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Abstract: Dermatitis is an inflammatory condition of the outer layer of the skin that causes itching,
blisters, redness, swelling, and often exudation, scabs, and peeling. Among them, purulent inflamma-
tion is a symptom that often occurs on the skin and appears in the form of boils and acne. Various
studies are being conducted to treat these inflammatory diseases. Accordingly, Lonicera japonica and
Citri Reticulatae Pericarpium Polyphenolic Extract (LCPE), which uses herbal preparations such as
Lonicera japonica, Citri Reticulatae Pericarpium, and Glycyrrhiza uralensis, has been used to suppress in-
flammation since ancient times, and its anti-inflammatory effect can be observed in skin keratinocytes
after inducing inflammation. In this study, the major polyphenolic compounds in LCPE were
quantitatively determined by analyzing the data through peak values using high-performance chro-
matography (HPLC-MS/MS) coupled with mass spectrometry. Additionally, bioactive compounds
targeting 2,2-diphenyl-1-picrylhydrazyl (DPPH) were analyzed by ultrafiltration integrated with
LC. Several compounds with the most significant effects were selected (chlorogenic acid, narirutin,
and isorhamnetin). Skin keratinocytes induced by lipopolysaccharide (LPS) were treated with LCPE
to show its anti-inflammatory effects. After LCPE treatment, inflammation-mediating cytokines
such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were decreased. In
addition, nuclear factor kappa (NF-кB) and mitogen-activated protein kinase (MAPK) were inhibited
in important pathways related to inflammation. Lastly, molecular modeling was performed to deter-
mine binding scores with inflammation-related proteins using molecular docking for the selected
compounds. According to these results, LCPE is effective in treating keratinocytes induced by LPS
and reducing inflammation and has potential antioxidant effects, and the polyphenol components
have been identified.

Keywords: HPLC-MS/MS; LCPE; antioxidant; anti-inflammation; keratinocytes

1. Introduction

Since the skin is an organ that plays an important role in protecting against various
types of external damage, the inflammatory response in the skin plays a particularly
important role in defense and homeostasis [1]. Dermatitis largely includes atopic, contact,
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and seborrheic types. Atopic dermatitis is an inflammatory disease caused by genetic
effects on proteins and immune cells constituting the skin. Contact dermatitis is itchy
because of contact with external substances and is characterized by inflammation of the
skin. Seborrheic dermatitis is an inflammatory skin disease that occurs in areas rich in
sebaceous glands [2,3].

Lonicera japonica and Citri Reticulatae Pericarpium Polyphenolic Extract (LCPE) is an
extract containing herbal ingredients such as Lonicera japonica, Citri Reticulatae Pericarpium,
and Glycyrrhiza uralensis, in addition to Taraxacum and Forsythia suspensa. Lonicera japonica
contains various active substances, such as saponins, flavonoids, tannins, and alkaloids,
and has excellent anti-inflammatory, antiviral, antitumor, and antioxidant effects [4]. The
citrus peel of Citri Reticulatae Pericarpium (Chenpi) contains many physiologically active
substances, such as flavonoids, which are especially abundant in tangerines. It reduces
stress and is effective for skin diseases such as purulent acne, eczema, and itching [5].
Glycyrrhiza uralensis also contains saponin or flavonoids; it is effective in anticancer, immune
regulation, and anti-inflammatory treatment and is an excellent medicine [6].

Prostaglandins (PGs) and free radicals, substances created by metabolism, are the
principal causes of oxidative and inflammatory stress [7]. Antioxidant action is mediated
by a variety of mechanisms, the main one of which is the suppression of reactive oxygen
species (ROS) generation. These include the generation of reactive oxygen species (ROS),
ROS removal, the activation of antioxidant defenses, or the suppression of defense-related
enzymes [8]. Inflammation is a kind of defense mechanism caused by various immune
responses and the activation of vascular cells when tissue damage or infection occurs [9].
This antioxidant effect is strongly related to the suppression of inflammatory responses
by preventing tissue damage. In particular, natural-compound-based antioxidants are
considered promising therapeutic agents for reducing oxidative stress by suppressing
free radical production [10]. Lipopolysaccharide (LPS) is a substance that forms the cell
membrane of Gram-negative bacteria. It acts as an intracellular toxin and stimulates
macrophages to activate NF-кB to induce inflammation [11]. When inflammation is induced
by LPS, inflammatory mediators such as nitric oxide (NO) and prostaglandin E2 (PGE2) are
activated [12]. In addition, inflammatory cytokines such as cyclooxygenase-2 (COX2) and
inducible nitric oxide synthase (iNOS) are also upregulated through the phosphorylation
of IкBα and P65 in the NF-кB pathway and the phosphorylation of JNK, ERK1/2, and P38
in the MAPK pathway [13].

