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Abstract: Waterlogging and heavy mental (e.g., cadmium) stress are two primary threats to crop
growth. The combination of abiotic stresses was common and frequent, especially in the field condi-
tion. Even though the effects of individual waterlogging and cadmium on tomato plants have been
widely investigated, the response of tomatoes under combined waterlogging and cadmium stress
remains unclear. This study aimed to clarify and compare physiological, biochemical characteristics
and plant growth of two tomato genotypes under individual and combined stress. Two tomato
genotypes (‘MIX-002’ and ‘LA4440’) were treated under control, waterlogging, cadmium stress and
their combination. The results showed that chloroplast ultrastructure of tomatoes under individual
and combined stress was damaged with disordered stroma and grana lamellae. The H2O2 (hydrogen
peroxide) content and O2

·− (superoxide anion radical) production rate of plants under all the three
stresses was not significantly higher than the control except for ‘LA4440’ under the combined stress.
Antioxidant enzymes actively responded in the two tomato genotypes, as shown by significant
increase in SOD activity from ‘MIX-002’ under waterlogging and combined stress and from ‘LA4440’
under cadmium. Meanwhile, CAT activity of ‘MIX-002’ under waterlogging and ‘LA4440′ under
combined stress significantly decreased, and the POD activity of ‘MIX-002’ under combined stress
significantly increased as compared with the respective control. The APX activity of ‘MIX-002’ and
‘LA4440’ under combined stress was significantly lower and higher than the respective controls. This
indicated that tomato plants were able to secure redox homeostasis and protect plants from oxidative
damage through the synergetic regulation of antioxidant enzymes. Plant height and biomass of the
two genotypes under individual and combined stress significantly decreased, which could be a direct
result from the chloroplast alteration and resource re-allocation. Overall, the effects of combined
waterlogging and cadmium stress were not simply the sum of individual effects on two tomato
genotypes. Distinct ROS (reactive oxygen species) scavenging systems of two tomato genotypes
under stresses suggest a genotype-dependent antioxidant enzymes regulation.

Keywords: tomato; waterlogging; cadmium stress; combined stress; ROS metabolism; plant growth

1. Introduction

With the increase in frequency and severity of heavy rainfall or flooding, there has
been a growing interest in understanding the impact of waterlogging on the growth of
plants, especially crops species [1–3]. The negative impacts of waterlogging on individual
plants are largely characterized as reduced gas exchange, since the diffusion of gases
through water was slower than in air [3]. Human activities such as urban disposal and
metal manufacturing have led to an increase in cadmium content [4]. Cadmium stress
has emerged as another threat to crop production, which posed a concern to public health
due to the possibility of cadmium entering the food chain system [5,6]. Cadmium toxicity
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negatively affects various processes of plants, including seed germination, seedling growth,
plant development, crop yield and so on, by damaging important components such as
chloroplasts and mitochondrion [4].

Tomato (Solanum lycopersicum L.) is one of the most important vegetable crops in
the world with 5,167,388 ha harvested area and 366,015 hg/ha production in the year
of 2021 (http://faostat.fao.org/, accessed on 20 May 2023), and it is a model plant for
studying abiotic stress response as well. Previous research has primarily focused on the
response mechanism of tomato to individual stresses, such as waterlogging stress [2,7,8]
and cadmium stress [9–11]. On one hand, waterlogging has been found to negatively
affect vegetative organs as indicated by lower leaf chlorophyll content and decreased
photosynthesis [3,12]. The negative impacts on reproductive organs of tomato plants
were found as well, as shown by few fruits and lower average weight [8]. On the other
hand, even though cadmium stress did not cause decreased leaf chlorophyll content,
tomato plants exhibited reductions in plant dry weight concurrently with the increasing
CdCl2 content [9]. Chu et al. (2020) found that cadmium stress significantly altered the
transcriptional level of metal transport-related genes in tomatoes, resulting in the inhibition
of iron (Fe) and zinc (Zn) uptake [10]. Cadmium stress led to decreased Fv/Fm (maximum
potential quantum efficiency of photosystem II), photosynthetic rate, root growth and
vitality as well as biomass accumulation in tomato plants by increasing reactive oxygen
species (ROS) accumulation and lipid peroxidation [11].

