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Abstract: The incidence of neurological diseases, such as Parkinson’s disease, Alzheimer’s disease
and stroke, is increasing. An increasing number of studies have correlated these diseases with brain
iron overload and the resulting oxidative damage. Brain iron deficiency has also been closely linked
to neurodevelopment. These neurological disorders seriously affect the physical and mental health
of patients and bring heavy economic burdens to families and society. Therefore, it is important to
maintain brain iron homeostasis and to understand the mechanism of brain iron disorders affecting
reactive oxygen species (ROS) balance, resulting in neural damage, cell death and, ultimately, leading
to the development of disease. Evidence has shown that many therapies targeting brain iron and
ROS imbalances have good preventive and therapeutic effects on neurological diseases. This review
highlights the molecular mechanisms, pathogenesis and treatment strategies of brain iron metabolism
disorders in neurological diseases.

Keywords: oxidative stress; Parkinson’s disease; Alzheimer’s disease; stroke; neurodevelopment;
iron chelator

1. Introduction

Iron is important for the physiology of the brain, participating in oxygen transport,
energy production and the synthesis of DNA, myelin and neurotransmitters [1]. Brain
iron deficiency (ID) impairs the development of neurons and glial cells, leading to ab-
normal neurodevelopment, which causes mental incapacity [2,3] and is correlated with
neuropsychiatric disorders, such as depression and anxiety [4–7], while sufficient iron is
crucial for ferrodifferentiation [8]. On the other hand, iron overload in the brain exacerbates
the development of neurological diseases, such as Alzheimer’s disease (AD), Parkinson’s
disease (PD) and stroke, because too much iron generates reactive oxygen species (ROS)
that can destroy the cell membrane and induce cell death [9,10]. The incidence of neu-
rological diseases has become increasingly higher with the advent of an aging society.
Therefore, it is critical to maintain iron homeostasis in the brain and to investigate the
underlying regulation mechanisms, which might provide better strategies to prevent and
cure neurological diseases.

Recently, it has become much clearer how circulatory iron is absorbed into the brain
parenchymal tissue across the blood–brain barrier (BBB), where hepcidin and ceruloplasmin
(CP) regulate the iron transport process coordinately with ferroportin 1 (FPN1) [11–14].
In particular, neurodegeneration with brain iron accumulation (NBIA) is a set of rare
monogenetic neurodegenerative diseases, which is characterized by iron accumulation
in basal ganglia and other related brain regions [15,16]. Targeting iron transport and the
regulation pathway to restore iron homeostasis has been applied in the prevention and
treatment of NIBA, stroke and other neurological diseases. Iron chelation therapy with
deferoxamine (DFO), deferasirox (DFX) and deferiprone (DFP) has been used in the clinic
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and for animal research [17–22]. As the therapeutic effects of iron chelators are not ideal
in the treatment of iron-overload diseases, it is crucial to elaborate the detailed regulatory
mechanisms of brain iron metabolism in these diseases to discover new targets and new
therapeutic strategies for these neurological diseases. Therefore, in this review, we discuss
the molecular mechanisms of brain iron metabolism, pathogenesis of iron-dysregulation-
related neurological disorders and the treatment strategies in these neurological diseases.

2. Brain Iron Metabolism

How iron enters the brain has long been a mystery. Given the lack of evidence of
iron release from the brain, iron homeostasis is thought to be primarily maintained via
the regulation of iron uptake. The brain acquires iron primarily from the blood and
cerebrospinal fluid; uptake across the BBB is thought to be the primary pathway. Recently,
the molecular mechanisms of brain iron uptake and transport among neurons and different
types of glia have slowly been becoming clear (Figure 1).
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Figure 1. Roles of different cells in brain iron metabolism. The main route of brain iron uptake is
where the iron in the blood crosses the blood–brain barrier (BBB) via Tf-TfR1 in the apical surface of
brain microvascular epithelial cells (BMVECs) and FPN1 in the basal surface of BMVECs. Iron can
also enter the brain through the transcytosis of ferritin by its receptors at BBB. After iron influxes
into the brain parenchymal tissue, it can enter astrocytes through their end feet surrounding BBB and
then be transferred to neurons. Iron across the BBB can also directly enter the interstitial fluid of the
brain and be transferred to neurons and other cells without passing through astrocytes (see black
lines). Astrocytes hepcidin secreted through its end feet to directly decrease FPN1 level of BMVECs,
which decreased the iron influx into brain tissues. GPI-CP expressed by astrocytes assists FPN1 in
releasing iron into the brain. Astrocyte-specific Cp knockout blocks iron influx FPN1-CP pathway
into the brain (see black lines and crosses). Neurons acquire both trivalent and divalent iron through
TfR1, TCT1 and DMT1, while those astrocytes that are not part of the BBB acquire iron via DMT1
and ZIP molecules. Oligodendrocytes mainly uptake iron via DMT1 and Tim2. Oligodendrocytes
can secrete Tf, while the activated microglia can secrete Lf. Neurons and glia store iron in ferritin
and release iron through FPN1 with the coordination of CP/hephaestin or hepcidin, thereby further
promoting cross-talk and interaction with other types of cells.
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2.1. Iron Uptake into Brain Parenchyma from Circulatory Iron across the BBB

During infancy, when the BBB has not yet formed, iron is thought to enter the brain di-
rectly. In adults with an intact BBB, brain iron uptake mainly occurs in brain microvascular
epithelial cells (BMVECs) and depends on transferrin receptor 1 (TfR1) and FPN1 [23,24].
Data have shown that iron in the blood circulation can enter rain parenchymal tissue across
the BBB. Transferrin-bound iron in the blood is first taken up by BMVECs by binding
TfR1 in the luminal membrane; this is referred to as the Tf-TfR1-dependent iron uptake
pathway [23]. However, there is no direct in vivo evidence indicating how iron in BMVECs
is released into the brain via the basal surface of these cells. Endothelial cell-specific Fpn1
knockout mice and conditional knockdown of astrocytic hepcidin mice revealed that en-
dothelial FPN1 acts as a gatekeeper for iron, mediating iron entry into brain tissue from
BMVECs [11,25].

The gatekeeper FPN1 is regulated by hepcidin, CP and iron regulatory protein (IRP).
Hepcidin is secreted by astrocytes and can decrease the expression of FPN1 in the stria-
tum, cerebral cortex, and hippocampus [12]. Hepcidin can control the entry of iron
through FPN1 on BMVECs via a FPN1–hepcidin posttranslational degradation axis [11].
Glycosylphosphatidylinositol-anchored CP (GPI-CP) is mainly expressed in the end feet of
astrocytes surrounding the BBB [13,26,27]. Conditional knockout of astrocytic CP caused ID
in the brain, providing direct evidence that CP in astrocytes also regulates iron influx into
the brain through the BBB [14]. While the level of IRP is negatively regulated by iron levels
in the brain, it also regulates TfR1 and Fpn1 mRNA via post-transcriptional regulation
of the iron-responsive element (IRE)-IRP system [28,29]. These results demonstrate that
coordination of Tf-TfR1 and FPN1 plays a critical role in iron efflux into brain parenchyma
from BMVECs, and that hepcidin and CP may help maintain iron homeostasis in the brain.

There are other routes of iron entry into the brain [30]. In the non-transferrin-bound
iron pathway, which mediates iron entry via BMVECs of the BBB [31,32], ferritin can bind
the ferritin receptor or be transcytosed across the BBB [33]. Iron in the cerebrospinal fluid
can also enter the brain across the choroid plexus [34,35].

Different brain regions contain different levels of iron, with high iron concentrations
in the substantia nigra (SN), red nucleus and globus pallidus [36,37]. It is unclear why such
iron heterogenicity exists in the brain. It may be due to differences in iron demand from
specific brain nuclei groups or differences in iron absorption, transport or iron release be-
cause of the distribution of iron-metabolism-related proteins in different brain regions [38].
Research has shown that iron can be transported along axons from the ventral hippocampus
(vHip) to the SN and from the thalamus to the amygdala [39], so it is possible that axonal
iron transport may contribute to heterogeneous iron distribution. It is speculated that
choroid-plexus-derived transferrin (Tf) in cerebrospinal fluid (CSF) plays a significant role
in the export of iron to the blood instead of iron uptake into the brain interstitium because
intracerebroventricular injection of [59Fe125I]Tf did not lead to an observable signal in brain
regions distant from the CSF [40]. The glymphatic pathway may also be involved in iron
release from the brain [41]. Do the different degrees of iron release result in different levels
of iron reduction or overload? Further investigation of iron deficiency or accumulation in
different brain regions is warranted.

