals [163,164], whereas no difference was detected in
glutathione levels between groups based on different responsiveness to treatments [165].

Other findings related to altered neuronal mitochondria have been variously addressed
to the pathophysiology of schizophrenia [166].

Reduced density and the total number of neuronal mitochondria were found in the
caudate and putamen of postmortem brains in untreated patients with schizophrenia
compared with healthy controls and drug-treated subjects, suggesting that antipsychotic
treatment may reverse this alteration [167,168]. Other significant reductions in mitochon-
dria number and density were detected in oligodendrocytes [169,170], astrocytes [171], and
microglia cells [169] of psychotic patients within the hippocampus [171], PFC [169], and
white matter [170].

In addition, several single nucleotide polymorphisms (SNPs) detected in the mi-
tochondrial deoxyribonucleic acid (mtDNA) have been associated with schizophrenia,
including the gene encoding NADH dehydrogenase of the MCI [172], the gene encoding
ATP synthase subunit six [173], and the gene encoding a tRNA (Leu(UUR)) [174].

Mitochondrial fission and fusion are essential processes involved in neurodevelop-
ment and are regulated by different proteins, including MFN and OPA1 [166]. Deletion
of MFN2 or OPA1 genes, when present globally in the CNS, is lethal in mice [175,176].
Otherwise, cerebellar-specific deletion of MFN2 in mice was characterized by impairment
in fusion and dendritic localization of mitochondria, together with altered dendritic spine
development and free radicals’ production [177]. In rodent cortical primary neurons, the
downregulation of OPA1 was associated with an increase in fragmented mitochondria and
a reduced expression of mitochondrial respiratory complexes, along with a decrease in
the number of synapsis and protein levels of postsynaptic structural components [178].
A reduction of OPA1 protein levels, as well as structural perturbations in the mitochon-
drial network, were observed in the PFC of patients diagnosed with schizophrenia when
compared to healthy controls [179]. SNPs in the gene encoding G72, the activator of D-
amino acid oxidase (DAO), were found to be associated with major psychiatric disorders,
including schizophrenia [180]. One splicing isoform of G72 encodes for a mitochondrial
protein endowed with the capability to enhance mitochondrial fragmentation and dendritic
arborization [181]. Three common disrupted in schizophrenia 1 (DISC1) gene variants as well
as several rare and ultrarare variants, have been associated with schizophrenia [1]. Beyond
the well-established role in the PSD composition, splicing isoforms of DISC1 have also been
localized in cell mitochondria [182]. Overexpression of DISC1 has been linked to the forma-
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tion of mitochondrial ring structures, indicating potential involvement in mitochondrial
fusion and fission [182], probably by the direct interaction with MFN1 and MFN2, the outer
mitochondrial membrane GTPase proteins Miro1 and Miro2, and the TRAK1 and TRAK2
mitochondrial trafficking adaptors [183]. A graphical representation of mitochondrial
dysfunction and DISC1 impairments involved in schizophrenia pathophysiology has been
provided in Figure 2.
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Figure 2. Mitochondrial dysfunction in schizophrenia can result in abnormal free radicals produc-
tion and oxidative stress, which can be variously modulated by antipsychotic treatment. DISC1,
a component of PSD with a putative role in mitochondrial fission and fusion, is also involved in
schizophrenia pathophysiology. AMPAR = α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
receptor; D2R = dopamine D2 receptor; Ca2+ = calcium ion; DISC1 = disrupted-in-schizophrenia
1; mGluR = metabotropic glutamate receptor; NMDAR = N-Methyl-D-aspartic acid receptor;
PSD-95 = postsynaptic density protein 95; SNAT1 = sodium-coupled neutral amino acid transporter
1. Created with BioRender.com; last accessed on 21 February 2023.

Overall, these data suggest a strong interplay between schizophrenia and disturbances
in cell oxidative mechanisms, especially considering the role exerted by the MCI and
glutathione system in neuronal mitochondria.

5. Antipsychotics: An Oxidant or Antioxidant Effect in Schizophrenia?

Antipsychotics have been seen to modulate oxidative processes, thereby influencing
the course and progression of schizophrenia, with differences between first- and second-
generation compounds as outlined in Table 1 [27].

5.1. Effects of Typical Antipsychotics

Haloperidol, a first-generation antipsychotic with a strong D2R antagonism, has an-
tioxidant and neuroprotective properties as well as oxidant and neurotoxic effects. Apart
from being a strong antagonist at the D2R, haloperidol has been recognized to tackle
sigma1 receptors [184], exerting a possible neuroprotective effect [185]. A recent study
has investigated the potential capability of haloperidol to mitigate processes of oxyto-
sis/ferroptosis, an iron-dependent non-apoptotic form of regulated cell death, in sigma1
receptor knockdown mouse hippocampal HT22 cells [185]. The results have shown that
haloperidol could exert neuroprotective effects through mechanisms independent of the
sigma1 receptors [186]. By the application of fluorescent probes, haloperidol was localized

BioRender.com
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to endosomes and lysosomes and was shown to reduce the accumulation of Fe2+ and
prevent the phenomena of cell death [186].

The putative neuroprotective action of haloperidol should be critically evaluated
considering the findings indicating, oppositely, that this drug may have relevant neurotoxic
and genotoxic effects on neuronal cells [27]. Several mechanisms have been proposed to
explain the detrimental effect of haloperidol and other first-generation antipsychotics on
cell survival and neuronal oxidative pathways [187].

In the mouse frontal cortex, haloperidol was seen to decrease BDNF, glutathione,
and B-cell lymphoma-extra large (Bcl-xL) levels [188]. Of interest, glutathione exerts a
significant antioxidant role in cell mitochondria, and, on the other hand, Bcl-xl localizes
at different intracellular organelles, including endoplasmic reticulum, Golgi apparatus,
peroxisomes, and mitochondria [141,189]. Neuronal mitochondria should be considered a
relevant site for possible oxidant and neurotoxic consequences. In this regard, haloperidol
administration resulted in a six-fold increase in the levels of oxygen free radicals generated
by mitochondria, together with a reduction in glutathione and a concomitant elevation
in intracellular Ca2+ flux, as evaluated in rat primary cortical neurons and the mouse
hippocampal cell line HT22 [190]. The administration of cystamine, an antioxidant and anti-
apoptotic compound, effectively prevented a haloperidol-induced reduction in BDNF,
glutathione, and Bcl-xl protein levels in mice via the Tropomyosin receptor kinase B
(TrkB)/Akt pathway [188]. Haloperidol administration in mice was observed to induce a
decrease in glutathione concentration in the cortex, striatum, and cerebellum, which was
reverted by the simultaneous treatment with cinnarizine [191]. Beyond the amelioration
of the haloperidol-induced brain oxidative stress, cinnarizine, a blocker of voltage-gated
Ca2+ currents, effectively inhibited the mitochondrial permeability transition, involved in
apoptosis and cell death [192]. The administration of haloperidol was associated with an
enhancement of the NF-κB transcription factor [193], inhibition of the Akt pathway [194],
and elevation in the proapoptotic protein caspase-3 levels [194]. Further, a potentially
neurotoxic pyridinium metabolite was identified in the brain tissue of rats treated with
haloperidol [195]. The study of haloperidol toxicity in human peripheral blood lymphocytes
showed that the drug was able to induce significant oxidative stress by reducing glutathione
levels, increasing lipid peroxidation, and exerting genotoxic effects [196]. The adjunctive
treatment with carvacrol effectively countered the haloperidol-induced genetic damage,
probably via the scavenging of free radicals and increased glutathione concentration [196].

A preclinical study conducted on rats treated with chlorpromazine, a first-generation
drug, showed that this compound has neuroprotective effects through inhibition of the
mitochondrial apoptotic pathway. Specifically, results correlate chlorpromazine use with
decreased expression of cleaved caspase-3, cytochrome c, and Bax and increased expres-
sion of Bcl-2 and tissue factor (TF) [197]. In rat brains, the long-term administration of
chlorpromazine significantly reduced the activity of superoxide dismutase (SOD), a cyto-
plasmatic and mitochondrial enzyme involved in the scavenging of the superoxide (O−2)
radical [198].