More importantly, tomatoes are frequently exposed to concurrent abiotic stresses
caused by unfavorable environments [12], such as waterlogging and cadmium stress.
Provinces, such as Henan, Shandong, Jiangsu and Hainan in China, are the main tomato
production areas, where increased frequency and strength of concentrated extreme or
abnormal precipitation can cause waterlogging and lead to a serious threat to field-grown
tomato plants. Meanwhile, agricultural soil has been contaminated with cadmium due
to industrialization, applications of sewage and use of various fertilizers, pesticides and
insecticide, making cadmium toxicity an agricultural and environmental issue world-
wide [4,6]. Thereby, field-grown tomato plants can suffer combined waterlogging and
cadmium stress. A large proportion of tomato plants are grown in greenhouses by applying
specific substrates and fertilization involving reutilization of water and nutrition, which
implied an increased risk of cadmium accumulation [13]. Together with errors in irrigation,
greenhouse-grown tomato plants may be exposed to this combined stress as well.

However, compared with individual stress, investigation of combined effects of water-
logging and cadmium stress on plants such as tomato at the morphological and physiologi-
cal level is still insufficient. Chloroplasts are one of the most sensitive organelles of plants
to abiotic stress such as waterlogging [7]. In plants, ROS can be induced and accumulated
when the plants are exposed to abiotic stresses, including waterlogging [14] and cadmium
stress [4]. The ROS, such as hydrogen peroxide (H2O2), superoxide anion radical (O2

·−) and
hydroxyl radicals (OH), can cause membrane lipid peroxidation and cell damages [15,16].
Previous reviews have described the role of ROS in plants’ responses and acclimations to
stress combination and its role in sensing and mediating rapid systemic signaling [11,15,16].
It has been suggested that the accumulation of proline as an osmolyte can sustain water
status and hydraulic conductivity of cucumber during waterlogging conditions [17]. The
MDA (malondialdehyde), a final byproduct of membrane lipid peroxidation, was used as
a key parameter to evaluate the level of damage caused by stress [18]. Even though the
effects of waterlogging and cadmium stress on the above parameters of plants are well
established, the physiological and biochemical responses of tomatoes, especially from the
perspective of ROS mechanism to combined waterlogging and cadmium, remains unclear.

In this study, we investigated the plant phenotype, chloroplast structure, antioxidant
system and biomass accumulation of two different tomato genotypes under waterlogging,
cadmium stress and their combination. We aimed to characterize and compare the mor-
phological and physiological responses of the two tomato genotypes under combined
waterlogging and cadmium stress and clarify the reason for the different responses. Our

http://faostat.fao.org/
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hypothesis was that combined waterlogging and cadmium stress posed unique responses
in tomato plants, which were not additive effects of individual waterlogging and cad-
mium stress. This study will provide novel insights into the response of tomato plants to
combined waterlogging and cadmium stress.

2. Materials and Methods
2.1. Plant Materials and Growth Conditions

Tomato genotypes ‘MIX-002’ and ‘LA4440’ from the Laboratory of Vegetable Physi-
ology and Ecology, Nanjing Agricultural University, were used as plant materials. Seeds
were sown in 72-hole trays (54 cm length, 28 cm width) with the mixture of peat, perlite and
vermiculite (volume ratio 2:1:1). Seedlings were grown in a climate chamber (RGD-1000C,
Ningbo, China) with 14-h light (400 µmol m−2 s−1, LED light source) at 25 ◦C and 10-h
dark at 18 ◦C, where the relative humidity was 60± 5%. After 21 days of sowing, the plants
with three leaves were transferred to pots (6.5 cm height, 6.5 cm diameter) containing the
same substrate mixture. The plants were cultivated in the chambers under the same and
stable environmental conditions (e.g., light, temperature, etc.) before the treatments.

2.2. Experimental Treatments

After 28 days of sowing, the plants with four leaves were randomly divided into four
treatments with 30 plants per treatment. The treatments included control (CK), individual
waterlogging stress (WL), individual cadmium stress (Cd) and combined waterlogging
and cadmium stress (WL + Cd). The WL treatment was performed mainly according
to Zhou et al. (2022) [19], where the plants together the small pot (6.5 cm height, 6.5 cm
diameter) were put in a big pot (10.8 cm height, 11.1 cm diameter) being filled with water.
The water spilled over the soil surface (equal to the height of small pot) for 1 cm, but did not
spill over the big pot, which was checked daily to ensure the steady level of waterlogging.
As suggested by Ondrasek et al. (2022), Cd–Cl complexes could represent a major form
of Cd taken up to plant [20]. Hence, the Cd treatment was achieved by adding 100 mL of
250 mg/L CdCl2 solution daily into the pots. The WL+Cd treatment was performed by
adding 100 mL of 250 mg/L CdCl2 solution followed by adding water until the water was
above the soil surface for 1 cm. During the 10 days of the stress treatment, when the Cd
treatment were carried out per day, the CK were irrigated with the equal amounts of water
(100 mL).