2.2. Iron Uptake and Metabolism in Neurons and Glia

After iron enters the brain parenchyma, it is absorbed by neurons and glial cells for
cellular functions. TfR1 and divalent metal transporter 1 (DMT1) are ferric and ferrous
iron uptake proteins, respectively; the lactoferrin receptor (LfR) is also responsible for
iron uptake. Most brain cells store iron using ferritin and export iron via FPN1 with the
assistance of CP and hephaestin (HP) [42,43]. However, different types of brain cells have
different dominant iron uptake pathways. Neurons acquire iron through the classical
Tf-TfR1-dependent iron uptake pathway and non-transferrin bind iron (NTBI) uptake
pathway, such as DMT1 and trivalent cation-specific transporter 1 (TCT1), from brain
interstitial fluid [43,44]. Exported iron from neurons is oxidized into the ferric form by as-
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trocytic CP [45]. Astrocytes acquire iron across the interstitial space using NTBI-dependent
mechanisms that include citrate, ATP, ascorbic acid, DMT1 and zinc-regulated and iron-
regulated transporter-like proteins (ZIP) [46,47]. Astrocytes have also been reported to
directly uptake ferrous iron from BMVECs through the end feet [48]. Oligodendrocytes are
the only cells that synthesize and release Tf; they acquire iron through DMT1 and the fer-
ritin receptor, T-cell immunoglobulin and mucin domain protein-2 (Tim-2) [49]. Microglia
express iron-metabolism-related proteins and are efficient in accumulating iron [50]. Under
inflammation, environmental and endogenous stimuli, microglia are activated, resulting
in the synthesis and secretion of lactoferrin (Lf), which affects LfR-expressing cells [51,52].
Choroidal epithelia capture iron via TfR1-dependent or TfR1-independent pathways, and
they transport iron back to the blood circulation [53]. In the brain, excess iron can be
exported back to CSF or interstitial fluid [54].

In addition to strict regulation of iron entry into the brain, iron levels in different
brain cell types are also regulated by IRP and hepcidin. When cellular iron levels decrease,
the expression of IRP increases [55]. This allows IRP to bind the IRE motif in the 5′

untranslated region (UTR) of ferritin and Fpn1 mRNA and the 3′-UTR of TfR1 and DMT1
mRNA, which inhibits translation of ferritin and FPN1 and increases the translation of
TfR1 and DMT1. This leads to decreased iron storage and iron efflux, as well as increased
iron uptake, which induces elevated cellular iron levels to maintain iron homeostasis in
neurons and glia [29,56,57]. Altered levels of iron in the brain also affect the expression
of hepcidin in astrocytes, which affects the level of FPN1 through the hepcidin–FPN1
regulatory axis [11,12]. Data from IRP2−/− mice and cell lines have demonstrated that
IRP and hepcidin coordinately regulate FPN1 expression [28]. Therefore, coordination and
crosstalk between IRE-IRP and hepcidin maintain the dynamic balance of iron levels in
the brain.

Expression of CP and hepcidin in astrocytes regulates iron metabolism in BMVECs,
neurons and other glia, highlighting the communication between different cells in the
brain [11,14]. Astrocytes also affect microglia, which, in turn, affect iron metabolism in
neurons [58]. Cell communication and the underlying network are complicated; further in-
vestigation will improve our understanding of brain iron metabolism and provide strategies
to prevent and cure iron-metabolism-disorder-related neurological diseases.

Erythroferrone (ERFE), a protein newly identified by the Ganz group, may inhibit
hepcidin and, thus, regulate iron metabolism in response to erythropoietin stimulation
in conditions of stress [59,60]. ERFE has also been detected in the brain using real-time
PCR [60], but its role in brain iron metabolism remains unclear. The possibility of other
roles of ERFE in the brain will also require further investigation.

While there has been significant progress in our understanding of the mechanisms
and regulatory pathways of brain iron metabolism in recent decades, many issues remain
to be addressed. Data from synchrotron-based X-ray fluorescence elemental mapping
demonstrated that the element that accumulates in the SN is iron and not zinc or copper [61],
which may explain why dopaminergic neurons are vulnerable to toxins. Microglia are
prone to accumulate iron under conditions of stress. The cross-talk between glia and
neurons remains unclear; in particular, how they coordinate to maintain iron homeostasis
in physiological conditions and how iron is redistributed and accumulated in pathological
diseases will require further investigation. Uncovering a detailed picture of brain iron
metabolism and understanding the key mechanisms will have profound preventive and
therapeutic potential for neurological diseases.

3. Iron, Redox Balance and Oxidative Damage
3.1. Iron Dysregulation Induces ROS Generation

Iron dysregulation can be destructive to cells and tissues. Iron overload, especially
labile iron in cells and body fluids, can catalyze the conversion of hydrogen peroxide (H2O2)
via the Fenton reaction to generate highly reactive hydroxyl radicals and superoxide anion,
leading to the generation of ROS [62,63]. Iron and iron derivatives, such as heme or
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iron–sulfur clusters, are the essential active centers of many enzymes (e.g., lipoxygenases
(LOX), cytochrome P450, NADPH oxidases) involved in ROS generation [64]. Moreover,
dysregulation of iron metabolism also induces the generation of reactive nitrogen species,
including nitrogen monoxide, dioxide and peroxynitrite, while these radicals can conversely
regulate cellular iron homeostasis by modulating the binding affinity of IRP and IRE [65].
The drastic increase in oxidative and/or nitrosative radicals can disrupt the redox balance in
the cell and lead to biological damage, a condition called oxidative stress and/or nitrosative
stress, which is involved in many diseases and medical conditions [65]. In addition to iron
overload, studies have also reported that extremely low levels of iron in cells can also trigger
an increase in ROS [8,66]. Under prolonged ID, increased levels of H2O2 initiate signaling
events, resulting in a regulatory loop between H2O2 and prolonged ID [65]. ID increases
superoxide anion levels, resulting in a significant decrease in catalase activity together
with rising levels of dehydroascorbic acid, indicating disruption of redox homeostasis,
ultimately triggering programmed cell death [67]. Therefore, iron dysregulation is harmful
to cells via increasing ROS levels and resulting oxidative damage.

Neural cells are particularly sensitive to ROS assault because of their intense oxidative
metabolism, high consumption of oxygen, and propensity to generate high levels of ROS.
Iron levels in different regions of the brain increase with aging, making individuals more
prone to age-dependent neurodegenerative diseases [68]. For example, high levels of
iron are seen in the cerebral cortex and hippocampus of AD patients, as well as in the
dopaminergic neurons of the SN of PD patients [69,70]. Iron induces oxidative damage
in proteins and lipids, which is involved in many disease processes, such as synaptic
dysfunction, neuroinflammation, and neuronal death, and, thus, is considered an important
cause of neurodegenerative diseases [71–73].

3.2. Iron-Induced Neuronal Death

Although ROS are critical for physiological signaling pathways, excess ROS will
damage cellular macromolecules, including proteins, lipids and DNA, and the resulting
oxidative stress can eventually lead to apoptosis [68,74]. Normally, there are several
detoxification systems and antioxidant defense pathways in cells to counter ROS, such as
superoxide dismutases, catalases, and glutathione peroxidases (GPx) [75,76]. However,
when the generation of ROS drastically exceeds the antioxidant detoxification systems in
cells, oxidative stress results in mitochondrial dysfunction, leading to a further increase in
ROS formation and Cyt C release [77]. This will trigger the activation of various signaling
pathways, such as MAPK, which activates transcription factors, such as the nuclear factor
NF-κB, to alter target gene expression, resulting in the upregulation of proapoptotic factors
and downregulation of anti-apoptotic factors [64,77]. This, in turn, exaggerates oxidative
stress and ultimately leads to programmed cell death.

Ferroptosis, another form of programmed cell death, is primarily caused by iron-
dependent lipid peroxidation (Figure 2). In ferroptosis, upon labile iron accumulation,
cytosolic lipid oxidation and ROS are increased, while glutathione (GSH) and GPx4 are
decreased, and the mitochondria shrink with an increased membrane density, eventually
resulting in cell death [78]. Ferroptosis can be activated by blocking xCT antiporter (e.g.,
by erastin) or GPx4 inhibitor (e.g., RSL3), while it is inhibited by iron chelators (e.g., DFO)
and ROS scavengers (e.g., ferrostatin-1). This process is closely regulated by intracellular
signaling pathways, including the iron homeostasis regulatory pathway, RAS pathway and
cystine transport pathway [79]. Ferroptosis has been linked to the pathological processes of
many diseases, including neurodegenerative diseases of the central system [79,80].
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Figure 2. Interplay between ferroptosis and iron homeostasis. Lipid peroxides that induce ferroptosis
are produced through auto-oxidation and/or enzymatic activity of LOX on lipid esters generated
from lipids via the activity of ACSL4 and lysophosphatidylcholine acyltransferase 3 (LPCAT3). GPx4
blocks ferroptosis by converting lipid peroxides to lipid alcohols, whereas reductions in GSH or
GPx4 activity by blocking of xCT antiporter (e.g., by erastin) or inhibiting of GPx4 (e.g., RSL3)
can trigger ferroptosis. The increase in labile iron pool in the cytosol via an increased iron uptake
through TfR1 and/or autophagic degradation of ferritin can exacerbate ferroptosis via facilitating
lipid peroxidation, and, thus, iron chelators, such as DFO and ROS scavengers (e.g., ferrostatin-1),
suppress ferroptosis.