Overall, haloperidol exerts notable neurotoxic effects at different doses via several
molecular mechanisms that lead to neuronal death and oxidant damage. A similar effect
was observed with other first-generation antipsychotics, whereas second-generation com-
pounds induced only a few neurotoxic damages and occurred mainly at high doses [187].
Otherwise, contrasting evidence on the inflammatory/anti-inflammatory effect of haloperi-
dol is reported in the literature. Haloperidol, as well as risperidone, clozapine, and quetiap-
ine, were all effective in raising anti-inflammatory (interleukin [IL]-4 and IL-10) cytokine
levels in peripheral mononuclear blood cell cultures extracted from twelve patients with
FEP [199]. In human neuroblastoma SK-N-SH cells, treatment with haloperidol was linked
to an increase in caspase-3 activity and cell death, whereas second-generation antipsy-
chotics, such as risperidone and paliperidone, decreased caspase-3 activity and did not
affect cell viability or cell death [200]. In astrocyte-like cells, while incubation with risperi-
done significantly increased glutamate uptake, glutamine synthase activity, and glutathione
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content, high doses of haloperidol increased ROS production [201]. The administration
of haloperidol but not risperidone induced apoptotic injury in cultured cortical neurons,
together with reduced Akt phosphorylation and an increase in caspase-3 activity [194].
Interestingly, the neurotoxicity related to haloperidol was partially reduced by treatment
with BDNF, the D2R agonist bromocriptine, and ketanserin, a 5HT2AR antagonist [194].

5.2. Effects of Atypical Antipsychotics

Dysfunctions in the antioxidant and anti-inflammatory systems, unsaturated fatty acid
metabolism, and alterations in sulfation-related mechanisms have been reported in first-
episode, drug-naive patients with schizophrenia through a metabolomic analysis conducted
on compounds detected using liquid chromatography-mass spectrometry [202]. Specifically,
a biomarker panel including alpha-dimorphecolic, PC(16:0/18:1(11Z)), 1-methylnicotinamide,
PE(20:2(11Z,14Z)/18:2(9Z,12Z), sulfate, and L-tryptophan was shown to differentiate
schizophrenia patients from healthy controls with an area under the ROC curves (AUC) of
0.972 [202]. On the other hand, differences not based on the disease group and induced by
antipsychotic treatment also were shown [202]. A biomarker panel including C16 sphinga-
nine, gamma-linolenic acid, linoleic acid, C(16:0/18:1(11Z)), PE(20:2(11Z,14Z)/18:2(9Z,12Z)),
and sulfate, was able to discriminate between patients before and after medication with an
AUC of 0.905 [202]. Of interest, all patients enrolled in the study were treated with second-
generation antipsychotics, such as risperidone and olanzapine, for 4–6 weeks at an optimal
dose [202]. In another study conducted on 179 psychotic patients, a three-month treatment
with risperidone and olanzapine was associated with an improvement in oxidative balance,
as proved by an increase in blood glutathione, vitamin E, and vitamin C levels parallelized
by a decrease in malondialdehyde concentration, a lipid peroxidation marker [31].

Risperidone treatment significantly decreased SOD blood levels in forty-one schizophre-
nia patients [203]. The reduction in SOD levels positively correlated with a decrease in the
Positive and Negative Syndrome Scale (PANSS) negative subscale [203]. This evidence is
relevant since, in chronic schizophrenia, SOD expression was found to increase, probably
due to oxidative phenomena taking place in patients [27].

Divergent evidence on olanzapine-mediated regulation of the balance between oxidant
and antioxidant factors has been reported. Olanzapine can induce increased oxidative
stress and mitochondrial dysfunction, triggering cytotoxic mechanisms and neural death.
A possible antidote to these events is represented by NAC use [204]. On the other hand,
in PC12 cells exposed to hydrogen peroxide, pretreatment with olanzapine was effective
in attenuating the decrease in cell viability and SOD-1 mRNA levels as well as increasing
SOD enzymatic activity [205].

In a cross-sectional study conducted on two groups of fifty patients affected by
schizophrenia, chronic olanzapine administration was associated with lower levels of
TBARS, indicators of altered lipid peroxidation, and higher antioxidant values than treat-
ment with haloperidol [29]. Olanzapine, different from clozapine, chlorpromazine, and
haloperidol, was seen to inhibit the activity of the human D-aspartate oxidase (DASPO) as
measured by in vitro enzymatic assay [206]. Similarly, risperidone was shown to exert a
partial uncompetitive inhibition effect on human DAO and exhibited a protective effect
from D-amino acid-induced cell death, as assessed by in vitro experiments [207]. Its rel-
evance for schizophrenia treatment lies not only in increasing D-aspartate and D-serine
levels, which can modulate NMDAR activity, but also in reducing oxidative reactions
and free radical production [208]. In fact, DASPO and DAO are peroxisomal enzymes
involved in the oxidative deamination of acidic D-amino acids, including D-aspartate
and D-glutamate, and D-serine, respectively, resulting in α-keto acid, ammonium, and
hydrogen peroxide (H2O2) production [208]. The administration of a DAO inhibitor, such
as 5-chloro-benzo[d]isoxazol-3-ol (CBIO), in a preclinical model of schizophrenia enhanced
D-serine efficacy in mice. In contrast, the D-amino acid alone was not effective in attenuat-
ing the pre-pulse inhibition deficit induced by MK-801 treatment, probably due to lower
oxidative stress [209,210].
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Among other antipsychotic drugs, clozapine and olanzapine seem to exert the most
antioxidant properties. The neuroprotective and antioxidant features of six different an-
tipsychotics were evaluated via in vitro models [211]. Clozapine and olanzapine showed to
be more effective in scavenging superoxide anion on the respiratory burst and stabilizing
free radicals than risperidone and ziprasidone, probably due to the amino group part
of their chemical structure. In contrast, quetiapine and haloperidol completely lacked
antioxidant effects [211]. Analogously, clozapine significantly enhanced SOD levels and
reduced lipid peroxidation in comparison to perphenazine and risperidone [30]. Cloza-
pine also increased peripheral glutathione, whose levels negatively correlated with the
PANSS negative subscale [30]. In addition, ziprasidone and haloperidol but not clozapine
significantly raised TBARS levels in the plasma of healthy subjects after 24 h of incubation,
indicating a status of increased lipid peroxidation [212].

The oxidant/antioxidant action of aripiprazole, a third-generation antipsychotic char-
acterized by a partial agonism on D2R and D3R and antagonism at the 5HT2A receptor,
has also been extensively studied in clinical and preclinical models [27]. Contrary to the
oxidant effect of risperidone, ziprasidone, or haloperidol, aripiprazole had no effect on
lipid peroxidation, assessed as TBARS levels in the plasma of healthy volunteers [213]. Of
interest, a dose-related effect was detected, with higher doses of aripiprazole associated
with a more pronounced antioxidant action [213]. The impact of aripiprazole on cell pro-
liferation and neuronal differentiation was evaluated in the dentate gyrus of adolescent
mice by immunohistochemistry [214]. Aripiprazole was effective in enhancing cell prolifer-
ation and maturation and complexity of neuroblast dendrites, along with decreased lipid
peroxidation and increased SOD2 levels [214].

Xanomeline, a recent antipsychotic with agonism at the muscarinic M1 and M4 recep-
tors (M1/4R), was tested on rat cortical neurons and showed to be effective in protecting the
cells from oxygen-glucose deprivation (OGD)-induced injury and cell apoptosis, inhibiting
ROS production induced by OGD, and preventing p-Akt reduction [215].

Altogether, these findings suggest different antioxidant/oxidant potentials between
first- and second-generation compounds, with possibly better benefits obtained from
clozapine and olanzapine administration.
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Table 1. Oxidant and antioxidant effects of first- and second-generation antipsychotics.

Antipsychotics Study Design Model Main Outcomes References

Haloperidol

Preclinical study S1R-knockdown mouse
hippocampal HT22 cells

HAL could exert neuroprotective effects through mechanisms
independent of sigma1 receptors. By the application of

fluorescent probes, HAL was localized to endosomes and
lysosomes and was shown to reduce the accumulation of Fe2+ and

prevent the phenomena of cell death.

Hirata et al., 2022 [186]

In vivo preclinical study Adult male CD1 mice In the mouse frontal cortex, HAL was seen to decrease BDNF,
GSH, and Bcl-xL levels. Pillai et al., 2008, [188]

Preclinical study
Rat primary cortical neurons
and mouse hippocampal cells

line HT22

HAL resulted in a six-fold increase in the levels of ROS generated
by mitochondria, together with a reduction in GSH and a

concomitant elevation in intracellular Ca2+ flux in rat primary
cortical neurons and mouse hippocampal cells.

Sagara 1998 [190]

Preclinical study Mice
HAL induced a decrease in GSH concentration in the cortex,

striatum, and cerebellum, which was reverted by the treatment
with cinnarizine.