2.3. Measurements

We performed the following measurements with three biological replicates from three
plants per genotype per treatment.

2.3.1. Chloroplast Ultrastructure and Chlorophyll Fluorescence

On day 8 of the treatments, the 3rd fully expanded leaf from top to bottom of the tomato
plant was taken for chloroplast ultrastructure observation and chlorophyll fluorescence
measurements. The leaves were collected and cut into small pieces (3 mm length, 2 mm
width). Then, the leaves were vacuumed and fixed with 2.5% glutaraldehyde at 4 ◦C
for 8 h. Phosphate buffer was applied to wash the leaves three times with 15 min per
time. Then, the leaves were fixed with 1% osmium acid for 1 h and washed again with
phosphate buffer. The leaves were sequentially dehydrated with 30%, 50%, 70%, 80% and
90% ethanol for 20 min, respectively. Afterwards, the leaves were dehydrated three times
(30 min per time) using 100% ethanol. After dehydration, the leaves were soaked three
times (at least 30 min per time) using propanol. The samples were treated with a mixture of
encapsulant and acetone for four hours and finally with pure encapsulant overnight. After
the above processes, the samples were sliced into 50–90 nm slices using ultratome (LEICA
UC7, Wetzlar, Germany). The samples were double stained with uranyl acetate and lead
citrate and finally observed; photos were taken using the transmission electron microscope
(TEM, Hitachi 7800, Tokyo, Japan).
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Tomato plants were adapted to dark conditions for 30 min before the measurements
of Fv/Fm. Subsequently, we took the leaves and measured the Fv/Fm using the modulated
chlorophyll fluorescence imaging system (IMAG-MAXI, HeinzWalz, Effieltrich, Germany).
For fluorescence, 450 nm blue light wavelength was applied.

2.3.2. MDA, H2O2, Proline Content and O2
·− Production Rate

On day 9 of the treatments, the 3rd fully expanded leaves were prepared for the
measurements of MDA content, H2O2 content, proline content and O2

·− production rate.
The following indices were measured using the enzyme marker (CYTATION 3, BioTek,
Winooski, VT, USA).

The determination of MDA content was based on the thiobarbituric acid (TBA)
method [21]. The 0.2 g fresh leaves were mixed with 5% TCA solution, and then the
samples were ground thoroughly and centrifuged. Afterwards, the supernatant was taken
and mixed with an equal volume of 67% TBA solution. The mixture samples were shaken
well and boiled in a water bath for 30 min. The cooled rapidly with cold water and then.
The 200 µL supernatant was taken in the ELISA plate after centrifuge. The absorbance
values of the sample were taken records at 450 nm, 532 nm and 600 nm.

The H2O2 content was detected using potassium iodide spectrophotometry according
to Chakrabarty and Datta [22]. The 0.2 g leaves were ground in liquid nitrogen and added
with 0.1% TCA solution. Then, the samples were centrifuged at 3000 rpm (revolutions
per minute) for 20 min. The supernatant was added with 1 M KI solution and 100 mM
potassium sulfate buffer with dark reaction for 1 h. Finally, the absorbance values of the
samples at 390 nm are measured with 0.1% TCA solution as reference.

The proline content was measured based on the ninhydrin colorimetric method [23].
The 0.2 g leaves were mixed with 2 mL 3% sulfosalicylic acid solution. The mixture was
ground well, transferred to centrifuge tube and boiled in water bath for 10 min. The
samples were centrifuged after cooling and the supernatant was mixed with equal volumes
of glacial acetic acid and acidic ninhydrin. Then, the samples were boiled in a water bath
for 30 min and mixed with toluene after cooling. Toluene was applied as reference. The
upper layer solution was taken to determine the absorbance value at 520 nm.

The production rate of O2
·− was determined according to Ke et al. (2017) [24]. The

phosphatic buffer solution (PBS, 0.05 M, pH 7.8) and 10 mM hydroxylamine hydrochloride
solution were added to the enzyme extract. The mixture was at 25 ◦C for 20 min. Subse-
quently, sulfanilic acid and α-naphthylamine were added and the mixture was at 25 ◦C
for 20 min. After centrifugation at 3000× g rpm for 3 min, the absorbance values of the
samples at 530 nm were measured.