4. Role of Iron in Neurological Diseases

Iron overload or deficiency is closely related to ROS levels, both of which participate
in and exacerbate the onset and progression of neurological diseases, including PD, AD,
stroke, neuropsychiatric disorders and abnormal neurodevelopment (Figure 3).
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4.1. Iron and Parkinson’s Disease
4.1.1. Iron Dysregulation in PD

PD is one of the most typical neurodegenerative diseases, and its discovery was first
described by Parkinson in 1817 [81]. PD is characterized by Lewy bodies (LBs) with α-
synuclein protein aggregation, as well as death of dopaminergic neurons in the SN and
dopamine (DA) deficiency in the striatum [82,83]. While there is significant evidence
demonstrating that excess iron accumulates in the SN pars compacta (SNpc) of PD patients
and animal models [37,84–87], it remains unclear whether iron overload is the initial cause
or an effect of PD [88]. Although the detailed molecule mechanisms that provoke PD
are not fully understood, experimental evidence suggests that iron accumulation occurs
earlier [89], and the consequent oxidative damage or mitochondrial dysfunction aggravates
the development of PD [90,91]; the evidence also shows that lowering brain iron levels can
slow down PD [92–94].

CP is a multi-copper ferroxidase that plays important roles in copper transport and con-
verts toxic ferrous into the nontoxic ferric form. CP facilitates iron release from endothelial
cells, neurons and glial cells to maintain iron homeostasis in the brain. Aceruloplasminemia
is a recessive neurodegeneration characterized by mutation of the CP gene and marked
iron accumulation in the brain [95–97]. Adult Cp gene knockout mice (CP−/−) show
age-dependent iron overload in the central nervous system (CNS) [98,99]; these mice are
considered an endogenous iron-overload model. Intracerebroventricular injection of fer-
ric ammonium citrate (FAC), which induces high levels of iron in the brain, is used as
an exogenous iron-overload mouse model. Both iron-overload mouse models are more
vulnerable to neurotoxin and develop PD following intraperitoneal injection of low-dose
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Further investigation demonstrated
that iron accumulation is induced by Cp gene knockout and exacerbates oxidative stress
levels, which promotes apoptosis in the brain. Chelation of iron can decrease brain iron
levels and ROS, and apoptosis is reduced in PD mice. Therefore, iron overload in the brain
exacerbates dopaminergic neuronal death in the SNpc [90].

Researchers observed a loss of approximately 80% of the ferroxidase activity of CP in
the SN of PD cases; CP−/− mice developed parkinsonism and exhibited iron accumulation
in the SN [100,101]. Thus, Cp deletion induced iron overload and consequent ROS elevation,
which induced dopaminergic neuron death and led to the onset of PD.

The expression of IRP2, a key regulator of iron homeostasis, is negatively regulated by
high levels of iron; altered IRP2 can impact iron uptake, iron storage and iron release pro-
teins through the IRE-IRP regulatory pathway, which maintains iron homeostasis [57,102].
Dominant expression of IRP2 has been detected in the CNS [103]. IRP2 gene knockout
mice (IRP2−/−), reported by the Rouault lab, develop neurodegenerative movement disor-
ders [104] and exhibit excessive iron accumulation in the brain [56,104,105].

Iron overload is observed in the SN of IRP2−/− mice, and low doses of MPTP increase
neuronal apoptosis and decrease DA levels by altering iron metabolism, exacerbating
parkinsonism symptoms [91]. Levels of the deubiquitylase OTU domain-containing protein
3 (OTUD3) are decreased in PD mice overexpressing A53T α-synuclein. OTUD3 gene
knockout mice showed nigral iron accumulation and dopaminergic neurodegeneration.
OTUD3 can stabilize IRP2 to maintain iron homeostasis and prevent PD [106].

Mitochondria ferritin (FtMt) is a protein with ferroxidase activity capable of storing
iron in the mitochondria. Although FtMt overexpression or deletion does not affect iron
levels in the brains of mice, its overexpression induces a slight increase in iron uptake,
cytosolic ID and decreases ROS production in SH-SY5Y neuronal cells and significantly
blocks iron redistribution in a PD cell model [107]. FtMt deletion induced ferroptosis, and
its overexpression attenuated ferroptosis during cerebral ischemia/reperfusion [108]. FtMt
gene knockout promotes ROS generation, and overexpression restricts ROS production
in vivo. In vitro, FtMt attenuated oxygen and glucose deprivation and reperfusion-induced
iron accumulation in mitochondria [109]. These data revealed that FtMt plays a critical
antioxidative role in the progression of PD by regulating ROS.
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Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the expression of antioxi-
dant and detoxification enzymes and participates in many biological functions and disor-
ders including oxeiptosis [110]. Nrf2 gene knockout decreases the FPN1 level in BMVECs,
thus decreasing iron entry into the SN and striatum, reducing ROS and decreasing apopto-
sis of dopaminergic neurons in PD mice [111], which suggests that Nrf2 is neuroprotective
against PD via regulation of iron metabolism in the brain.

In addition to the above mechanisms, other molecules and pathways are involved in
iron metabolism disorders in PD. Ferroptosis participates in dopaminergic neuronal cell
death in PD, and the mutation of other ferroptosis genes has been linked to PD. On the
other hand, an autosomal recessive mutation in the PD-related gene, DJ-1 (PARK7), can
suppress ferroptosis [112]. Ferroptosis is also characterized by elevated lipid peroxidation
and ROS; therefore, iron and the resulting increase in ROS play prominent roles in the
pathology of PD. Overall, there are many reports of iron participation or interaction with
neurotransmitters and with many PD gene mutations [113–118], which form a vicious cycle
that exacerbates the progression of PD.

4.1.2. Iron Overload Exacerbates PD and Related Mechanisms
Iron and α-Synuclein

α-synuclein aggregation is thought to play a key role in the formation of LBs that
contribute to PD pathogenesis. Iron and α-synuclein both accumulate in LBs of the re-
maining dopaminergic neurons of the SN [119]. Evidence has shown that iron promotes
α-synuclein aggregation [120]; an IRE motif is predicted in the in 5′-UTR of α-synuclein
mRNA [121], suggesting IRE-IRP mechanisms might regulate its expression. Further in-
vestigation showed that iron regulates the synthesis of α-synuclein through the IRE-IRP
pathway at the post-transcriptional level; iron-mediated oxidative stress also regulates
α-synuclein at the post-translational level. α-synuclein has also been shown to exhibit
ferrireductase activity in the SN and may regulate iron uptake [122,123].

Transgenic PD mice overexpressing a mutant (A53T) human α-synuclein exhibited
age-related motor deficits, and their SN was more vulnerable to high dietary iron compared
with wild-type mice [124]. Excess iron has been linked to increased oxidative/nitrative
stress, which could induce tyrosine nitration. Nitrated α-synuclein has been detected in the
LBs of the PD brain [125]. The attachment of nitro molecules to Tyr39, Tyr125, Tyr133 and
Tyr136 of α-synuclein causes significant changes in α-synuclein [126]. Nitrated α-synuclein
is not readily degraded and is mixed into fibrils, accelerating the formation of fibrils with
unmodified α-synuclein [127–129]. In vitro evidence has demonstrated that microglial acti-
vation can induce nitric oxide (NO)-dependent oxidative stress in dopaminergic neurons,
resulting in α-synuclein nitration. Nitrated, aggregated α-synuclein during conditions of
oxidative stress induces inflammatory microglial functions [130,131].

Phosphorylation of α-synuclein has been shown in LBs [132]. Phosphorylation of
Ser129 is the primary modification of α-synuclein [133]; this mutation is harmful in PD.
Mutation of S129 (S129D) increases α-synuclein phosphorylation, the aggregation of which
promotes dopaminergic neuronal cell death [134,135]. The S129A mutation prevents α-
synuclein phosphorylation and suppresses the loss of dopaminergic neurons [134]. While
some reports have indicated that α-synuclein phosphorylation has no toxic effects, it
remains clear that iron-induced oxidative stress promotes phosphorylation of α-synuclein.
Iron overload has been shown to induce phosphorylation of α-synuclein at S129 and
its subsequent aggregation in vitro [114,136]. Furthermore, phosphorylation at Y125 or
S129 may increase the binding affinity between ferrous iron and the C-terminal region of
α-synuclein [115].

Overall, these results suggest that iron and α-synuclein interact with one another, and
their deposition and aggregation may be important factors in the pathology of PD. Blocking
iron and α-synuclein interactions may be a useful strategy to prevent and cure PD.
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Iron, Dopamine and Neuromelanin

Decreased levels of the neurotransmitter DA are important in PD. DA generates toxic
metabolites in the cytoplasm [137]; iron and DA are considered toxic in combination.
Physiologically, DA can produce H2O2 via monoamine oxidase [113]. H2O2 produced
in dopaminergic enzymatic processes reacts with the high level of iron in dopaminergic
neurons, generating oxidative stress such as hydroxyl free radicals via the Fenton reaction.
Hydroxyl radicals can damage membrane phospholipids, proteins and nucleic acids to
induce neuronal cell death [138].

Iron is also involved in the oxidation of DA, forming 6-OHDA, which liberates iron
from ferritin and produces H2O2, therefore, aggravating dopaminergic neuronal cell death
and the development of PD. It was reported that high levels of iron inside cells caused
ferroptosis, a form of regulated cell death characterized by iron-dependent accumulation
of lipid hydroperoxides to lethal levels [78,139].