Abdel-Salam et al., 2012 [191]

Preclinical study Human peripheral blood
lymphocytes

HAL induced increased oxidative stress, reduced GSH levels,
increased lipid peroxidation, and exerted genotoxic effects in

human lymphocytes.
Zamani et al., 2022 [196]

Haloperidol and
risperidone

In vitro preclinical study Cultures of cortical neurons of
rats at E18

HAL reduced Akt phosphorylation levels and caspase-3
activation; instead, BDNF could reverse these HAL-induced

effects. Furthermore, only HAL, not RIS, could induce
caspase-dependent apoptosis.

Ukai et al., 2004 [194]

In vitro comparative
study

Cultures of astrocyte-like cells
(C6 cell line)

RIS increased glutamate uptake, glutamine synthase activity, and
GSH content, and high doses of HAL increased ROS. Quincozes-Santos et al., [201]

Ziprasidone, clozapine,
and haloperidol In vitro preclinical study Human blood

ZIP and HAL but not CLO raised TBARS levels in the plasma of
healthy subjects after 24h of incubation, indicating a status of

increased lipid peroxidation.

Dietrich-Muszalska et al.,
2013 [212]

Risperidone, ziprasidone,
haloperidol, aripiprazole In vitro preclinical study Human blood

Contrary to the oxidant effect of RIS, ZIP, or HAL, APZ had no
effect on lipid peroxidation, assessed as TBARS levels in the

plasma of healthy volunteers.

Dietrich-Muszalska et al.,
2018 [213]

Haloperidol, risperidone,
and paliperidone

In vitro comparative
study

Human neuroblastoma
SK-N-SH cells

HAL was linked to an increase in caspase-3 activity and cell death
RIS and PP decreased caspase-3 activity and did not affect cell

viability or cell death.
Gassó et al., 2012 [200]
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Table 1. Cont.

Antipsychotics Study Design Model Main Outcomes References

Aripiprazole Preclinical study Adolescent male ICR mice

APZ was effective in enhancing cell proliferation and maturation
and complexity of neuroblast dendrites in the dentate gyrus,

along with decreased lipid peroxidation and increased
SOD2 levels.

Chen et al., 2013 [214]

Chlorpromazine
Preclinical study Rats

CPZ has neuroprotective effects through mitochondrial apoptotic
pathway inhibition. Moreover, CPZ decreased the expression of

cleaved caspase-3, cytochrome c, and Bax and increased the
expression of Bcl-2 and TF.

Wu et al., 2016 [197]

Preclinical study Rats The long-term administration of CPZ reduced the activity of SOD. Abdalla et al., 1994 [198]

Risperidone

Clinical trial 40 patients with SCZ RIS decreased the initially high blood levels of SOD observed in
patients with SCZ. Zhang et al., 2003 [203]

In vitro preclinical study
Rat C6 cells were transfected

with a plasmid encoding mouse
DAO

RIS exerted a partial uncompetitive inhibition effect on human
DAO and exhibited a protective effect from D-amino

acid-induced cell death.

Abou El-Magd et al.,
2010 [207]

Olanzapine

In vitro preclinical study mHypoA-59 hypothalamic
neuronal cell line

OLA could increase ROS and mitochondrial dysfunction,
triggering cytotoxic mechanisms and neural death. A possible

antidote to these events is represented by NAC use.
Boz et al., 2020 [204]

Preclinical study PC12 cells
In PC12 cells exposed to hydrogen peroxide, pretreatment with

OLA attenuated the decrease of SOD-1 mRNA levels, while SOD
enzymatic activity increased.

Wei et al., 2023 [205]

Haloperidol, risperidone,
clozapine, and quetiapine Preclinical study

Cultures of peripheral
mononuclear blood cells

extracted from 12 patients with
FEP

HAL, as well as RIS, CLO, and QTP, were all effective in raising
anti-inflammatory cytokine (IL-4 and IL-10) levels. Al-Amin et al., 2013 [199]

Haloperidol and
olanzapine Cross-sectional study 50 patients with SCZ

Chronic OLA administration was associated with lower TBARS
levels, which are indicators of altered lipid peroxidation, and

higher antioxidant values than treatment with HAL.
Singh et al., 2008 [29]

Risperidone and
olanzapine Longitudinal study 179 psychotic patients (93 of

them completed the study)

Three-month treatment with RIS and OLA was associated with an
increase in blood GSH, α-tocopherol, and ascorbic acid levels

parallelized by a decrease in malondialdehyde concentration, a
lipid peroxidation marker.

Zerin Khan et al., 2018 [31]
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Table 1. Cont.

Antipsychotics Study Design Model Main Outcomes References

Clozapine, olanzapine,
haloperidol, quetiapine,

risperidone and
ziprasidone

In vitro preclinical study Human neutrophils

CLO and OLA showed to be more effective in scavenging
superoxide anion on the respiratory burst and stabilizing free

radicals than RIS and ZIP, probably due to the amino group part
of their chemical structure, whereas QTP and HAL completely

lacked antioxidant effects

Brinholi et al., 2016 [211]

Olanzapine and clozapine Preclinical study KO male mice for the Ddo OLA, different from CLO, CPZ, and HAL, was seen to inhibit the
activity of the human DASPO. Sacchi et al., 2017 [206]

Perphenazine, clozapine,
and risperidone Observational study 100 patients with SCZ CLO showed to enhance SOD levels and reduce lipid

peroxidation in comparison to PPZ and RIS. Hendouei et al., 2018 [30]

Xanomeline Preclinical study Rat cortical neurons
Xanomeline was effective in protecting cells from OGD-induced
injury and cell apoptosis, inhibiting ROS production induced by

OGD, and preventing p-AKT reduction
Xin et al., 2020 [215]

Akt = serine/threonine kinase; APZ = aripiprazole; Bcl-Xl = B-cell lymphoma-extra large; BDNF = brain-derived neurotrophic factor; Ca2+ = calcium ion; CD1 = cluster of
differentiation 1; CLO= clozapine; CPZ = chlorpromazine; DAO = D-amino acid oxidase; DASPO= D-aspartate oxidase; Ddo = D-aspartate oxidase; E18 = embryonic day 18;
Fe2+= ferrous ion; FEP = first episode psychosis; GSH = glutathione; HAL = haloperidol; IL = interleukin; KO = knockout; mRNA = messenger ribonucleic acid; NAC = N-acetylcysteine;
OGD = oxygen-glucose deprivation; OLA = olanzapine; PP = paliperidone; PPZ = perphenazine; QTP = quetiapine; RIS = risperidone; ROS = reactive oxygen species; S1R = sigma-1
receptor; SCZ = schizophrenia; SOD = superoxide dismutase; TBARS = thiobarbituric acid reactive substances; TF = tissue factor; ZIP = ziprasidone.
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6. Oxidative System, Dopamine, and Mitochondrial Dysfunction: An Interplay
Possibly Relevant for Schizophrenia and Antipsychotic Treatment

Mitochondrial dysfunction and ROS production may play a role in the pathophysiol-
ogy of multiple psychiatric disorders, such as bipolar disorder and schizophrenia, through
neurotransmitter mechanisms partly yet to be elucidated [172,216,217]. However, increased
dopamine release at the subcortical level and the dysregulation of signaling are at the core
of the pathophysiology of schizophrenia and the main target of the action of antipsychotics
via D2R occupancy [12]. Therefore, it is conceivable that any effort to understand how
antipsychotics may affect energy expenditure in the brain should consider the associaton
with dopamine or, in general, catecholamines. The dopamine and catecholamine signal-
ing may have evolved as possible regulators of energy metabolism and mitochondrial
respiration pathways, sharing a common set of biosynthetic and metabolic enzymes. It
has been suggested that this process may be the result of “retrofitting enzymes” during
evolution [218].

Multiple pieces of evidence have linked the dopamine pathway to mitochondrial
function in terms of oxidative stress.

Specifically, it was demonstrated that chronic exposure to amphetamines, which are
known to enhance dopamine levels via dopamine transporter (DAT) blockage, increased
superoxide production in submitochondrial particles in the PFC and hippocampus of
rats [219]. Moreover, mitochondria are vulnerable to high concentrations of dopamine [216].
Dopamine altered the mitochondrial membrane potential and reversibly inhibited the
activity of the mitochondrial complex [216,220]. In this context, antipsychotics may act on
dopaminergic neurotransmission and prevent mitochondrial oxidative stress [219].

Evidence showed that dopamine, when added to cultured cortical neurons, con-
tributed to decreases in GSH levels, reduced the number of neuronal spines, and increased
dendritic degeneration and ROS production [147,221].