Since molecular docking accurately predicts the shapes of protein–ligand binding sites,
it is frequently utilized for structure-based drug design and the prediction of functional sites
on protein molecules’ surfaces [14]. It is important that the scores displayed throughout
the docking process are not evaluated by determining the precise binding affinity. As a
result, the step of visually verifying structural binding is necessary to confirm the molecular
docking result [15].

In this study, first, the main polyphenol components of the complex extract were
identified, and polyphenol compounds contained in LCPE were identified through HPLC-
MS/MS for further study. The excellent antioxidant effect of the compound was confirmed
through the combination of HPLC with DPPH. Afterward, to confirm whether this LCPE
composite extract has an anti-inflammatory effect using HaCaT cells, a skin keratinocyte
cell line, inflammation was induced by LPS in order to confirm its potential as an excellent
dermatitis remedy candidate.

2. Materials and Methods
2.1. Plant Materials

For the experiments, plants from the hilly region of Geochang, Gyeongsangnam-do,
Korea, including Lonicera japonica and Glycyrrhiza uralensis, were employed. Citri Reticulatae
Pericarpium was collected from abandoned farms on Jeju Island. The harvested plants were
rinsed in water and then chopped and dried for 72 h in a 56 ◦C dry oven. After that, they
were kept at −20 ◦C in sealed polyethylene bags containing silica gel until usage.
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2.2. Reagents, Chemicals, and Standards

The DPPH (2,2-Diphenyl-1-picrylhdrazyl) reagent and standard compounds were
purchased from Sigma-Aldrich Corp (St. Louis, MO, USA, cas no. 1898-66-4). A centrifugal
ultrafiltration filter (YM-30) with a capacity of 30 kDa (Millipore Co., Ltd., Darmstadt,
Germany) was purchased. All other chemicals and solvents utilized were of analytical
grade (Duksan Pure Chemical Co., Ltd., Ansan, Republic of Korea). Fetal bovine serum
(FBS), phosphate-buffered saline (PBS), Dulbecco’s modified Eagle’s medium (DMEM), and
penicillin/streptomycin (P/S) antibiotics were acquired from Gibco (BRL Life Technologies,
Grand Island, NY, USA). Antibodies against COX-2 (cat. no. 12282S), iNOS (cat. no.
13120S), p65 (cat. no. 8242S), phosphorylated p65 (p-p65) (cat. no. 3033S), IкBα (cat. no.
4812S), phosphorylated IкBα (p-IкBα) (cat. no. 2859S), JNK (Jun N-terminal kinase) (cat. no.
9258S), phosphorylated JNK (p-JNK) (cat. no. 4671S), ERK (extracellular-signal-regulated
kinase) (cat. no. 4695S), phosphorylated ERK (p-ERK) (cat. no. 4370S), p38 (cat. no. 8690S),
phosphorylated p38 (p-p38) (cat. no. 9216S), and β-actin (cat. no. 3700S) were purchased
from Cell Signaling Technology (Danvers, MA, USA). Horseradish peroxidase-conjugated
secondary antibodies to anti-rabbit (cat. no. A120-101P) and anti-mouse (cat. no. A90-116P)
were purchased from Bethyl Laboratories, Inc. (Montgomery, AL, USA).

2.3. Extraction Process of LCPE and Purification of Polyphenol Components

Polyphenols were isolated from plants using a modified technique with LCPE [16].
Herbs such as dried lonicera flower 15 g, dandelion 10 g, citrus peel 10 g, forsythia fruit
10 g, and licorice 5 g were extracted with 4 L of 70% methanol for 4 days. The mixture
was filtered through Whatman qualitative No. 6 filter paper. A rotary evaporator (N-1110,
Eyela, Tokyo, Japan) operating at 100 revolutions per minute was used to concentrate the
mixture to 500 mL at reduced pressure and 45 ◦C. The concentrate was washed three times
with 500 mL of hexane to remove fatty particles. The remaining filtrate was extracted three
times with 250 mL of ethyl acetate. The residue was first dehydrated with MgSO4 and
then eluted with silica gel solvent (40 cm × 2.5 cm) and ethyl acetate to remove highly
polar substances. Under lower pressure, the solvent was condensed to produce a mixed
polyphenol powder and stored at −70 ◦C (1.4 g, 2.8% of dried raw plant materials).