Neuromelanin, a dark pigment in dopaminergic neurons, binds reactive iron in neu-
rons and plays a neuroprotective role. Loss of neuromelanin is observed in PD patients [89].
When the binding capacity of neuromelanin for iron is decreased, free iron increases in the
SN and induces oxidative damage via the Fenton reaction. Increased iron also reacts with
α-synuclein to aggravate oxidative stress and protein aggregation, resulting in neurodegen-
eration and neuronal cell death. Degenerating neurons also release neuromelanin, which
activates microglia, further releasing neuromelanin and initiating neuroinflammation and
neurodegeneration [116]. Therefore, iron is involved in DA oxidation by interacting with
DA metabolites (such as H2O2 and neuromelanin) to damage dopaminergic neurons, which
accelerates the release of a-synuclein to activate microglia, producing neuroinflammation
and participating in the occurrence of PD.

Iron and Parkin

Iron can alter Parkin solubility, resulting in its intracellular aggregation. With the
depletion of soluble, functional forms of Parkin, proteasomal activity is impaired with cell
damage [140]. In 1998, mutation of Parkin was identified in autosomal recessive juvenile
parkinsonism; iron staining in the SN of these patients was more intense than that of
controls and sporadic PD patients [141]. It was hypothesized that iron accumulation might
be related to loss of the Parkin gene.

More recently, Parkin was reported to be responsible for ubiquitination of DMT1
(+IRE). Expression of 1B-DMT1 isoforms was decreased in SH-SY5Y cells overexpressing
Parkin [117]. When fed an iron-supplemented diet, transgenic mice overexpressing DMT1
showed selective accumulation of iron in the SN; expression of Parkin was also upregulated,
likely reflecting a neuroprotective response [142]. Expression of DMT1 (+IRE) was also
increased in human lymphocytes containing a homozygous deletion of exon 4 of Parkin
and in the brains of Parkin knockout animals. All these data suggested that there might be
a feedback interaction between the abnormal iron level with/without aberrant expressions
of iron regulatory molecules and the expression and function of Parkin, thus participating
in the progression of PD.

Iron and Leucine-Rich Repeat Kinase 2

Leucine-rich repeat kinase 2 (LRRK2) is involved in inflammation, autophagy, lyso-
somal processing and vesicular trafficking [143]. Mutations in the Lrrk2 gene cause PD
and inflammatory diseases [144,145]. Increased iron is present in PD patients with the
Lrrk2 mutation [146]. The underlying mechanisms and their contribution to PD pathology
have been investigated. LRRK2 has been shown to activate microglia; mutations in Lrrk2
can induce cytokine release and inflammation in PD [147,148]. Recent investigations have
indicated that LRRK2 can phosphorylate Rab GTPases, regulating vesicle traffic. The
RabGTPase Rab8a directly interacts with TfR to aid in TfR recycling to the cell membrane
in the iron-uptake pathway [149]. Mutation of Lrrk2 enhances Rab8a phosphorylation,
sequestering Rab8a in lysosomes, resulting in the dysregulation of endolysosomal transport,
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inhibition of Tf-TfR recycling and enhanced cellular iron accumulation [118,150]. Therefore,
LRRK2 may modulate iron metabolism, especially iron uptake and storage in microglia in
conditions of neuroinflammation [118].

Excess iron has been observed in dopaminergic neurons of the PD brain. FAC can
catalyze the phosphorylation of S935 and S1292 of LRRK2, significantly increasing its
activity. Active LRRK2 accelerates ferrous iron uptake, indicating a relationship between
iron and LRRK2 in dopaminergic neurons [151].

In summary, iron deposition in the SN and LB aggregation is a hallmark of PD. The
increased iron induced by Cp, IRP2, Nrf2 or FtMt gene knockout, and the subsequent
increased oxidative stress and their interactions with α-synuclein, DA, neuromelanin,
Parkin and LRRK2, all contribute to the development and progression of PD (Figure 4).
Thus, targeting iron levels is an important strategy in the prevention and treatment of PD.
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Figure 4. Iron accumulation is important in the pathogenesis of PD. Dysregulation of CP, IRP2,
Nrf2 and FtMt alters brain iron levels, which, in turn, affects the expression of iron metabolism
proteins. Iron overload and increased ROS aggravate the development and progression of PD,
and their interactions with α-synuclein, dopamine, neuromelanin, Parkin and LRRK2 contribute to
dopaminergic neuronal cell death and the onset of PD.

4.2. Iron and Alzheimer’s Disease

AD is a neurodegenerative disease characterized by progressive memory impairment
and cognitive dysfunction. The main pathological features of AD are the intercellular
deposition of insoluble β-amyloid (Aβ) plaques and intracellular fiber tangles formed by
excessive phosphorylation of the tau protein, as well as neuronal cell loss [152]. Although
the cause and exact mechanisms of AD have not been revealed, great progress has been
made. It has been suggested that the increase in brain iron and the imbalance of iron
metabolism associated with increased ROS generation play an important role in the patho-
genesis of AD [153,154]. Therapeutic approaches to decrease brain iron levels or restore
iron homeostasis along with the attenuation of oxidative stress show great promise in the
treatment of AD [154].

4.2.1. Iron Dysregulation in AD

Iron deposition in Aβ plaques and neuronal tangles in the brains of AD patients have
been widely reported. In 1992, a study showed that in brain slices of AD patients, the
distribution of iron in senile plaques and the surrounding cells increased significantly, sug-
gesting there was iron deposition and disruption of iron homeostasis in the AD brain [155].
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Magnetic resonance imaging showed that the aggregation of Aβ accompanied by the
accumulation of iron occurred in the early stages of AD [156]. Compared with healthy
individuals, AD patients have increased iron in the cerebral cortex and hippocampus, colo-
calized with the Aβ plaques [156]. The increased levels of iron in the brain exacerbate the
aggregation of Aβ and accelerate neuronal cell death. Symptoms of AD can be attenuated
by iron-chelating agents [157].

In addition to the changes in iron distribution in the brains of AD patients, the ex-
pression of several key molecules responsible for transporting iron or regulating iron
homeostasis is also altered, including Tf, TfR1, DMT1, ferritin, FPN1, CP, IRPs and hep-
cidin [11,14,69,155,158–160]. Ferritin in senile plaques in the hippocampus and peripheral
blood vessels of AD patients is increased [155,161]; ferritin is also increased in the CSF
of AD patients [161]. Protein and mRNA levels of FtMt are increased significantly in the
cerebral cortex of AD models [162–164]. Expression of TfR1 was shown to be increased in
the cerebral cortex and hippocampus of 3-month-old amyloid precursor protein (APP)/PS1
mice [165]. DMT1 in the cerebral cortex and hippocampus of APP/PS1 mice was increased
around Aβ plaques [166]. FPN1 in the cortex and hippocampus of AD patients and animal
models was significantly decreased [166]. Expression of hepcidin in the brain of AD patients
and mouse models was decreased, accompanied by increased neuroinflammation and ox-
idative damage [58,69,160]. The alterations of these molecules verify the dysregulation of
iron metabolism in the pathogenesis of AD.

4.2.2. Iron in Aβ and Tau Pathology

Increased iron directly induces Aβ aggregation, which, in turn, participates in the
generation of oxidative stress, contributing to the pathological symptoms of AD [153].
The increased iron can also affect the expression of APP and its subsequent amyloidosis.
Under normal conditions, most APP is cleaved by α-secretase and γ-secretase successively,
releasing its N-terminal P3 fragment and leaving the APP intracellular domain in the cell
membrane, while a small amount of APP undergoes β-secretase (BACE-1) and γ-secretase
shearing to produce Aβ [167]. The activation of both α-secretase and BACE1 is regulated
by furin, and the transcription of furin is regulated by intracellular iron levels [72,168,169].
When total iron levels are high, furin protein levels decrease [72], which downregulates the
activity of α-secretase, resulting in Aβ production. By contrast, in conditions of ID, furin
activity increases, increasing α-secretase activity and the stimulation of non-Aβ cleavage of
APP [170]. APP translation is also affected by iron levels because of the IRE motif present
in the 5′-UTR of APP mRNA, which can be regulated by IRPs upon binding [171]. In
conditions of ID, IRPs bind the IRE of APP mRNA to inhibit its translation. However,
at high iron concentrations, IRPs interact with iron and are released from APP mRNA,
resulting in increased APP translation, which, in turn, increases Aβ generation [171].

Iron overload can also aggravate tau protein dysfunction and enhance the formation
of neuronal fiber tangles. In the brains of AD patients, lipid peroxidation induced by iron
overload can promote tau polymerization, which further increases oxidative stress and the
formation of tau fibrillary lesions [172]. In vivo experiments have shown that iron overload
causes abnormal phosphorylation of tau protein in neurons [173]. Previous studies have
shown that a lack of tau can affect the post-translation transport of APP, resulting in its
retention in the endoplasmic reticulum [174]. APP exhibits ferrous oxidase activity, which
may help iron efflux by stabilizing FPN1 on the cell membrane [175]. Therefore, lack of
tau may affect iron release by regulating APP, leading to increased intracellular iron and
further aggravating cell damage.