A postmortem study investigated the presence of metabolic abnormalities related to
cytochrome c oxidase (COX) dysfunction in the substantia nigra and ventral tegmental area
of patients with schizophrenia and a reduced protein expression of COX subunits II and
IV was detected in these patients compared to non-psychiatric controls [222]. Otherwise,
significant changes in COX were not detected in rats chronically treated with antipsychotic
drugs [222].

Several studies explored the relationship between SOD activity and tardive dyskinesia,
a movement disorder associated with chronic antipsychotic therapy and probably due to
D2R signaling enhancement [223]. Reduced blood SOD levels and activity, as well as SNPs
in the SOD gene, have been found in patients affected by tardive dyskinesia, indicative of
dysfunction of protective mechanisms from free radicals’ production in these patients [224].
Of interest, second-generation antipsychotics, such as olanzapine and clozapine, which
are less likely to induce tardive dyskinesia, were found to increase SOD expression, as
discussed above [30,205].

The l-butionin-(S, R)-sulfoximine (BSO), an inhibitor of GSH synthesis, and GBR 12909,
a dopamine reuptake inhibitor, administered in rats during early postnatal development,
affected ROS levels, lipid peroxidation, and the activity of some antioxidant enzymes, such
as SOD, catalase, glutathione peroxidase, and reactive glutathione disulfide [225]. These
changes were found in peripheral tissues as well as in the PFC, hippocampus, and striatum
of rats [225]. Specifically, in the hippocampus, GBR 12909 was associated with reduced SOD
and glutathione peroxidase activity, whereas in the PFC and striatum, SOD activity was
enhanced by both GBR 12909 and BSO administration [225]. In addition, it was observed
that the combined treatment of the two substances (the glutathione synthesis inhibitor and
the dopamine reuptake inhibitor) resulted in a significant decrease in lipid peroxidation
levels and the absence of ROS changes in the PFC and hippocampus of rats [225]. All these
early events may trigger the appearance of behavioral abnormalities and the development
of schizophrenia in adulthood [225].
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In another study, BSO was shown to reduce the levels of BDNF mRNA and protein in
both the PFC and hippocampus of rats [226]. The combination of BSO with a dopamine
reuptake inhibitor reduced BDNF mRNA and proteins only in the PFC, while in the hip-
pocampus, only the protein levels of BDNF were decreased [226]. It was also observed that
rats treated with BSO alone and those with BSO in combination with the dopamine reuptake
inhibitor showed behavioral abnormalities similar to the schizophrenia phenotype [226].
However, only in combination-treated rats did amphetamine administration exacerbate
positive symptoms in adulthood [226]. This highlights that schizophrenia may be triggered
by redox abnormalities associated with disruption of dopaminergic transmission, with
inhibition of dopamine reuptake, during exposure in early postnatal life [226].

Another molecule to consider in this context is the enzyme monoamine oxidase
(MAO), which is responsible for dopamine oxidative metabolism and is localized on the
outer mitochondrial membrane [216]. Reversible MAO inhibitors, such as 1-Methyl-1,2,3,4-
tetrahydroisoquinoline (1MeTIQ), were evaluated in preclinical studies and compared to
olanzapine after pre-treatment with ketamine [227]. In particular, 1MeTIQ, similar to olan-
zapine, showed to reverse ketamine-induced anxiogenic effects in the elevated plus maze
(EPM) test, along with significant inhibition of the dopamine MAO-dependent oxidation
pathway [227]. Moreover, 1MeTIQ could increase the concentration of biogenic amines by
blocking their catabolism through the MAO-dependent oxidation pathway while preserv-
ing their methylation through the action of catechol-O-methyltransferase (COMT) [227].
In this regard, 1MeTIQ was seen to increase the concentration of 3-methoxytyramine
(3-MT), an extraneuronal metabolite of dopamine produced by COMT activity [227].
3-MT was shown to regulate the activity of the catecholaminergic system and antago-
nize amphetamine-induced behavioral and neurochemical effects [228].

7. Mitochondrial Dysfunction, Synaptic Modulation, and Antipsychotic Treatment:
Implication for Schizophrenia

Focusing on changes induced, directly or indirectly, by oxidant agents on synapse’s
structure and function, a multilevel “locus” of action could be conceived from presynaptic
to postsynaptic sites where all antipsychotics exert their action even with different de-
grees, mainly related to the receptor profile and dose of the drug [229]. Starting with the
presynaptic button and the molecular machinery of the presynaptic site, the most recent
conceptualization of mitochondria function is the time- and space-dependent regulation of
presynaptic energy, or “synaptoenergetics” [230]. Despite the high motility of mitochondria
at axon/dendritic branch terminals, the pool of presynaptic mitochondria could play the
role of “local power plants” to supply ATP-dependent energy expenditure requirements in
a specific presynaptic environment and provide calcium concentrations necessary to enable
communication between neurons [231].

Presynaptic dopaminergic molecules influenced by oxidative stress and mitochon-
drial function include DAT, which is responsible for the clearance of dopamine into the
synaptic cleft of the striatum [232]. Specifically, increases in oxidative stress markers,
such as 5-S-cysteinyl-dopamine and 5-S-cysteinyl-DOPAC, were found in transgenic mice
overexpressing DAT, resulting in neuronal cell death [233]. At the presynaptic level, DAT-
mediated reuptake of dopamine could trigger oxidative toxicity and neuronal damage by
creating an oxidant environment with elevated levels of ROS, quinones, and toxic inter-
mediates through several mechanisms, including increased mitochondrial MAO activity,
autoxidation, and metabolism of dopamine [233,234]. Dopamine oxidation products can
damage lipids, DNA, and proteins, including DAT, which is rich in cysteine residues,
inducing an “oxidative loop” [235]. Although all available antipsychotics have a very
low affinity or no affinity for DAT, there is a growing interest in the role of this molecule
in the overall action of antipsychotics, with specific emphasis on TRS [236]. It has been
postulated that in the presence of no response to antipsychotics, the blockade or occupancy
of DAT by pharmacological agents with relatively high affinity for this transporter may
reset the dopaminergic tone by increasing dopaminergic concentration in the synaptic cleft



Antioxidants 2023, 12, 975 20 of 45

and possibly the response of the dopaminergic system to antipsychotics’ action [237]. In
addition, the observance of improvements in rat psychotic-like manifestations after the aug-
mentation of haloperidol with the DAT blocker GBR12909 could rely not only on a “reset”
of the dopaminergic tone but also on reduced levels of presynaptic dopamine, ensuing in a
low oxidative state [238]. Alterations in DAT function, induced by both pharmacological
compounds and oxidative stress, may result in increased dopamine concentrations in the
subcortical regions of the brain, especially in the striatum, with a potential double-edged
sword effect: (1) contributing to a hyperdopaminergic status, consistent with the dopamine
hypothesis of schizophrenia [239]; (2) restoring the dopaminergic tone with a putative
beneficial impact on antipsychotics’ efficacy [237].

At the presynaptic glutamatergic site, the excitatory amino acid transporter 3 (EAAT-3),
a regulator of synaptic glutamate concentrations, and oxidative stress have also been associ-
ated and implicated in antipsychotics’ responsiveness. In particular, Afshari et al. suggested
that partial loss of the Slc1a1 gene, encoding for EAAT-3, in mice, causes haploinsufficiency
associated with oxidative stress-induced behavioral, histological, and biochemical changes,
promoting the expression of schizophrenia-like features [240]. Pharmacogenomic studies
identified an association between the SNP rs16921385 in the Slc1a1 gene and the response to
risperidone treatment, linking oxidative balance and antipsychotic outcomes via synaptic
function [241].

At the postsynaptic level, the PSD is a major structure whose components can be
affected by oxidative stress with significant pathophysiological consequences and possible
clinical relevance [242]. The PSD is considered a multimodal molecular hub where different
signaling inputs may converge and are dispatched at intracellular levels [243]. There is
substantial evidence that treatment with antipsychotics in a preclinical setting may affect
the gene expression of PSD proteins, potentially impacting the architecture and function
of the synapse [1]. Here, we will consider some of the most documented oxidative-stress
effects on major PSD proteins.