2.3.3. Antioxidant Enzyme Activities

On day 9 of the treatments, the 3rd fully expanded leaf was taken to measure antioxi-
dant enzyme activities. The 0.2 g leaf was mixed with PBS (4 ◦C) and then ground at ice
bath temperature. The samples were mixed carefully and centrifuged at 4 ◦C and 12,000× g
rpm for 20 min. Supernatant was used to determine the enzyme activities. The activities of
superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase
(APX) was determined based on nitrogen blue tetrazolium method [25], guaiacol method
and spectrophotometric method [26–28], respectively. For SOD activity, one unit was de-
fined as amount of enzyme to inhibit NBT photochemical reduction by 50%. The units
of POD, CAT and APX activities were defined as an enzyme activity unit with OD value
changing 0.01 per minute.

2.3.4. Plant Morphology and Biomass Accumulation

On day 10 of the treatments, we measured plant height, stem diameter, fresh and dry
weight of shoot and root. Plant height was obtained by measuring vertical distance from
cotyledonary node to growing point using a ruler. Stem diameter was investigated by mea-
suring the diameter at 1 cm above the cotyledonary node using vernier caliper. Afterwards,
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the fresh weight of the shoot was obtained by cutting the plants from cotyledonary node
and immediately measuring the weight of above-ground tissue. The root was taken from
the substrate and carefully washed to measure the weight as the fresh weight of root. The
dry weight of the shoot and root was obtained by drying the fresh samples at 80 ◦C until
constant weight.

2.4. Data Analysis

All the measurements included three biological replicates. Data were subjected to
statistical analysis of variance (ANOVA) using the SPSS package (SPSS 25.0) at the level of
p < 0.05. The correlation analysis was conducted using Origin software. Vector diagrams
were made using Microsoft Excel 2016.

3. Results
3.1. Chloroplast Ultrastructure Observation and Chlorophyll Fluorescence Measurements

Both genotypes under control conditions showed normal ellipse-shaped chloroplasts
with closely arranged lamellar structure (Figure 1A,E). The chloroplasts of plants under WL
treatment exhibited dissolved membrane and damaged lamellar structure with partially
disintegrated grainy lamellar (Figure 1B,F). By comparison, Cd stress caused more severe
damage on chloroplasts than WL stress. The chloroplasts of two genotypes under WL stress
showed disordered, fractured and even disintegrated stroma lamellae, the grana lamellae of
which squeezed and deformed (Figure 1C,G). Similar damages to the chloroplast structure
were shown in individual and combined stress (Figure 1D,H). Additionally, osmiophilic
granules were found in ‘MIX-002’ under Cd stress and in ‘LA4440’ under combined stress
(Figure 1C,H).
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Figure 1. Chloroplast ultrastructure of leaf mesophyll cell from genotype ‘MIX-002’ (A–D) and
‘LA4440’ (E–H). (A–D) indicated the tomato genotype ‘MIX-002’ under control, waterlogging stress,
cadmium stress and combined stress, respectively; (E–H) indicated the tomato genotype ‘LA4440’
under control, waterlogging stress, cadmium stress and combined stress, respectively. GL: grana
lamella; SL: stroma lamella; S: starch grain; P: osmiophilic granules.

The genotype ‘MIX-002’ had a lower Fv/Fm in part leaves under WL on 4 d (1/3) and
8 d (2/3) and WL + Cd on 4 d (1/3) and 8 d (1/3), as shown in Figure 2A by light-blue
leaves. The Fv/Fm of ‘LA4440’ generally did not show significant difference, since all
the three leaves per treatment on 0 d, 4 d and 8 d exhibited dark-blue leaves (Figure 2B).
However, even though the Fv/Fm of some leaves was observed to decrease in ‘MIX-002’
(Figure 2A), the chlorophyll fluorescence of two genotypes were not significantly affected
by the current stress treatments (data not shown).
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(waterlogging stress), Cd (cadmium stress) and WL + Cd (combined stress). There were three leaflets
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quantum efficiency of photosystem II (Fv/Fm).

3.2. Key Regulators in Antioxidants System

The MDA and H2O2 content in leaves of ‘MIX-002’ remained unchanged (Figure 3A,B).
The MDA content of ‘LA4440’ significantly decreased under stress conditions with highest
decline under combined stress as compared with the control (Figure 3A). The H2O2 content
in leaves of ‘LA4440’ under Cd stress was significantly lower than the control, waterlogging
and combined stress (Figure 3B). The proline content in both genotypes under Cd stress
significantly decreased, compared to the control (Figure 3C). The O2