4.2.3. Mechanism of Iron and Oxidative Stress in AD Pathogenesis

Iron overload and the resulting oxidative stress participate in the pathology of AD
symptoms. In AD pathogenesis, iron overload has been implicated in mitochondrial
dysfunction, neuroinflammation and neuronal cell death (Figure 5).
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Aβ1-42 production and tau phosphorylation. Excessive iron leads to mitochondrial dysfunction. The
pre-oxidant effects of iron induce DNA damage and lipid ROS generation, contributing to cell death.

Mitochondrial dysfunction is a common pathogenic feature of AD [176], evidenced by
elevated ROS generation and lipid peroxidation, decreased mitochondrial membrane po-
tential and altered mitochondrial morphology [176]. Sufficient intracellular iron is required
for mitochondria-dependent metabolic activities, such as ATP production by the electron
transport chain, Fe-S cluster formation and heme biogenesis. Disruptions in iron home-
ostasis result in mitochondrial dysfunction and energetic failure. ID impairs mitochondrial
metabolism and respiratory activity [8], while iron overload promotes the production of
damaging ROS during mitochondrial electron transport [177], which triggers oxidative
stress in the brain, resulting in neurological damage and disease development [178,179].
Therefore, iron flux in mitochondria must be precisely regulated.

Neuroinflammation is a characteristic of AD and is mainly mediated by the activation
of microglia and astrocytes, which release excess inflammatory factors that result in neu-
ronal impairment [176]. Accumulating evidence has shown a relationship between iron
levels and neuroinflammation. Elevated neuroinflammation has been reported to contribute
to the deleterious impact of iron overload on brain function in aging through astrocytic
dysfunction and inflammation [180]. In AD, iron plays a direct role in Aβ-stimulated
neuroinflammation. Iron overload promoted activation of NF-κB signaling induced by Aβ

and increased secretion of inflammatory factor interleukin (IL)-1β in microglia [181]. Simi-
larly, iron overload in lipopolysaccharide (LPS)-primed peripheral blood mononuclear cells
stimulated caspase 1-dependent IL-1β secretion and activated the NOD-like receptor family
pyrin domain-containing 3 inflammasome, due to the increased cellular labile iron [182].
Iron overload has also been shown to promote IL-6 secretion through microglia, which, in
turn, upregulates the expression of IRP1 and DMT1 and downregulates the expression of
FPN1 via C-Jun N-terminal kinase activation [183], aggravating iron overload and inducing
oxidative stress and cellular dysfunction.

On the other hand, iron metabolism is also regulated by inflammatory and anti-
inflammatory cytokines, such as tumor necrosis factor (TNF)-α and transforming growth
factor (TGF)-β1. TNF-α has been shown to promote iron uptake in astrocytes and microglia
by promoting DMT1 expression, while TGF-β1 facilitates iron efflux in astrocytes by in-
creasing FPN1 expression, thereby differentially contributing to iron homeostasis [184].
In addition, hepcidin in astrocytes is important in LPS-induced neuroinflammation and
neuronal apoptosis [58]. High hepcidin levels are associated with intracellular iron accumu-
lation, as hepcidin binds FPN1, internalizing the receptor and blocking iron release from
cells [28,58,185]. These results suggested that neuroinflammation stimulates iron overload
by regulating the expression of iron transporters, followed by a positive feedback loop that
aggravates neuroinflammation and oxidative stress in the brains of AD patients. As iron
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overload and its related chronic neuroinflammation contribute to the progression of AD,
iron chelators have been investigated as potential agents to alleviate neuroinflammation
and ROS generation [186].

Iron-induced cell death is an important cause of neuronal death in AD pathology.
Studies have found that there are ~30- to 50-times more DNA fragments in neurons and glial
cells in AD patient brains than in normal brains of humans of the same age [187], indicating
that apoptosis is one of the main forms of cell death in the AD brain. Iron overload in
AD is accompanied by an increase in apoptotic cells; reducing brain iron levels reduced
apoptosis in the cortex and hippocampus of AD mice [69,160]. These results suggest that
the iron-induced apoptosis pathway plays an important role in neuronal cell death in AD.
In addition to apoptosis, ferroptosis is mainly caused by iron-dependent oxidative damage
and is thought to be closely regulated by intracellular iron homeostasis [78]. Iron overload
in AD reduces the expression of GPx4 and increases expression of acyl-CoA synthetase long
chain family member 4 (ACSL4); restoring iron homeostasis ameliorated AD symptoms by
inhibiting ferroptosis [69,79], indicating that iron-accumulation-induced ferroptosis is an
important characteristic of AD.

4.3. Iron and Stroke

Stroke is the second leading cause of death after cancer, and adults who survive have
varying degrees of physical disability. A quarter of people around the world are affected
by stroke [188], resulting in a significant burden to society and patients. Ischemic stroke
is the most common form of stroke. Due to vascular embolism, continuous occlusion of
blood flow leads to irreversible necrosis of nerve cells in ischemic brain tissue, forming the
infarction core. Adjacent tissue cells retain some level of metabolic activity, which is referred
to as penumbra. At present, the primary treatment is thrombolysis, although reperfusion
causes excitoneurotoxicity, Ca2+ overload, ROS generation and inflammation, activates
innate and adaptive immunity and causes secondary damage to tissues. The mechanism
of ischemia/reperfusion (I/R) is complex, and many modes of cell death are involved,
including necrosis, apoptosis, autophagy and ferroptosis. Ferroptosis is an important cause
of tissue damage and cell death during reperfusion [139]; the use of ferroptosis inhibitors
alleviates I/R damage. Our previous study found that brain iron metabolism was disturbed
after I/R and iron levels were increased in the cortex and hippocampus. Hepcidin has been
shown to regulate iron levels [189] and cells were characterized by brain iron overload.
Excess iron can cause lipid peroxidation via the Fenton reaction, which is important in
apoptosis [190] and ferroptosis [108]. Therefore, iron plays an important role in neural
damage caused by thrombolysis or thrombectomy in ischemic stroke.

4.3.1. Iron Regulation in Ischemic Stroke

Although there have been many reports of iron overload after stroke, the underlying
mechanism remains unclear. Previous studies have shown that hepcidin is involved in
the regulation of cellular iron overload after stroke [189]. Stroke upregulates hepcidin
expression, and hepcidin was shown to bind and internalize to degrade the iron exporter
FPN1 [191], which, in turn, leads to iron accumulation in cells. The hypoxic environment
created by ischemic stroke also affects intracellular iron and regulates iron-related protein
expression, primarily through hypoxia-inducible factor (HIF). Knockdown of HIF-1α re-
duces hypoxia-induced iron accumulation in cells. HIF-1α binds as a transcription factor to
the hypoxia-responsive element (HRE) of Tfr1 and DMT1, activating their transcription,
which, in turn, increases iron uptake [192]. Glutamate receptors (N-methyl-D-aspartate re-
ceptors (NMDARs)) also mediate iron uptake following a stroke. NMDARs induce the Ras
protein via NO/dexamethasone, increasing the TfR-dependent iron uptake pathway [193].
In addition to direct the regulation of iron by hypoxia, the BBB is also involved in cerebral
blood deposition in I/R. Changes in iron levels in cerebral microvascular endothelial cells
can directly affect iron levels in the brain. After oxygen and glucose deprivation and
reperfusion (OGD/R) treatment, iron levels in cerebral microvascular endothelial cells
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were significantly increased [190]. Endothelial cells released intracellular iron into the brain
through FPN1, and knockdown of Fpn1 in endothelial cells decreased iron accumulation
in the brain and alleviated oxidative stress, inflammation and cell death after ischemic
stroke [25]. The above results suggest that the mechanism of iron metabolism dysregulation
in ischemic stroke may not only include the disruption of the BBB and abnormal iron
transport across the BBB but also be caused by disorders in iron uptake and release by
neural cells in the brain.

4.3.2. Mechanism Underlying Cell Death Induced by Iron Dysregulation

Intracellular iron accumulation after ischemic stroke can aggravate cell death and
tissue damage in various ways. Oxidative stress, in particular, is an important factor in
excess iron-mediated cell death, including apoptosis and ferroptosis. ROS induces the
opening of mitochondrial membrane permeability pores via oxidative damage of lipids
and other macromolecules in mitochondria, releasing cytochrome c into the cytoplasm,
which activates caspase-3 and triggers apoptosis [194,195]. In the cytoplasm, ROS primarily
activates the downstream signaling molecule c-Jun NH2-terminal kinase (JNK) through
apoptosis signal-regulating kinase 1 (ASK1) to further phosphorylate the proapoptotic
molecule Bak/Bax, resulting in the mitochondrial release of cytochrome c [196–198]. In
addition to participating in ROS generation and cell death, iron also plays an important
role in energy metabolism. Studies have demonstrated that the overexpression of FtMt, on
the one hand, decreases the level of free iron in mitochondria and slows the production
of ROS after OGD/R. However, FtMt also enhanced glucose metabolism and the pentose
phosphate pathway after OGD/R to promote the synthesis of NADPH and glutathione,
thus increasing cellular resistance to oxidative damage [109]. Iron also functions as a
coenzyme for many oxidases, such as LOX, NADPH oxidase and xanthine oxidase, which
are involved in catalytic lipid oxidation and ROS generation [199] and are another important
source of oxidative damage.