Disc1 is a scaffold protein involved in the PSD composition, whose genetic variants
have been variously related to the pathophysiology of schizophrenia [1]. Disc1 could
represent a molecular target relevant to schizophrenia treatment, as suggested by the
evidence of a significant increase in its expression levels in the frontal cortex of mice
administered with olanzapine and risperidone [244]. The interaction between Disc1 and
Glycogen synthase kinase-3 beta (GSK3β) has been identified as a factor possibly involved
in cell survivance and viability [245]. During oxidative stress, Translin-associated protein
X (TRAX), a signaling protein involved in synaptic plasticity and DNA repair, binds to
the Disc1/GSK3β complex [245]. Activation of protein kinase A (PKA) and subsequent
phosphorylation of GSK3β lead to the dissociation of TRAX, which can move to the
nucleus and facilitate DNA repair [245]. Further, GSK3β is a kinase interacting with Akt,
whose functional interaction with D2R and modulation of D2R signaling is relatively well
characterized and believed to be relevant for antipsychotics’ mechanism of action [246].
Hyperactivity of D2R may trigger D2R-DISC1 complex formation, which is associated with
decreased pAkt-pGSK3β signaling and neurite growth reduction [247]. Aripiprazole and
haloperidol effectively prevented neurites’ impairments, but only the D2R partial agonist
significantly counteracted the reduced phosphorylation in the Akt/GSK3β pathway [247].

Homer1 is one of the three isoforms (e.g., Homer1, Homer2, and Homer3) among the
most abundant proteins at PSD, implicated in shaping the architecture of the dendritic spine,
involved in the pathophysiology of behavioral disorders [248] as well as in the effects of
antipsychotics upon synaptic gene expression [6,249,250]. Oxidant stress may affect Homer
proteins [251]. In this context, the structural and functional modifications of Homer proteins
in the NMDAR/AMPAR-dependent signaling machinery at the PSD may be a proxy of
the alteration induced by oxidative stress on the dendritic spine [251]. Along with the
antipsychotics’ impact on Homer1 demonstrated in multiple animal settings [134,249,250],
it would be interesting to explore whether the changes in Homer1 expression induced by
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both canonical and non-canonical antipsychotic mechanisms of action may mirror changes
in oxidative stress biomarkers.

Calcium/calmodulin-dependent protein kinase II (CaMKII) is a multimodal serine/
threonine protein kinase found throughout the brain [252] and in multiple subcellular
compartments of the neuron, and is one of the most abundant proteins at PSD [253,254].
CaMKII has been associated with schizophrenia both in clinical [255,256] and preclinical
settings [257]. Mice with a heterozygous null mutation for CaMKII (α-CaMKII+/−) may
show altered executive functioning reminiscent of schizophrenia patients [258]. Further-
more, oxidative stress modulates NMDAR activity on GluN1-GluN2A receptors [259,260],
inhibiting CaMKII activity [261]. Considering the role of CaMKII in the synaptic machinery
and its localization at the PSD level, the association between antipsychotics, oxidative
stress, and CaMKII could be relevant for therapeutic purposes. Indeed, CaMKII is respon-
sive to different psychotropic drug administrations [262], including antipsychotics [263].
Studies in CaMKII KO heterozygous rodents with neonatal ventral hippocampal lesions
reminiscent of schizophrenia models show a decrease in CaMKII activity, suggesting that
CaMKII is a therapeutic target in schizophrenia. Furthermore, preclinical studies enhancing
CaMKII activity have shown a potential treatment for social and cognitive disorders in
schizophrenia, showing resistance to antipsychotics [257]. It has been speculated that
antipsychotic resistance might be associated with reduced levels of α-CaMKII protein in
the striatum [264], also resulting as an effect of exposure to oxidative stress. In line with the
role of CamKII in the NMDA-hypofunction, it has been reported that CaMKII is involved
in the facilitating effect of clozapine on NMDA-induced inward currents and electrically
evoked excitatory postsynaptic currents (EPSCs) in medial prefrontal cortex pyramidal
cells [265], probably with the implication of its antioxidant proprieties.

The observation that, at the glutamatergic PSD, Shank proteins may contribute to
assembling the NMDAR/PSD-95/nitric oxide synthase-1 (NOS1) complex with the guany-
late kinase-associated protein (GKAP) adaptor protein is relevant in terms of antipsychotics’
impact on oxidative pathways [266]. NOS1 binds to PSD-95 through PDZ-PDZ domains,
allowing a functional interaction between NMDAR and NOS1, which can be localized
spatially close to subcellular microdomains rich in Ca2+ influx, which is necessary for
enzymatic activation [267]. NO production contributes to oxidative stress pathways by
reacting with superoxide anions to produce peroxynitrite (ONOO−) ions, which can induce
lipid peroxidation and DNA damage leading to cell death [268]. Of interest, antipsychotic
treatment has been demonstrated to be effective in modulating Shank and PSD-95 activity,
accounting for potential beneficial effects [1]. In addition, the NMDAR co-agonist D-Serine,
which has been proposed as an augmentation strategy in schizophrenia patients [208], has
been found to reduce the expression of nitric oxide synthase 1 adaptor protein (NOS1AP)
and attenuate the decrease in dendrite branching exerted by NOS1AP overexpression
in vitro [269].

In summary, the overall scenario that emerges at the presynaptic and postsynaptic
levels is that of multiple molecular “loci” where oxidative stress mechanisms may “hit”
with potentially relevant consequences for the pathophysiology of behavioral disorders.
Antipsychotics could intercept some of these effects, but caution is needed at present in
interpreting the effect of this class of compounds in the reciprocal interaction between PSD
proteins and oxidative stress.

8. Antipsychotic Treatment Effects on Mitochondrial Function and
Intracellular Signaling

Several pieces of evidence have explored the impact of antipsychotic medication
on proteins involved in mitochondrial functions and signaling pathways relevant to cell
viability and survivance.

Effects of first- and second-generation antipsychotics were evaluated by an in vitro
analysis of mitochondrial proteins in the lymphocytes of psychotic patients [270]. The hier-
archical clustering dendrogram showed a separate cluster for first- and second-generation
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compounds, suggesting the possibility of exploiting mitochondrial function parameters as
a tool for tailored drug treatment in patients with schizophrenia or bipolar disorder [270].
Olanzapine and risperidone were effective in decreasing mitochondrial maximal respi-
ration [270]. Olanzapine decreased levels of caspase 3 and MFN1, whereas risperidone
significantly decreased OPA1 protein levels [270]. Risperidone and haloperidol increased
the expression of proteins involved in cell viability by raising the levels of both pro- and
anti-apoptotic proteins BAX and Bcl-2, respectively [270]. Clozapine increased the levels
of Bcl-2 and reduced the levels of Drp1, another protein involved in mitochondrial fis-
sion [270]. Haloperidol significantly decreased the levels of the MCI subunits NDUVF1,
NDUVF2, NDUVS1, caspase 3, and Drp1 [270].

The different effects of typical or atypical antipsychotics on mitochondrial gene ex-
pression were reported by Choi and coauthors [32]. They studied postmortem liver tissue
of schizophrenia patients and found an upregulation of SOD2, 3-phosphoinositide-dependent
protein kinase (PDK1), and NSF Attachment Protein Gamma (NAPG) and downregulation
of 11 mitochondria-related genes, including D-beta-hydroxybutyrate dehydrogenase (BDH1),
acyl-coenzyme A dehydrogenase (ACAMD), Solute carrier family 25 member 47 (SLC25A47), and
N-Acetylglutamate synthase (NAGS) in patients treated with typical antipsychotic compared
to atypical antipsychotic treatment [32].