·− production rate
of ‘MIX-002’ under combined stress was significantly lower than that under individual
Cd stress, while that of ‘LA4440’ under combined stress was significantly higher than the
control and individual stresses (Figure 3D).
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Figure 3. (A) MDA (malondialdehyde) content, (B) H2O2 (hydrogen peroxide) content, (C) pro-
line/pro content and (D) O2

·− (superoxide anion radical) production rate of two tomato genotypes
(‘MIX-002’ and ‘LA4440’) under CK, WL, Cd and WL + Cd. The CK, WL, Cd and WL + Cd indicated
control, waterlogging stress, cadmium stress and combined stress, respectively. The bars showed
means ± SE (n = 3). Different lowercase letters on the bars indicated significant differences within the
same genotype (p < 0.05).
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3.3. Antioxidant Enzyme Activities

The SOD activity of ‘MIX-002’ significantly increased under WL and combined stress,
while that of ‘LA4440’ significantly increased under Cd stress, as compared with respec-
tive control (Figure 4A). The CAT activity of ‘MIX-002’ under WL stress and ‘LA4440’
under combined stress was significantly lower than the respective control (Figure 4B).
The POD activity increased only in ‘MIX-002’ under combined stress compared to the
control (Figure 4C). Furthermore, the APX activity in ‘MIX-002’ was lower under combined
stress, while in ‘LA4440’ it was higher under combined stress than their respective control
(Figure 4D).
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Figure 4. Antioxidant enzyme activities including (A) SOD (superoxide dismutase), (B) CAT (cata-
lase), (C) POD (peroxidase) and (D) APX (ascorbate peroxidase) of two tomato genotypes (‘MIX-002’
and ‘LA4440’) under CK, WL, Cd and WL + Cd. The CK, WL, Cd and WL + Cd indicated control,
waterlogging stress, cadmium stress and combined stress, respectively. The bars showed means ± SE
(n = 3). Different lowercase letters on the bars indicated significant differences within the same
genotype (p < 0.05).

3.4. Biomass Accumulation

Under individual and combined stress, both genotypes had significant reductions
in plant height, stem diameter, shoot fresh and dry weight compared with the control,
except for ‘MIX-002’ under Cd stress and stem diameter of ‘LA4440’ (Figure 5A–D). The
individual stresses including WL and Cd significantly decreased the root fresh and dry
weight of ‘MIX-002’ (Figure 5E,F). Three stress treatments (WL, Cd, WL + Cd) significantly
decreased the root dry weight of ‘LA4440’ (Figure 5F). Plants of both genotypes under all
three stress treatments showed smaller plant size with reduced plant height, yellowish
leaves and fewer roots than those under the control, corresponding to the plant weight
(Figures 5G,H and S1).



Antioxidants 2023, 12, 1205 8 of 14
Antioxidants 2023, 12, x FOR PEER REVIEW 8 of 14 
 

 

Figure 5. Effects of different stress treatments on plant growth indices of tomato plants. (A) Plant 

height, (B) stem diameter, (C) fresh weight of shoot, (D) dry weight of shoot, (E) fresh weight of 

root, (F) dry weight of root, (G) phenotype of ‘MIX-002’ and (H) phenotype of ‘LA4440’. CK, WL, 

Cd and WL + Cd indicated control, waterlogging stress, cadmium stress and combined stress, re-

spectively. The bars showed means ± SE (n = 3). Different lowercase letters on the bars indicated 

significant differences within the same genotype (p < 0.05). 

3.5. Effects of Individual Factors and Their Interactions on the Parameters 

Here, significant correlations between the parameters were found (Figure 6). Plant 

height showed significant correlations with stem diameter, fresh and dry weight of shoot, 

SOD and POD activity, MDA, H2O2 and proline content. Shoot fresh and dry weight were 

found to be significantly correlated with root dry weight, SOD activity, MDA and proline 

content. Additionally, SOD activity was significantly correlated with POD, APX activity 

and proline content. 

Figure 5. Effects of different stress treatments on plant growth indices of tomato plants. (A) Plant
height, (B) stem diameter, (C) fresh weight of shoot, (D) dry weight of shoot, (E) fresh weight of root,
(F) dry weight of root, (G) phenotype of ‘MIX-002’ and (H) phenotype of ‘LA4440’. CK, WL, Cd and
WL + Cd indicated control, waterlogging stress, cadmium stress and combined stress, respectively.
The bars showed means ± SE (n = 3). Different lowercase letters on the bars indicated significant
differences within the same genotype (p < 0.05).