Based on the role of iron and ferroptosis in I/R, many compounds and therapeutic
strategies targeting iron have been explored and validated in animal models. The iron
chelator DFO is widely used in a variety of stroke models and has been shown to alleviate
stroke injury in mice [200]. Other iron regulatory proteins have been shown to be protective
in animal models. Endothelial cells release intracellular iron into the brain through FPN1;
while knockdown of Fpn1 reduces oxidative stress, inflammation and cell death after stroke,
ID is not beneficial during neurological recovery after ischemic stroke [25]. Previous studies
have shown an increase in iron in the cerebral cortex during post-stroke recovery, along with
a corresponding increase in synaptic plasticity and myelin nerve regeneration, indicating
that the recovery process, unlike ischemia, seems to require more iron involvement [201].
Knockdown of hepcidin or peripheral injection of CP during ischemia decreased brain iron
levels and improved post-stroke motor capacity in mice [189,202]. Intravenous injection
of iron-loaded Tf increased cell mortality, increased ROS production and aggravated
damage after OGD [203]. Our previous study found that HIF-1α acts as a transcription
factor to activate transcription of FtMt, which preferentially sequesters intracellular iron in
mitochondria, diminishing free iron in the cytoplasm. Overexpression of FtMt is protective
in both hypoxia and I/R models [108,163]. An increasing number of new therapeutic
agents targeting iron to treat ischemic stroke are being explored. Nanoliposomes carrying
lycopene have been shown to have therapeutic efficacy following ischemic stroke injury in
rats. Lycopene nanoliposomes regulate iron levels after stroke and reduce oxidative stress
and apoptosis [204]. Moreover, some ferroptosis inhibitors such as Ferrostain-1 were shown
to alleviate I/R injury. Further research on brain iron metabolism imbalance following
I/R will improve our understanding of the role of iron and provide new directions for
prevention and targeted therapies.
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4.4. Iron and Neuropsychiatric Disorders

Neuropsychiatric disorders, such as depression and anxiety, are increasing world-
wide, affecting approximately 30% of the general population during their lifetime [205].
Abnormal synthesis and secretion of neurotransmitters, reduced neuroplasticity and im-
paired neurodevelopment have been linked to the pathogenesis of neuropsychiatric dis-
orders [206], but the specific mechanisms remain unclear. ID has been correlated with
behavioral and developmental changes that occur with neuropsychiatric disorders; these
changes affect the hippocampus, the striatum and neurotransmitters, such as serotonin,
noradrenaline and DA [206]. Analysis of survey studies found a link between iron intake
and depression; total iron intake may be inversely associated with depression [207]. A
health survey of individuals over 65 found that a higher number of depressive symptoms
was associated with lower hemoglobin levels and higher serum TfR levels but not with
ferritin levels [208]. Accumulating evidence demonstrates that ID results in increased anxi-
ety and/or depression with social and attentional problems in children [209]. By contrast,
iron overload alters anxiety-like behavior and mood [210]. A recent study confirmed that
an imbalance of iron metabolism is a cause of anxiety; researchers found that the neural
circuit from the vHip to the medial prefrontal cortex (mPFC) to the SN was responsible
for brain iron transport and that dysfunction of vHip-mPFC iron transport could induce
anxiety-like behaviors [39]. Monoamine metabolism is the most widely studied metabolic
pathway, and iron is required for the synthesis of monoamine neurotransmitters. In partic-
ular, serotonin plays an important role in depression, anxiety and other neuropsychiatric
disorders [211]. ID results in poor brain myelination and impaired monoamine metabolism,
and accumulating data have shown that neurotransmitter homeostasis influences emotional
behavior [212].

Fear memories are common in humans and can be used to avoid or minimize harm.
Few studies have focused on the role of iron metabolism in the development of fear mem-
ory. ID in early brain development can lead to long-term neurological damage, including
hippocampus-mediated learning and memory deficits [213]. The hippocampus is an impor-
tant structure for many forms of memory. The dentate gyrus of the hippocampus plays a
key role in the acquisition of situational fear memories [214,215]. In addition, hippocampal-
dependent learning was shown to be permanently impaired during fear-conditioning
experiments in rats with perinatal ID [216]. An investigation into the response of the mice
to contextual fear revealed that the formation of fear memory was impeded after neuronal
Fpn1 depletion by reducing brain iron [7]. Hippocampal-dependent memory processes,
such as cognitive memory and fear conditioning, are strongly affected by perinatal ID [217].
These studies suggest that the normal development of the nervous system requires a
balance of iron levels in the brain; this balance is important for normal nervous system
function and can affect fear memories.

4.5. Iron and Abnormal Neurodevelopment

Normal development of the brain is an important process in the establishment of the
mammalian nervous system; development involves proliferation, differentiation, migra-
tion, synaptogenesis and myelination [218]. During the early stages of mouse embryonic
development, neural progenitors divide to give rise to neurons. This is followed by glio-
genesis, myelination and synapse construction [219]. Numerous studies have suggested
that abnormal brain development is closely related to nervous system disorders, such
as microcephaly, schizophrenia, autism spectrum disorder and malformation of cortical
development [220–225].

Numerous animal studies have shown that iron is particularly important for many
neurodevelopmental processes, especially during pregnancy and infancy due to rapid
growth [226]. However, ID is one of the most common nutritional deficiencies, especially
in pregnant women and infants [209,227]. Numerous studies have shown that ID in these
periods causes neurodevelopment deficits, including impairment of learning and memory,
motor skills and emotional regulation, and these deficits are not fully recovered even
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when iron is restored [4–6,216,228–239]. The mechanisms that may contribute to these
impairments include changes in brain energy metabolism, neurotransmitter chemistry,
organization and morphology of neuronal networks and the neurobiology of myelina-
tion [234,240]. Here, we summarize the major findings from recent decades on the effects
of ID on the development and functions of neurons and glia cells (mainly neurons and
oligodendrocytes) and highlight new information on the possible mechanisms through
which ID affects brain development.

4.5.1. Iron Deficiency Affects Neurodevelopment and Function

Numerous studies have shown that iron is an essential element for cell proliferation
by serving as a substrate for enzymes that participate in DNA synthesis, the cell cycle and
energy production [241]. Recent studies have revealed the role of iron in maintaining the
stemness of embryonic stem cells. Intracellular ID significantly inhibits the proliferation
and differentiation of embryonic stem cells/neuronal precursor cells [8,242]. Overall, these
data suggest that iron is essential for cell proliferation and differentiation.

Studies in rodents have reported deleterious effects of ID on the structural and mor-
phological development of dendrites and synapses during brain development [243–247].
Furthermore, studies in neurochemistry have shown that ID has significant effects on
neuronal DA metabolism [209,233] and the synthesis of monoaminergic neurotransmit-
ters [246,248,249] and growth factors [243]. ID also leads to changes in the synaptic trans-
mission and synaptic function [250,251]. A study using two non-anemic genetic ID mouse
models (knockout of DMT1 or overexpression of dominant negative TfR1) showed that
neuronal-specific ID dysregulates mammalian target of rapamycin (mTOR) signaling dur-
ing hippocampal development [252]. Together, this research indicates that ID alters the
neuronal structure and morphology, metabolism, synaptic plasticity and structural gene
expression and mTOR signaling pathway.

4.5.2. Iron Deficiency Affects Development of Oligodendrocytes and Myelination

Oligodendrocytes are characterized by high intracellular iron and a high rate of oxida-
tive metabolism, which are required for the synthesis and maintenance of myelin [6,253,254].
Studies in mice have also shown that ID negatively affects the development of oligoden-
drocytes and their myelination [244,255–257]. Impaired myelination has also been reported
in studies of gestational and postnatal ID performed in monkeys and piglets, suggesting
that iron is essential for oligodendrocyte activity and integrity [258,259].

4.5.3. Mechanisms Underlying ID and Hippocampal Development

Based on the vulnerability of the developing hippocampus to early ID and earlier
work showing lasting spatial memory deficits related to the role of the hippocampus in iron-
deficient rodent brains [216,260–262], more attention has been paid to ID and hippocampal
function. ID during late fetal and early postnatal life alters the expression of critical genes in-
volved in hippocampal development and function, including iron metabolism, cell growth,
energy metabolism, dendrite morphogenesis and synaptic connectivity in the hippocam-
pus [213,243,252,263–266]. DNA methylation and O-linked-beta-D-N-acetylglucosamine
(O-GlcNAc) modifications play important roles in these processes [267,268]. Recently, ID
response networks and signatures have been revealed through quantitative proteome and
transcriptome dynamics analysis in neuronal cells [269]. Taken together, these studies
suggest that ID induces changes at the proteome and transcriptome levels, as well as
alterations in post-translational modifications, including phosphorylation signaling and
DNA methylation.

Long-term studies show that many of the ID-induced neurodevelopmental deficits
during the fetal and early postnatal period cannot be recovered by iron repletion at later
stages and eventually lead to sustained impairments [259,270–273], suggesting that ID in the
developmental stage results in long-lasting abnormalities, even after iron supplementation.
At present, studies support the concept that early ID in critical periods may disrupt the
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timing of key steps in development, and repletion of iron after these important time points
will not rectify anatomic and neurochemical abnormalities. While awaiting prospective
trials, it is recommended to screen all gravidas for ID and administer iron supplementation
if ID is present with or without anemia.