Rosenfeld et al. showed that cellular respiration in cells of the lymphoblastoid
line is significantly reduced in patients with schizophrenia than controls. In addition,
these patients exhibited greater dopamine-induced inhibition [179]. In this study, it was
shown that haloperidol suppresses cellular respiration by interacting with complex I [179].
Dopamine interacted with MCI but at a different site than the antipsychotics [179]. How-
ever, both dopamine and antipsychotic drugs could inhibit MCI, resulting in possible
lower O2 consumption in nerve terminals and lower adenosine triphosphate (ATP) pro-
duction [136,271,272]. Data from the Rosenfeld’s experiments confirmed the previous
observations that showed an inhibition in MCI exerted by haloperidol, chlorpromazine,
and thiothixene in rat brain mitochondria [179]. The same effect was observed at very
high doses of clozapine. Intriguingly, the platelet MCI activity in patients treated with
haloperidol and chlorpromazine was reduced compared to patients treated with clozapine,
probably due to the efficacy dosage used [179]. This activity alteration was also reported in
patients affected by Parkinson’s disease, and could be associated with the extrapyramidal
side effects, such as also tardive dyskinesia, of these drugs [273,274]. According to these
findings, another preclinical study on slices of mouse brain demonstrated the inhibition
of MCI by haloperidol, which proved to be the most potent inhibitor of MCI, probably
due to a depletion in glutathione levels, followed by chlorpromazine, fluphenazine, and
risperidone but not clozapine [275]. Furthermore, a preclinical study in isolated rat liver
mitochondria reported a reduction in MCI activity after chlorpromazine, haloperidol,
risperidone, and quetiapine treatment, and the effect of the latter two was 2–4 times less
than typical neuroleptics while clozapine and olanzapine had only slight effects [276].
These data were confirmed in a clinical study conducted in peripheral blood mononu-
clear cells of patients affected by schizophrenia, which also reported an increase in lipid
peroxidation after haloperidol treatment compared to risperidone or clozapine [277]. In
addition, a preclinical study showed that a decrease in MCI activity in mice brains was
induced by haloperidol depending on the doses and timing of drug administration with
various responses in different brain regions that could explain the different side effects
at multiple D2R occupancy levels [278]. Regarding the effects of antipsychotics in differ-
ent brain regions, flupenthixol reduced MCI activity in the rat striatum, frontal cortex,
hippocampus, and cerebellum after chronic administration [279]; these data were also con-
firmed in humans affected by schizophrenia [280]. Haloperidol was also responsible for a
reduction in oxygen consumption and MCI activity in the brain but not in muscle mitochon-
dria that were prevented or partially reverted by SKF38393 (D1R agonist) and quinpirole
(D2R agonist) coadministration [281]. In contrast, the reduction in protein synthesis—e.g.,
NADH-ubiquinone oxidoreductase chain (ND)1, ND4, ND5, mitochondrial cytochrome
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oxidase subunit (CO)I, COII, and cytochrome B (Cyb)—found in the haloperidol group was
not reverted by dopamine agents [281], leading to the conclusion that dopamine pathways
did not mediate this effect [281].

A decrease in the levels of subunits of the mitochondria electron transport chain,
including complex I (NDUFV1), complex II (Sdha), complex III (Uqcr10), complex IV
(Cox15), and complex V (Atp5c1), was reported in the peripheral blood cells of schizophre-
nia patients compared to healthy controls after administration of higher risk metabolic
syndrome-induced clozapine and olanzapine [24]. Additionally, clozapine and olanza-
pine reduced transcripts and proteins involved in the energy metabolism, ATP levels,
and mitochondrial oxygen consumption evaluated in lymphoblastoid cell lines from both
patients and controls [24]. The treatment with quetiapine and risperidone, which have
a medium risk of inducing metabolic syndrome, was responsible only for a decrease in
NDUFV1, Sdha, and Atp5c1 levels [24]. Finally, all three groups, including patients treated
with antipsychotics considered at low risk for inducing metabolic syndrome (aripiprazole
and ziprasidone), subjects undergoing treatment with medium-risk second-generation an-
tipsychotics (risperidone and quetiapine), and patients administered with high-risk drugs
(clozapine and olanzapine), showed reduced levels of genes coding for proteins involved
in mitochondrial fission processes compared to controls [24].

Quetiapine is responsible for mitochondrial swelling and cell membrane destruction,
inducing necroptosis by receptor-interacting serine/threonine-protein kinase (RIP) activa-
tion and phosphorylation of mixed lineage kinase domain-like protein (MLKL) [282,283].
Other findings have shown that quetiapine also has an antioxidant, anti-inflammatory, and
neuroprotective role via the reduction of lipid peroxidation [284,285].

Clozapine-related cardiotoxic effects seem to engage cardiac mitochondria that are
involved in the conversion into clozapine reactive metabolites leading to a reduction of
oxygen consumption rate [286]. Similarly, the diabetogenic effect exerted by clozapine,
studied in β-cells culture, could be related to increases in mitochondrial membrane fluidity
and polyunsaturated fatty acid content, resulting in apoptosis and suppression of cell
proliferation [287,288]. On the other hand, clozapine exhibited neuroprotective effects
through an uncanonical mechanism of action probably mediated by an increase in BDNF
levels via Akt-GSK3 cascade activation that reverts oxidative stress damage [289]. Clozapine
was also seen to enhance oxidative phosphorylation and galactocerebroside expression,
improving neural energy supply [25].

A recent in vitro study has addressed the effects of antipsychotics of more recent
introduction in therapy, such as brexpiprazole, cariprazine, loxapine, and lurasidone, and
showed impairments in pig brain mitochondria, concluding that these antipsychotics
reduced ATP production and the function of electron transport chain enzymes, except
for complex IV, whose activity was found increased after brexpiprazole and loxapine
addition [290].

The effects of antipsychotics on mitochondrial function are sufficiently proven, but
little is still known about the mechanisms of action of antipsychotics on mitochondria
responsible for their effects. Chan and colleagues have hypothesized three different pos-
sibilities: (i) influence on ionic membrane permeability; (ii) binding of antipsychotics at
G protein-coupled receptors (GPCRs) alters protein kinase A (PKA) or PKC levels mod-
ifying their binding at mitochondrial membrane; (iii) direct binding of antipsychotics to
the mitochondrial membrane [291]. To better understand the antipsychotics’ effects, two
proteomics studies were conducted by the same group to analyze their effects on intra-
cellular pathways. A preclinical study investigated the different effects of the chronic
administration of chlorpromazine, clozapine, or quetiapine on the modulation of mitochon-
drial proteins, mainly from the oxidative phosphorylation pathways in the rat cortex and
hippocampus [292]. Three antipsychotic treatments, such as chlorpromazine, clozapine,
and quetiapine, modulated the synaptic proteome in a rat cerebral cortex by regulating
proteins related to the energy production or the glycolytic pathways, as well as to the
G-protein-coupled signal transduction system [293].
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These results may suggest that antipsychotics could modify mitochondrial function
impairing their oxygen consumption and energy production, but, on the other hand,
are also able to rebalance altered oxidative stress related to the neurobiological basis of
psychiatric diseases via different intracellular pathways, resulting in their neuroprotective
effects [291,294]. Putative mitochondrial sites of interest for antipsychotics’ action have
been outlined in Figure 3.
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9. Antioxidants: A Possible Add-on Strategy in the Treatment of Schizophrenia?

Several RCTs have been conducted to assess the efficacy of antioxidant strategies,
including Ginkgo biloba, NAC, allopurinol, vitamin C, and vitamin E, as add-on treatments
to standard antipsychotic medication [295].

Allopurinol was studied in combination with haloperidol and showed a significant
superiority over the antipsychotic alone in the treatment of positive symptoms and the
PANSS total score [296]. In a crossover clinical trial, allopurinol showed safety, tolerability,
and significant improvements in the PANSS total, positive, negative, and general scores
compared to the placebo [297]. In an 8-week RCT, no differences were found in the PANSS
or cognitive measures between groups treated with allopurinol or placebo in augmentation
to antipsychotics [298]. In another trial, patients treated with allopurinol rated themselves
as more improved than the placebo group [299].

BioRender.com


Antioxidants 2023, 12, 975 25 of 45

The efficacy of Ginkgo biloba was evaluated in RCTs conducted on patients diagnosed
with schizophrenia and showed to significantly decrease SANS and Scale for the Assess-
ment of Positive Symptoms (SAPS) scores when added to haloperidol and administered
at a dose of 360 mg/day [300]. In chronic schizophrenia, the administration of Ginkgo
biloba was effective in ameliorating brief psychiatric rating scale (BPRS) and SANS scores
compared to the placebo [301,302].

Vitamin E supplementation was evaluated as an augmentation strategy in schizophre-
nia patients under treatment with haloperidol, and even if no difference was detected in the
PANSS total or subscale scores, the concentration of oxidized glutathione was decreased
while the activity of catalase and superoxide dismutase was increased [303].

After vitamin C supplementation in schizophrenia patients treated with second-
generation antipsychotics, blood levels of malondialdehyde and ascorbic acid were sig-
nificantly increased compared to the placebo, together with an improvement in the BPRS
score [304]. In one study, the simultaneous administration of vitamin C and E was found to
worsen psychotic symptoms, especially persecutory delusions, in patients with low blood
levels of polyunsaturated fatty acids (PUFA). In contrast, they had no detrimental effect on
psychosis in patients with high PUFA levels [305].