3.5. Effects of Individual Factors and Their Interactions on the Parameters

Here, significant correlations between the parameters were found (Figure 6). Plant
height showed significant correlations with stem diameter, fresh and dry weight of shoot,
SOD and POD activity, MDA, H2O2 and proline content. Shoot fresh and dry weight were
found to be significantly correlated with root dry weight, SOD activity, MDA and proline
content. Additionally, SOD activity was significantly correlated with POD, APX activity
and proline content.
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The individual factor, cultivar, had significant effects on most measured parameters
except for root weight and CAT activity (Table 1). The waterlogging factor significantly
affected plant growth indices, MDA content, H2O2 content and APX activity (Table 1). The
heavy mental factor significantly affected plant height, shoot weight, MDA and proline
content as well as SOD activity (Table 1).

Table 1. Significant levels of the main factors (cultivar, WL, Cd) and their interaction on the physio-
logical parameters.

Index
Main Factors Interactions

Cultivar WL Cd Cultivar ×WL Cultivar × Cd WL × Cd Cultivar ×WL × Cd

Plant height ** ** ** ns ns * ns
Stem diameter ** ** ns * ns ns ns
Fresh weight of shoot * ** ** ns ns * ns
Dry weight of shoot * ** ** ns ns ns ns
Fresh weight of root ns ** ns * ns ** ns
Dry weight of root ns ** ns ns ns ** ns
MDA content ** * ** ** ** ns ns
H2O2 content ** ** ns ns ns ns ns
Proline content ** ns * ns ns ns ns
O2
· − production rate * ns ns ns ns ns **

SOD activity ** ns ** ** ns * ns
CAT activity ns ns ns ns ** * **
POD activity ** ns ns * ns ns ns
APX activity ** * ns ** ** ns **

Note: WL and Cd indicated individual waterlogging and cadmium stress. Significant correlations are indicated
with asterisks (* p < 0.05, ** p < 0.01, ns: No significant).
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Cultivar and WL had significant interaction on stem diameter, root fresh weight and
MDA content (Table 1). WL and Cd showed significant interaction on plant height and
plant biomass (Table 1). The three factors had significantly interactive effects on O2

· −

production rate. Moreover, the interaction between two and three factors had significant
effects on enzyme activities (Table 1).

4. Discussion

With the prediction of more frequent and heavy rainfall and flooding events, it is cru-
cial to investigate the regulatory mechanism of plants in response to waterlogging in order
to maintain a successful agricultural production [3]. Previous research has investigated
the combined effects of waterlogging and other abiotic stress, including WL + heat [29],
WL+ salt [30], WL+ salt + CO2 concentration [19] and WL+ salt + heat [31]. However, the
interaction between waterlogging and cadmium stress on tomato plants remained unknown.

4.1. Damage of Combined Waterlogging and Cadmium Stress on Tomato Plants Was Not
Accumulative

Kołton et al. (2020) concluded that chlorophyll fluorescence can be utilized to identify
the sensitivity of tomato to waterlogging stress [7]. Here, Fv/Fm was not an appropriate
parameter for the selection and identification of waterlogging tolerant tomatoes since
there was no significant difference under control and waterlogging stress. This could be
partially explained by different sensitivities of chlorophyll fluorescence parameters. The
other reason could be that waterlogging might not directly affect the photosystem II (PSII)
but might result in affecting the water splitting site of PSII. In accordance, Kołton et al.
(2020) reported that Fv/F0 (ratio of the photochemical and non-photochemical processes in
photosystem II or PSII), PI ABS (performance index on an absorption basis), DI0/RC (flux
of energy dissipated in processes other than trapping per active PSII reaction center) or
Area (area above the OJIP transient and Fm line) were better in selecting tomato sensitivity
to waterlogging stress than Fv/Fm [7].

Tomato plants exposed to individual waterlogging and cadmium stress exhibited ox-
idative damage by inducing the production of excessive reactive oxygen species (ROS) [4,14].
On the contrary, we found that excess water did not give rise to ROS accumulation as
indicated by unchanged H2O2 content and O2

·− production rate in this case. In previous
studies, the H2O2 and MDA content increased in tomatoes treated by waterlogging for
15 days [14]. Waterlogging for 14 and 28 days induced proline and H2O2 production, while
inhibited MDA content in tomatoes [12]. Furthermore, the H2O2 content, O2·− production
rate and MDA content of tomato shoots under individual heat and salt stress and their
combination were generally lower than the control [32]. Our study found that only the
MDA content of ‘LA4440’ under stress significantly decreased (Figure 3), indicating that
the regulatory mechanism of the antioxidant system was dependent on the genotype and
stress condition.