In conclusion, numerous studies in human and animal models suggest that ID affects
brain development and significantly affects the development and function of neurons and
oligodendrocytes. At present, the possible mechanisms of ID affecting brain development
are derived from studies on animal models of deficits in brain energy metabolism, neuro-
transmission, neuronal morphology and the myelination of oligodendrocytes. Since ID in
pregnant women and pre-school-age children causes poor long-term neurodevelopment
outcomes in later life, it is of important scientific, medical and social significance to further
clarify the molecular mechanisms of ID affecting brain development, as well as prevention
and treatment strategies.

5. Targeting Iron Metabolism in the Treatment of Neurological Diseases

In recent years, research on brain iron metabolism disorders and neurological diseases
has shown that increases in brain iron and imbalances in iron metabolism may play es-
sential roles in the pathogenesis of neurological diseases. Therefore, targeting brain iron
homeostasis and regulation of iron-metabolism-related molecules for drug development
are expected to provide novel ways to treat neurological diseases.

5.1. Iron Chelators

Iron chelators bind iron ions with high affinity, effectively enhancing iron excretion
and reducing free iron in the body [274]. Iron chelators have been shown to inhibit lipid
peroxidation and reduce ROS levels in neurons, thereby preventing neuronal ferroptosis
and apoptosis. Clinically, commonly used iron chelators include DFO, DFX and DFP, which
have shown therapeutic promise in preclinical and clinical models of neurological disorders.
Decreasing iron levels in the brain with iron chelators has been reported to alleviate the
symptoms of AD, PD and stroke [17–22].

5.1.1. Iron Chelators in AD

Clinical application of DFO to treat AD was reported as early as 1991; continuous
administration of DFO was found to alleviate cognitive impairment in AD patients [17]. Ad-
ministration of the iron chelator M30 decreased brain iron accumulation, Aβ accumulation
and tau phosphorylation, improving memory deficits in APP/PS1 mice [18]. This improve-
ment may have been achieved by downregulating phosphorylation of cyclin-dependent
kinase 5 (CDK-5) and increasing phosphorylation of protein kinase-B (PKB/AKT) and
glycogen synthase kinase (GSK)-3β [18]. DFO improved the cognitive ability of APP/PS1
mice due to the activation of M2-type microglia and inhibition of activation of M1-type
microglia in the hippocampus [275].

5.1.2. Iron Chelators in PD

Overloaded intracellular iron contributes to neuronal cell death in PD via apoptosis
and ferroptosis, while DFO can inhibit ferroptosis to protect neurons [19]. In experimental
studies, iron chelators have been shown to exhibit neuroprotective effects in vivo against 6-
OHDA-induced neurotoxicity in mouse models of PD [20]. Loss of CP iron oxidase activity
in the SN of PD patients leads to the accumulation of iron peroxide [100]. Administration
of an iron chelator in CP−/− PD mice reversed the accumulation of iron ions caused by
the loss of CP, significantly improved the motor ability of mice and reduced the nerve
damage caused by MPTP [90,100]. After 8 weeks of pre-administration of the iron chelator
clioquinol in a mouse PD model, iron levels in the SN decreased by 30%, and oxidative
stress and GSH loss were significantly reduced [94]. Treatment with the iron chelator
DFO has been shown to block MPP+-mediated damage of dopaminergic neurons and
prevent iron accumulation and mitochondria dysfunction [276]. Brain iron accumulation
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exacerbates the pathogenesis of MPTP-induced PD; DFO alleviates PD symptoms by
reducing oxidative stress damage caused by elevated brain iron levels [90]. In two phase
2 trials, the high-affinity iron chelator DFO was shown to reduce iron accumulation and
improve motor symptoms in PD patients compared with placebo, despite the side effects,
such as leukopenia, gastrointestinal discomfort and joint pain [277,278]. A clinical trial
evaluating the effects of four different doses of DFP on 140 patients with early-stage PD has
yet to be published [278]. A more extensive European multicenter test on the protective
effect of DFP on PD patients showed that the iron content in the nigrostriatal pathway
was significantly reduced in DFP-treated groups. The mean change in the total movement
disorder society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-
UPDRS) score was 16.7 points in the DFP group and 6.3 points in the placebo group [279].
Surprisingly, DFP without DA treatment increased the patient’s disability. This may be
related to the fact that iron is a cofactor in DA synthesis. Iron is required to assist in
the synthesis of DA, but excess iron can cause the death of dopaminergic neurons [278].
Another long-term clinical trial used an iron chelator combined with DA to avoid the
drawbacks of iron chelators alone, but further research is needed.

5.1.3. Iron Chelators in Stroke

Iron-overloaded animals are more affected by middle cerebral artery occlusion [280],
whereas iron chelation or depletion reduces I/R-induced brain injury [21,22]. DFO has
been shown to inhibit lipid peroxidation and hydroxyl radical production via the Fenton
reaction and to decrease cerebral I/R-associated brain injury [281,282]. DFO decreases
excitatory amino acid levels and improves the histological outcome in the hippocampus
of neonatal rats after hypoxia–ischemia [283]. Gerbils fed a low-iron diet for 8 weeks had
decreased brain iron levels, neurologic deficits and brain edema after cerebral I/R [22].
Treatment with DFO resulted in decreased brain edema following I/R [22]. DFO treat-
ment attenuated oxidative damage and cell loss induced by oxygen–glucose deprivation
followed by reoxygenation in a cell model of cerebral I/R [108,190]. Most stroke-related
clinical trials have focused on the treatment of intracerebral hemorrhage. Thus, 294 partici-
pants with intracranial hemorrhage were recruited to participate in the safety and efficacy
evaluation of DFO and placebo, which showed that deferoxamine mesylate was safe, and
DFO treatment significantly improved clinical outcomes [284]. In two clinical trials, DFO
treatment appeared to accelerate recovery [285] and reduce hematoma volume [286] in
patients with cerebral hemorrhage.

In conclusion, iron chelators are commonly used to reduce the level of iron in the brain,
which attenuate oxidative damage, inhibit neuronal ferroptosis and apoptosis and effec-
tively relieve the symptoms of AD, PD and stroke. However, the clinical application of iron
chelators still needs to better explore drug administration to improve the therapeutic effect.

5.2. Iron Chelators in New Administration Forms

DFO, a hydrophilic drug that binds extracellular iron in a ratio of 1:1, has low oral
availability, poor BBB permeability and a short half-life [287]. By contrast, DFX and DFP
have higher oral bioavailability and intracellular iron affinity [287,288]. The main advantage
of DFP is that it can cross the BBB and chelate iron in cells in the brain [288]. However,
the binding ratio of DFP to iron is 3:1, which is lower than that of DFX to iron (2:1), so
DFP is less likely to consume stored iron in the body [287,289]. DFP tends to mechanically
cross the cell membrane, form complexes with iron, leave the cell and redistribute iron
to Tf for recycling [290,291]. Therefore, the use of iron chelators alone in the treatment of
neurological diseases is limited.

New forms of administration are being developed to reduce the side effects of DFO and
improve its ability to penetrate the BBB. A substantial body of preclinical evidence and early
clinical data has demonstrated that intranasal delivery of DFO and other iron chelators has
strong disease-modifying impacts in AD, PD and ischemic stroke [292]. Administration of
DFO to APP/PS1 mice through the nasal cavity significantly diminished iron-induced tau
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phosphorylation, APP expression and Aβ accumulation, improving the cognitive decline
in mice [293,294]. This result may be due to the inhibitory effect of DFO on iron-induced
tau phosphorylation through CDK5 and GSK-3β pathways [293], as well as upregulation
of HIF-1α expression via activation of the MAPK/P38 pathway and HIF-1α-mediated
regulation of iron metabolism [294]. This, then, ultimately decreased iron levels in the CA3
region of the hippocampus [294]. Intranasal drug delivery allows for direct targeting of
drugs to the brain, bypassing the BBB and minimizing systemic adverse effects [295,296].
Improvement in motor deficits and dopaminergic neuronal survival with non-invasive
intranasal delivery of DFO in 6-OHDA-induced PD has been reported [296]. Intranasal
administration of DFO decreased pathological α-synuclein formation at the terminal level
and slowed PD progression [292]. Intranasal administration targets DFO to the brain and
reduces systemic exposure; intranasal DFO has also been shown to prevent and treat stroke
damage after middle cerebral artery occlusion in rats [297].

Nanodrug delivery systems are also being used to increase the efficiencies of drugs
such as iron chelators in the brain to treat neurological diseases [298]. Targeted brain
delivery of rabies virus glycoprotein 29-modified DFO-loaded nanoparticles developed by
our team, which can cross the BBB through receptor-mediated endocytosis, significantly
increased entry of DFO into the brain and prolonged the half-life of DFO [92]. Administra-
tion of these nanoparticles significantly decreased iron content and oxidative stress levels
in the SN and striatum of PD mice and effectively reduced dopaminergic neuron damage
and reversed neurobehavioral deficits, without causing any overt adverse effects in the
brain or other organs [92]. DFO-loaded nanoparticles are also being investigated to target
decreased brain iron levels in AD and ischemic stroke.