Among antioxidants, NAC has been the most investigated compound in psychotic
disorders by RCTs. In patients with chronic schizophrenia, the administration of 1 g twice
daily of NAC as an add-on treatment was significantly associated with a reduction in the
PANSS total, negative, and general scores as well as an improvement in akathisia [306].
After 8-week treatment, the augmentation of risperidone with NAC significantly decreased
PANSS total and negative subscale scores compared to placebo without any difference in
the frequency of adverse effects [307]. NAC-treated patients also exhibited a significant
improvement in cognitive functions. Specifically, in individuals with chronic schizophrenia,
NAC significantly ameliorated PANSS negative and positive scores, along with improve-
ment in attention, short-term and working memory, executive functioning, and speed of
processing [308]. Improvement in working memory after NAC add-on treatment was
replicated in another study conducted on psychotic patients, including individuals affected
by schizophrenia or bipolar disorder [309]. The effect on illness duration was evaluated
in light of NAC responsiveness, showing that patients with chronic schizophrenia might
benefit more than others from additional treatment with NAC in terms of functioning and
positive symptoms [310]. In psychotic patients, NAC administration was also associated
with improvement in mismatch negativity, measured by auditory evoked potentials and
whose amplitude is commonly reduced in schizophrenia, even though no difference in the
PANSS total or subscale scores was detected in comparison to placebo [311]. Moreover,
NAC effectively modulated functional connectivity in patients diagnosed with schizophre-
nia by increasing the multivariate phase synchronization over the left parietal-temporal, the
right temporal, and the bilateral prefrontal regions, as assessed by EEG application [312].
Six-week add-on treatment with NAC in early psychosis patients effectively ameliorates
processing speed and positive symptoms, along with an increase in white matter integrity in
the fornix measured by generalized fractional anisotropy [313]. Further, NAC supplementa-
tion in early psychosis patients was significantly associated with an elevation in functional
connectivity within the cingulate cortex, with an increased node betweenness centrality
value in the isthmus of the cingulate cortex [314]. The cingulate cortex, a key component of
the salience network, has been found altered in psychotic patients [315], and betweenness
centrality measures of nodes comprised in this region were significantly modulated by
second-generation antipsychotics in preclinical models of schizophrenia [249]. Treatment
with NAC was evaluated over a 52-week period in early-phase psychotic disorders. It
showed to reduce the PANSS total, negative, and disorganized thought scores without any
change in PANSS positive and cognitive scores as well as no impact on brain morphology,
as measured by magnetic resonance imaging (MRI) scans [316]. The effect on disorganized
thought is relevant in prognostic terms since disorganization domain scores may be pre-
dictors of treatment-resistant schizophrenia [317]. In a placebo-controlled RCT for TRS
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patients with persistent psychotic symptoms treated with clozapine, NAC as adjuvant
therapy was not shown to significantly improve cognitive symptoms or quality of life in
TRS patients [318]. Furthermore, a recent meta-analysis inferred that the recommendation
in routine clinical practice for NAC treatment in schizophrenia might be premature despite
its antioxidant potential. However, the results suggest evaluating new avenues of thera-
peutic approach in which NAC with a dosage ≥ 2000 mg/d for at least 6 months could
potentially improve functional outcomes in schizophrenia [319]. To highlight differences in
the efficacy and tolerability of compounds with a main antioxidant effect, perhaps due to
the different antipsychotic drugs to which they were added, RCTs specifically reporting the
type of therapy at baseline were collected in Table 2.

Multiple studies have evaluated the ability of antioxidant agents to ameliorate the
side effects of antipsychotics, especially with regard to tardive dyskinesia, a complication
resulting from the long-term use of D2R blockers. When provided in individuals affected
by both schizophrenia and tardive dyskinesia at a dose of 240 mg/day, Ginkgo biloba
was effective in reducing the Abnormal Involuntary Movement Scale (AIMS) scores but
not psychotic or cognitive symptoms [320]. Although in one study, the administration of
vitamin E was not effective in the treatment of dyskinetic movements [321], in another
sample of patients with tardive dyskinesia and schizophrenia, vitamin E was more effective
than placebo at reducing the AIMS score along with an increase in blood SOD levels, but
not to ameliorate psychotic manifestations [322]. The other two studies replicated the
reduction in the AIMS score induced by vitamin E compared to the placebo [323,324]. To
sum up, it should be recognized that, at present, the evidence regarding the efficacy of
vitamin E in tardive dyskinesia is still to be fully clarified.
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Table 2. RCTs of antioxidant agents as add-on treatment in patients with psychotic disorders.

Type of Antioxidant Antipsychotics Main Outcomes References

Allopurinol

Haloperidol (46 patients with SCZ) There was a significant superiority over the antipsychotic alone in the treatment
of positive symptoms and PANSS total score. Akhondzadeh et al., 2005 [296]

Olanzapine (13 patients)
Risperidone (13 patients)
Clozapine (18 patients)
Quetiapine (5 patients)

Aripiprazole (4 patients)
Haloperidol (7 patients) Patients with SCZ

enrolled: 59

Patients treated with allopurinol rated themselves as more improved than the
placebo group. Dickerson et al., 2009 [299]

Ginkgo biloba
Haloperidol (109 patients with SCZ) EGb significantly decreased SANS and SAPS scores when added to haloperidol. Zhang et al., 2001 [300]

Clozapine (42 patients with TRS) EGb, in addition to clozapine, improves negative symptoms in patients with TRS. Doruk et al., 2008 [302]

Vitamin E and EPUFAs Haloperidol decanoate depot injection
(52 patients with SCZ)

Vitamin E decreased GSSG concentration and motor delay on the overall scale of
PANSS, while EPUFAs increased GSH. Bošković et al., 2016 [303]

Vitamin E Fluphenazine decanoate (40 patients with
SCZ and TD) The reduction in AIMS score induced by vitamin E in comparison to placebo. Adler et al., 1998 [324]

Vitamin C
Olanzapine (10 mg/day) or quetiapine

(200 mg/day) or ziprasidone (40 mg/day).
Patients with SCZ enrolled: 40

After vitamin C supplementation in patients treated with second-generation
antipsychotics, blood levels of malondialdehyde and ascorbic acid were increased

compared to the placebo, with an improvement in the BPRS score.
Dakhale et al., 2005 [304]

NAC

Clozapine (45% of participants) and
olanzapine (20% of participants), other

atypical antipsychotics (risperidone,
quetiapine, and aripiprazole), and typical

depot antipsychotics.
Patients enrolled: 140

The administration of 1 g twice daily of NAC as an add-on treatment was
associated with a reduction in PANSS total, negative, and general scores as well

as an improvement in akathisia.
Berk et al., 2008 [306]

Risperidone (up to 6 mg/d) for 8 weeks NAC decreased the PANSS total and negative scores compared to the placebo
without any difference in the frequency of adverse effects. Farokhnia et al., 2013 [307]

Chlorpromazine equivalent to 300–1000
mg (except clozapine). Patients with SCZ

enrolled: 84

NAC-treated patients exhibited an improvement in cognitive functions and
ameliorated PANSS negative and positive scores, along with improvement in

attention, short-term and working memory, executive functioning, and speed of
processing.

Sepehrmanesh et al., 2018 [308]
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Table 2. Cont.

Type of Antioxidant Antipsychotics Main Outcomes References

Clozapine,
olanzapine, and other antipsychotics.

Patients with SCZ enrolled: 121

Patients with SCZ might benefit more than others from additional treatment with
NAC in terms of functioning and positive symptoms. Rapado-Castro et al., 2017 [309]

Risperidone, quetiapine, clozapine,
olanzapine. Patients with SCZ enrolled: 11

NAC administration was associated with improvement in mismatch negativity,
measured by auditory evoked potentials, and there was no difference in the

PANSS total or subscale scores in comparison to the placebo.
Lavoie et al., 2008 [311]

Quetiapine (8 patients) Clozapine
(1 patient) Aripiprazole (3 patients)

Amisulpride (2 patients) Risperidone
(3 patients) Olanzapine (2 patients).

Patients with SCZ enrolled: 20

Six-week add-on treatment with NAC in early psychosis patients was effective in
ameliorating processing speed and positive symptoms, along with an increase in

white matter integrity in the fornix measured by generalized fractional
anisotropy.