In this study, it was observed that the damage caused by the combined waterlogging
and cadmium stress on tomato plants did not accumulate as compared with individual
stress (Figure 7). This could be attributed to the following three reasons. Firstly, the damage
caused to the chloroplasts of plants under combined stress was similar to that caused by
individual stress (Figure 1). Secondly, the content of proline and H2O2 were stable in tomato
under combined stress with even low MDA content (Figure 3). Thirdly, the decrease in plant
height and biomass accumulation was similar between individual and combined stress
(Figure 5). Thereby, co-exposure of tomato plants to waterlogging and cadmium stress
did not result in more severe damage in our case, corresponding to our previous report
that tomato plants under multiple stress usually exhibited unique responses [33,34]. The
potential reason could be that the combined waterlogging and cadmium treatment resulted
in the dilution of cadmium in the early stage of the combined stress when the tomato plants
can acclimate to the mild cadmium stress. However, previous studies found that the soil
water conditions did not affect total Cd in the treelets of Inga laurina [35], indicating that
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the waterlogging might not affect Cd content in tomato plants. By comparison, the bio-
concentration factor of cadmium and waterlogging stress was lower, but the translocation
factor of cadmium and waterlogging stress was higher than that of cadmium stress in
Bermuda grass (Cynodon dactylon) [36]. Tomatoes under combined stress can exhibit both
shared and unique responses as compared with individual stress [33], which made the
combined stress a new and complex state of stress condition to investigate.
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Figure 7. Effects of waterlogging and cadmium on tomato as reflected by antioxidant enzyme and
growth indicators. The effects of combined waterlogging and cadmium stress on tomato plants were
not equal to the sum of individual stress effects.

4.2. Two Tomato Genotypes under Combined Stress Exhibited Different Coordinate Regulation of
Antioxidant Enzymes

Within the two genotypes, only for ‘LA4440’ under combined stress did the MDA
content decrease but the O2

·− production rate increase (Figure 3). High levels of ROS cause
damage on plants at stress by oxidating important cell components, which activated the
antioxidant system, including enzymatic and non-enzymatic components, to remove excess
ROS [37]. Here, the H2O2 and proline content was steady in both genotypes under WL+Cd
(Figure 3), indicating there were no redox disorders when the tomato plants were exposed
to combined stress. Thereby, antioxidant enzymes successfully maintained the redox home-
ostasis and protected the leaves from membrane lipid peroxidation and oxidative damage
in tomato at stresses, as previously described by Sousa et al. (2022) [32]. However, the two
genotypes exhibited distinct changes from the perspective of antioxidant enzymes. The
plants of ‘MIX-002’ showed increased SOD and POD activity but decreased APX activity
under combined stress, while that of ‘LA4440’ had lower CAT activity but higher APX ac-
tivity as compared with the respective control (Figure 4). Increased activities of antioxidant
enzymes showed an activated defense system in plants being induced by environmental
changes [38]. Thereby, we concluded that the synergetic regulation between the antioxidant
enzymes played positive roles in protecting tomatoes from oxidative damage caused by
combined waterlogging and cadmium stress.

Waterlogging is known to inhibit the development and growth of plants by restraining
the aerobic respiration and reducing energy metabolism [3]. Previous studies have shown
that shoot weight decreased significantly in tomato under waterlogging for two and four
weeks [12]. Similarly, we found that the plant height and biomass accumulation (fresh
and dry weight of shoot and root) of tomato treated by waterlogging were significantly
lower than the control (Figures 5 and S1). A similar phenomenon of decreased biomass
of both aboveground and underground sections in tomato plants under an unfavorable
environment was found by Sousa et al. (2022) [32], where the plants were treated at
100 mM NaCl (60 mL per pot) and 42 ◦C for 4 h per day. Here, oxidative damage caused
by ROS accumulation in tomato under stress conditions did not directly cause biomass
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loss (Figure 7). This was consistent with the findings by Sousa et al. (2022) [32], where
the accumulation of antioxidant metabolites and relevant enzymes actively responded in
tomatoes under heat and salt stress. The alteration of chloroplast ultrastructure can directly
affect photosynthetic apparatus state and photosynthesis capacity [39]. Together with our
results, we concluded that the waterlogging and cadmium stress caused the chloroplast
damage and induced the re-allocation of energy and resource towards the ROS defense
system (antioxidant enzymes), which heavily compromised the plant growth and gave rise
to biomass loss (Figure 7).