5.3. Key Molecules of Brain Iron Metabolism as Targets

Studies have found that long-term use of iron chelators can cause side effects [279].
An increasing number of studies have been conducted on the regulation of key molecules
of iron metabolism in the brain as therapeutic targets. Experiments in SH-SY5Y cells
stably overexpressing the human APP Swedish mutation revealed that decreasing expres-
sion of the iron intake protein DMT1 can decrease iron flow into cells and, thus, reduce
Aβ secretion [299]. FtMt overexpression can restore Aβ-induced changes in iron and
iron-metabolism-related proteins and has a neuroprotective effect on Aβ-induced neuro-
toxicity [164]. Specifically, increasing the level of FtMt in the brain may be a novel strategy
to prevent or treat AD. CP overexpression in the brain of mice via injection of a Cp gene
plasmid into the lateral ventricle diminished brain iron and hippocampal cell apoptosis,
reducing Aβ-induced memory dysfunction in mice [159], providing a theoretical basis for
the development of CP as an effective treatment for AD. Conditional knockout of astrocyte
Cp significantly decreased brain iron levels; iron was deposited in BMVECs, resulting in
diminished iron levels in neurons and glial cells [14]. In terms of alleviating iron deposition
in the brains of elderly mice, astrocyte Cp knockout reduced tau phosphorylation and
Aβ deposition and alleviated ROS-MAPK-pathway-mediated apoptosis, thus improving
cognitive function [14]. Overexpression of hepcidin in astrocytes downregulated FPN1 in
BMVECs, inhibited iron entry into the brain [11], decreased iron levels in the brain and
neurons of APP/PS1 mice and reduced oxidative stress and neuroinflammation, ultimately
reducing neuronal cell death of APP/PS1 mice and alleviating the symptoms of AD [69,160].
Finally, overexpression of hepcidin in astrocytes delayed the pathological process of AD
and effectively improved the spatial cognitive ability of aged mice [69,160].

Overexpression of ferritin in dopaminergic neurons significantly decreased iron levels
in the SN and alleviated oxidative stress damage in dopaminergic neurons in MPTP-
induced PD models. Overexpression of ferritin heavy chain (FTH1) inhibits ferroptosis
and mitochondrial dysfunction in the 6-OHDA model of PD through decreased iron
accumulation and ferritinophagy [300]. Nrf2 knockout prevented entry of iron into the
brain, reduced ROS levels and apoptosis of dopaminergic neurons in the SN and improved
the exercise ability of elderly mice [111]. FtMt has been shown to inhibit erastin-induced
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ferroptosis by regulating iron homeostasis and reducing lipid peroxidation levels [301].
Overexpression of FtMt inhibits mitochondrial damage, decreases ROS generation and
lipid peroxidation and alleviates 6-OHDA-induced neuronal damage [107]. Overexpression
of FtMt suppresses MPTP-induced cell damage in PD by regulating iron metabolism and
attenuating oxidative stress [302].

Overexpression of FtMt attenuates cerebral I/R injury by inhibiting iron-mediated
ferroptosis [108]. Overexpression of FtMt enhances BBB integrity following ischemic stroke
in mice by maintaining iron homeostasis in endothelial cells [190]. FtMt alleviates apoptosis
by enhancing mitochondrial bioenergetics and stimulating glucose metabolism in cerebral
I/R [109]. Knockout of Fpn1 in BMVECs can significantly reduce the injury caused by
acute cerebral ischemia; the underlying mechanism has been linked to a reduction in iron,
oxidative stress and the inflammatory response and a reduction in iron-mediated cell death
and apoptosis [25]. Regulating the expressions of critical molecules in iron metabolism,
such as FtMt, CP and hepcidin, can effectively restore the brain iron homeostasis, reduce
ROS and, thus, alleviate the symptoms of AD, PD and stroke. Regulation of the expressions
of these critical molecules in brain iron metabolism is expected to be a potential new
therapeutic strategy for these diseases.

5.4. Iron Supplements

ID affects neurotransmitter homeostasis and neurodevelopment and has been linked
to the pathogenesis of neuropsychiatric diseases. The use of iron supplements is ex-
pected to play a positive role in these diseases. Intranasal administration of nanoliposome-
encapsulated FAC successfully increased brain iron content [303]. ID reduces cortical
plasticity and delays neurological recovery after ischemic stroke [201]. The use of iron sup-
plements can promote endogenous repair in ischemic stroke [201]. IRP knockout decreased
iron levels in embryonic stem cells and inhibited stem cell proliferation and differentiation
by increasing ROS production and decreasing iron–sulfur cluster proteins [8]. With iron
supplements, stem cells differentiated normally [8].

5.5. Antioxidants and Anti-Inflammatory Reagents Regulate Iron Metabolism as Targets

In addition to chelation of excess iron with iron chelators and maintenance of brain
iron homeostasis by regulating key molecules in brain iron metabolism, antioxidants
and anti-inflammatory reagents can also regulate iron metabolism and influence lipid
peroxidation and neuroinflammation, thus showing great potential in the treatment of
different neurological diseases.

Vitamin E treatment can reduce oxidative stress and lipid peroxidation, improve
mitochondrial function, attenuate intracellular iron accumulation and recover cell mor-
phology of fibroblasts in PLA2G6-associated neurodegeneration [304]. Melatonin is a free
radical scavenger and has the property of iron chelating, which can effectively inhibit iron-
overload-mediated oxidative stress and ameliorate oxidation/nitrosation injuries [305].
The iron levels, oxidative stress markers and inflammatory markers were determined and
compared in 40 PD patients and 46 controls. It was found that while the iron level was
disturbed in PD patients, the content of their antioxidants, such as plasma vitamin C, was
lower, and the oxidative stress and the inflammation levels were increased [306]. This
indicates that the low level of antioxidants is corrected with the production of free radicals,
leading to the neurodegeneration in PD [306]. On the contrary, increasing levels of the
antioxidant vitamin C may help improve neurological conditions. Coenzyme Q10 (CoQ10)
is a lipophilic antioxidant that can reduce lipid peroxidation levels [307]. Ferroptosis
suppressor protein 1 (FSP1) can catalyze the CoQ10 reduction to ubiquinol by NADPH,
restoring the antioxidative effects of CoQ10 [308]. The FSP1/CoQ10 pathway prevents
irreversible ferroptosis by reducing lipid peroxides [278]. A multicenter RCT was reported
to increase CoQ10 activity and slow the functional decline in PD [278,309]. Subsequent
larger clinical studies have shown that the treatment effect of CoQ10 in PD patients is
not obvious [278]. Therefore, optimizing the dosages and combinations of antioxidants



Antioxidants 2023, 12, 1289 21 of 34

and considering the potential interactions with other treatments are needed in developing
antioxidants as therapeutic strategies.

Tea flavonoids (catechins) have been reported to possess the activities of divalent
metal chelating, antioxidant and anti-inflammatory, with the advantage of penetration of
BBB [310], showing protective effects in different neurological diseases [311]. The bioactive
components of green tea, red wine, arctic root and dwarf periwinkle have been shown to
have neuroprotective, antioxidant, anti-inflammatory and iron-chelating potential. They
may treat neurological diseases at the cellular level by decreasing microglia activation,
attenuating damage from ROS, chelating iron and promoting cell growth [312].

To date, most of the research on different neurological diseases focuses on the manifes-
tations and pathogenesis of a single disease to study the treatment strategies. Drugs on
the market and in development also tend to target a single neurological disorder or symp-
tom, lacking the ability to explore the common causes of different neurological diseases.
The studies have shown that oxidative stress injury and ferroptosis of neurons caused by
dysregulation of brain iron metabolism are common issues in the occurrence and devel-
opment of different neurological diseases. Therefore, targeting brain iron metabolism and
designing drugs or therapeutic strategies for the common etiology of different neurological
diseases may reduce or inhibit the occurrence and development of these neurological
diseases at the source. However, targeting brain iron metabolism to treat these diseases
may also have shortcomings and face certain challenges. The insufficient targeting of
iron chelators to the brain may affect peripheral iron metabolism, leading to disorder in
the systemic iron metabolism and damage to peripheral organs. Moreover, the currently
identified targets that can regulate iron metabolism do not exhibit brain-specific expression
patterns, and most of them are still in the laboratory stage, lacking clinical data. Thus,
further explorations are needed to accurately target specific brain regions and improve
delivery efficiency. Therefore, further exploration is needed to accurately target specific
brain regions and improve delivery efficiency in the development of drugs that regulate
brain iron metabolism.

6. Conclusions and Prospects

In this review, we have summarized and elucidated the interplay between dysregula-
tion of iron metabolism, redox imbalance and different neurological diseases. We focused
on the mechanisms of iron-induced oxidative damage in disease pathogenesis and pro-
posed the broad application of targeting the regulation of brain iron metabolism to treat
neurological diseases. However, the current research faces certain challenges. The mecha-
nism of iron release from brain tissue is unknown, the specific iron metabolism pathways
in different nerve cells remain unclear and the role of oxidative stress in the induction of
neural damage is not fully understood. Furthermore, translational studies and clinical
trials on the optimal use of iron chelators and regulators in targeting iron metabolism in
neurological disease are relatively few. Untangling these issues in the future will aid in
our ability to better target the regulation of brain iron metabolism for the prevention and
treatment of neurological diseases.
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