Klauser et al., 2018 [313]

Clozapine
Patients with enduring psychotic

symptoms enrolled: 84

NAC, administered at 2 g/day, was not effective in improving negative
symptoms, cognition, and quality of life at 8, 24, and 52 weeks in TRS patients

taking clozapine.
Neill et al., 2022 [318]

AIMS = Abnormal Involuntary Movements Scale; BPRS= brief psychiatric rating scale; EGb = ginkgo biloba; EPUFAs = essential polyunsaturated fatty acids; GSH = glutathione;
GSSG = glutathione disulfide; NAC = N-acetylcysteine; PANSS = Positive and Negative Syndrome Scale; SANS = Scale for the Assessment of Negative Symptoms; SAPS = Scale for the
Assessment of Positive Symptoms; SCZ = schizophrenia; TD = tardive dyskinesia; TRS = treatment-resistant schizophrenia.
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10. Discussion

Several lines of evidence suggest a possible involvement of oxidative stress in schizophre-
nia pathogenesis in terms of both abnormal brain development [77] and peri/postnatal
neurotoxic damage [26]. Antipsychotics are the mainstay of schizophrenia pharmacological
treatment [325], and their mechanisms of action have been demonstrated to putatively
intercept a few of the factors believed relevant for the onset or progression of the dis-
ease, including the oxidative balance [326]. Alterations in oxidative stress impair the
regulation of the release of major neurotransmitters implicated in the disorder, above all
dopamine [327] and glutamate [58], and their intracellular signaling both at cortical and
subcortical levels [107–109], as well as the modification of the synapse structure and func-
tion [58]. Although alterations in oxidative pathways are observed in psychotic patients, it
remains elusive to conclude whether this is an epiphenomenon secondary to alterations in
dopaminergic neurotransmission or a primary aspect directly related to the development
of clinical symptoms. Observing psychotic-like behaviors in animal models of neuroinflam-
mation and oxidative stress-related toxicity suggests that these factors could be primary
aspects of the pathophysiology of schizophrenia and other psychotic disorders [328].

Despite the growing evidence pointing to the role of antipsychotics in counterbalancing
oxidative stress and mitochondria dysfunction, several aspects should be considered in a
critical appraisal of the issue.

First, evidence point to the antioxidant effects of antipsychotics, but is this action a
relevant one for the overall antipsychotic effect? There is little evidence that the involvement
of antipsychotics in aberrant oxidative process and/or mitochondrial dysfunction have a
direct primary antipsychotic effect. On the other side, the attenuation or reversal of a few
markers of oxidative stress and mitochondrial dysfunction could have at least in part a
protective role in preserving the structure and function of the synapse [77].

Second, whereas the evidence of a possible increased inflammatory index in schizophre-
nia patients and changes after antipsychotics have been reported [329], there is a lack of
information on the in vivo effects of antipsychotics on the inflammasome associated specif-
ically with oxidative stress and free radicals’ production [330,331]. Therefore, more studies
investigating peripheral biomarkers of oxidative stress before and after antipsychotic treat-
ment should be implemented. Enforcing this strategy could be helpful to understand the
weight of antipsychotic effects on oxidative stress markers as well as the impact of the redox
balance on treatment response. This perspective is specifically relevant for disentangling,
even with the limits of peripheral markers, the putative contribution or association of
oxidative stress in the response or resistance to antipsychotic treatment [332,333].

Third, antipsychotics, especially first-generation compounds, have been associated
with both reducing (or counterbalancing) and increasing oxidative stress markers [187].
This controversial aspect calls for more stringent research and appraisal of this potential
dichotomic issue. At present, the most conservative approach is probably to consider
the impact of antipsychotics on oxidative mechanisms not as a “class effect” but as an
effect dependent on the receptor profile, dose of the antipsychotic, experimental model,
brain region or body tissue, and specific components of the oxidative stress dependent-
signaling [179,187,202,213]. Among the most promising next-generation antipsychotics,
xanomeline, a preferential muscarinic M1R and M4R agonist has been explicitly texted
for protection against oxidative stress [334]. It should be considered that the actual an-
tipsychotic for schizophrenia therapy is a combination of xanomeline and trospium, with
the latter to prevent peripheral adverse events of muscarinic agonism [334]. Exposure of
primary rat neuronal cells to xanomeline alone effectively protected the cells from oxygen-
glucose deprivation (OGD)-induced injury and cell apoptosis, as well as inhibiting ROS
build-up induced by OGD and preventing p-Akt reduction [215].

Fourth, there is a growing interest in expanding the action of antipsychotics with the
addition/combination of antioxidants. This is a strategy worth pursuing, but caution is
needed in drawing conclusions at this time. Indeed, while the translational background
is solid and the strategy overall viable, the pilot and preliminary studies conducted to
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date have shown mixed results [295]. Vitamin E and C were almost ineffective on psy-
chotic symptoms, whereas they ameliorated dyskinetic movements in patients treated
with antipsychotics [322–324]. On the other hand, it would be important to conceptualize
potential biomarkers of putative theranostic value that could give guidance on the effect of
the antioxidant agent add-on. In this line, few but promising original results and proofs
of concept have been reported for NAC, an antioxidant and glutathione precursor, which
has been to improve cognitive and psychotic manifestations, along with modifications in
functional connectivity and white matter integrity detected in the cingulate cortex and
fornix, respectively [306,313,314].

Fifth, by means of induced pluripotent stem cells from patients with TRS, it has been
shown that mitochondrial alterations related to neuregulin-1 deficiency were significantly
associated with olanzapine treatment outcomes and that miR143-3p levels correlated with
the severity of olanzapine resistance [100]. Mitochondrial proteomic studies as well as
investigation of specific patterns of mitochondrial functions and components, showed a
unique and distinct effect for each antipsychotic [270,292,293]. In addition, schizophre-
nia patients with different PUFA blood levels showed different responses to antioxidant
compounds added to antipsychotic medication [305].

These results suggest an opportunity to further explore antioxidant mechanisms and
the reciprocal interaction with antipsychotic action.

Limitations

Several limitations must be taken into account. Most RCTs have been conducted by
adding antioxidant agents to different antipsychotic treatments (Table 2). The patients in-
cluded in the various studies also had different diagnoses, including chronic schizophrenia,
early psychosis, and bipolar disorder [306,309,310,313]. Thus, it is difficult to compare the
effects of different compounds on psychotic symptoms without proper stratification of
baseline treatment and diagnosis.

Only a few studies have explored the role of antioxidant agents in modifying functional
connectivity parameters and the inflammatory status of patients affected by schizophrenia,
along with the improvement of psychotic symptoms [314].

The evidence obtained was insufficient to clearly establish an effect of disease course,
antipsychotic dosage, and other comorbidities on the antioxidant properties of the com-
pounds studied. In particular, the doses of antipsychotics were within a wide range even in
the same study [31].

In preclinical models, the antioxidant effects of various antipsychotics were evaluated
considering the distinction between typical and atypical drugs but without adequately
separating the data obtained from the specific pharmacodynamic profile of each compound
with regard to the receptor and intracellular pathways involved. Further, the antioxidant
effect of antipsychotics has not been compared with that of other CNS drugs, such as
antiepileptics, antidepressants, sedatives, and anti-Parkinson’s drugs.

Lastly, it remains to determine whether the antioxidant effect of antipsychotics by itself
constitutes a mechanism of action associated with the clinical benefit of psychotic symptoms
or whether it is just an epiphenomenon due to the impact of drugs on neurotransmitter
pathways, especially the dopaminergic one.

11. Conclusions

In conclusion, multiple lines of evidence suggest a role for oxidative stress and mito-
chondria dysfunction in the pathogenesis and pathophysiology of schizophrenia. Preclini-
cal findings point to the involvement of unbalanced redox mechanisms in dopaminergic
and glutamatergic signaling and in synaptic function, setting the scene for investigating
the intersection of antipsychotics’ effect with redox mechanisms.

Albeit with caution, preclinical and clinical data suggest an antioxidant role for an-
tipsychotic drugs that could also contribute to their clinical efficacy through modulation of
synaptic plasticity and functional connectivity processes [238,244,314].
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The impact of antipsychotics on oxidative mechanisms should not be considered a
class effect since differences between typical and atypical compounds were found, with a
major antioxidant effect exerted by the latter and controversial evidence referred to the for-
mer [29,190,211]. Novel compounds, such as xanomeline, have recently shown promising
antipsychotic efficacy along with protection against oxidative stress [215]. The observation
of antioxidant properties exhibited by atypical agents with different pharmacodynamic
profiles suggests the possibility that mechanisms other than the receptor one are involved
in the modulation of oxidative stress by antipsychotics, such as drug metabolism at the
neuronal level or action on enzymes involved in the free radical generation [29,203].

Although NAC has shown positive results in reducing psychotic symptoms, more
appropriate stratification of patients by baseline therapy and clinical diagnosis will be
needed to compare the effects of antioxidant compounds and their ability to modulate
neurobiological outcomes [294,297,298,301].

More studies on the precise role of oxidants and mitochondria in the pathophysiology
of schizophrenia, as well as of antioxidants alone or in combination with antipsychotics for
the treatment of the disorder, are warranted.
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