5. Conclusions

In summary, we concluded that the effects of combined waterlogging and cadmium
stress on tomato plants were not additive. The synergetic regulation between the antioxi-
dant enzymes of two tomato genotypes under combined stress successfully kept the ROS in
normal range. The biomass accumulation of tomato was lower under combined stress than
the control. Thereby, excess ROS was not the direct reason why the tomato plants under
stress condition failed to accumulate more biomass; instead, the damage to chloroplast
structure and function, resulting in decreased photosynthesis capacity and the activation of
ROS defense system inducing resource re-allocation, may have contributed to the biomass
loss of tomato under waterlogging and cadmium stress. Moreover, the absorption of Cd
into tomato plants and how the ROS regulatory mechanism played a role in responding to
combined waterlogging and cadmium stress need further clarification.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox12061205/s1, Figure S1: Root morphology of two tomato
genotypes under CK, WL, Cd and WL + Cd conditions. The CK, WL, Cd and WL + Cd corresponded
to control, waterlogging, cadmium and combined stress, respectively.
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7. Kołton, A.; Kęska, K.; Czernicka, M. Selection of tomato and cucumber accessions for waterlogging sensitivity through morpho-
physiological assessment at an early vegetative stage. Agronomy 2020, 10, 1490. [CrossRef]

8. Ide, R.; Ichiki, A.; Suzuki, T.; Jitsuyama, Y. Analysis of yield reduction factors in processing tomatoes under waterlogging
conditions. Sci. Hortic. 2022, 295, 110840. [CrossRef]

9. Piotto, F.A.; Carvalho, M.E.A.; Souza, L.A.; Rabêlo, F.H.S.; Franco, M.R.; Batagin-Piotto, K.D.; Azevedo, R.A. Estimating tomato
tolerance to heavy metal toxicity: Cadmium as study case. Environ. Sci. Pollut. Res. 2018, 25, 27535–27544. [CrossRef]

10. Chu, Z.; Munir, S.; Zhao, G.; Hou, J.; Du, W.; Li, N.-Y.; Lu, Y.; Yu, Q.-h.; Shabala, S.; Ouyang, B. Linking phytohormones with
growth, transport activity and metabolic responses to cadmium in tomato. Plant Growth Regul. 2020, 90, 557–569. [CrossRef]

11. Cheng, Y.; Li, X.; Fang, M.; Ye, Q.; Li, Z.; Ahammed, G.J. Systemic H2O2 signaling mediates epigallocatechin-3-gallate-induced
cadmium tolerance in tomato. J. Hazard. Mater. 2022, 438, 129511. [CrossRef] [PubMed]

12. Elkelish, A.A.; Alhaithloul, H.A.S.; Qari, S.H.; Soliman, M.H.; Hasanuzzaman, M. Pretreatment with Trichoderma harzianum
alleviates waterlogging-induced growth alterations in tomato seedlings by modulating physiological, biochemical, and molecular
mechanisms. Environ. Exp. Bot. 2020, 171, 103946. [CrossRef]

13. Gil, C.; Boluda, R.; Ramos, J. Determination and evaluation of cadmium, lead and nickel in greenhouse soils of Almería (Spain).
Chemosphere 2004, 55, 1027–1034. [CrossRef] [PubMed]

14. Rasheed, R.; Iqbal, M.; Ashraf, M.A.; Hussain, I.; Shafiq, F.; Yousaf, A.; Zaheer, A. Glycine betaine counteracts the inhibitory
effects of waterlogging on growth, photosynthetic pigments, oxidative defence system, nutrient composition, and fruit quality in
tomato. J. Hortic. Sci. Biotechnol. 2018, 93, 385–391. [CrossRef]

15. Choudhury, F.K.; Rivero, R.M.; Blumwald, E.; Mittler, R. Reactive oxygen species, abiotic stress and stress combination. Plant J.
2017, 90, 856–867. [CrossRef]

16. Nadarajah, K.K. ROS homeostasis in abiotic stress tolerance in plants. Int. J. Mol. Sci. 2020, 21, 5208. [CrossRef]
17. Barickman, T.C.; Simpson, C.; Sams, C.E. Waterlogging causes early modification in the physiological performance, carotenoids,

chlorophylls, proline, and soluble sugars of cucumber plants. Plants 2019, 8, 160. [CrossRef]
18. Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde

and 4-Hydroxy-2-Nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 360438. [CrossRef]
19. Zhou, R.; Yu, X.; Song, X.; Rosenqvist, E.; Wan, H.; Ottosen, C.O. Salinity, waterlogging and elevated [CO2] induced interactive

and complicated responses in cultivated and wild tomato. J. Exp. Bot. 2022, 73, 5252–5263. [CrossRef]
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