2.4. HPLC and LC-MS/MS

HPLC and LC-MS/MS were carried out using a 3200 QTrap Tandem Mass System (Sciex
LLC) and a 1260 Series HPLC System (Agilent Technologies, Inc., Santa Clara, CA, USA) in
positive-ion mode with the spray voltage set to −4.5 kV. The gradient system was set at a
flow rate of 0.5 mL/min, and the solvents were DW and acetonitrile with 0.1% formic acid.
The analysis was performed using an analytical Prontosil C18 column from Phenomenex Co.,
Ltd., in Torrance, CA, USA (length: 250 mm; inner diameter: 4.6 mm; particle size: 5 µm).
The solvent conditions in the mobile phase were 0–10 min at 10–15% Acetonitrile (ACN),
10–20 min at 20% ACN, 20–30 min at 25%, 30–40 min at 40%, 40~50 min at 70%, 50–60 min at
95%, and 60–70 min at 95%. The analysis was conducted at a wavelength of 284 nm and 35 ◦C.
Peak areas acquired from UV and reference materials were used to calculate the amounts of
polyphenolic chemicals present.

2.5. DPPH-Binding HPLC Analysis for Measuring Main Antioxidant Activity of
Polyphenolic Compounds

Polyphenolic compounds (1250 µg/mL) and 0.2 mg/mL DPPH reagent were mixed
in a ratio of 1:1 (v/v) and reacted at room temperature for 15 min. The mixture was filtered
using a 0.45 m filter before being HPLC-analyzed, and methanol was used as a control in
place of the DPPH reagent. The content of the substance that reacted with DPPH could be
determined by examining the chromatographic peak values and standard curve values of
the samples and controls that underwent the DPPH reaction. Through this analysis, the
main antioxidant components among LCPE phenolic compounds were identified.
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2.6. Measurement of Anti-Inflammatory Effects
2.6.1. Cell Culture and Viability Assay

The skin keratinocyte HaCaT cells were obtained from the American Type Culture
Collection (ATCC) and were cultured in complete DMEM containing 10% FBS and sup-
plemented with 100 U/mL penicillin and 100 µg/mL streptomycin (P/S). The cells were
incubated at 37 ◦C in a humidified atmosphere containing 5% CO2.

HaCaT cells were seeded at a density of 1 × 104 cells per well in 96-well plates for
12 h. The cells were then treated with LCPE at concentrations of 0, 0.1, 0.25, 0.5, 0.75, 1, 1.25,
2, 2.5, 5, 7.5, and 10 µg/mL for 24 h, either with or without 1 µg/mL LPS (Sigma-Aldrich,
Merck KGaA, Burlington, MA, USA). Each well was treated with 10 µL of MTT solution
(5 mg/mL) before the cells were cultured for 4 h at 37 ◦C. DMSO was used to dissolve the
crystals of formazan that were insoluble. Lastly, each sample was analyzed in triplicate,
and the optical density (OD) value of each well was read at 450 nm using a microplate
reader (BioTek, Winooski, VT, USA).

2.6.2. Western Blot Analysis

HaCaT cells were seeded into 60 mm plates at a density of 1 × 106 cells per well and
treated with 0.25 and 0.5 µg/mL LCPE, with or without 1 µg/mL LPS (Sigma-Aldrich,
Merck KGaA, Darmstadt, Germany) for 24 at 37 ◦C in an incubator. Then, using ra-
dioimmunoprecipitation assay (RIPA) buffer (iNtRON Biotechnology in Gyeonggi, Korea)
that contained a protease inhibitor cocktail and a phosphatase inhibitor (Thermo Fisher
Scientific in Waltham, MA, USA), the incubated cells were lysed. Following the man-
ufacturer’s instructions, the bicinchoninic acid (BCA) assay (Thermo Fisher Scientific,
Waltham, MA, USA) was used to quantify the protein content of each cell lysate sample. In
10–15% Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis (SDS PAGE), equal
volumes of protein (10 µg) were isolated. The creation of polyacrylamide gels was fol-
lowed by their transfer to polyvinylidene fluoride (PVDF) membranes (ATTO Co., Ltd.,
Tokyo, Japan) using a semi-dry transfer system (JP/WSE-4040 HorizeBLOT 4M-R WSE-
4045; Atto Corp., Tokyo, Japan). Then, the membranes were blocked with EzBlockChemi
(ATTO Blotting System, Tokyo, Japan) for 2 h at room temperature. Membranes were
further incubated overnight at 4 ◦C with 1:1000-diluted primary antibodies. The mem-
branes were washed 5 times for 15 min with Tween 20 (TBS-T, pH7.4) and incubated with
1:5000-diluted anti-rabbit and anti-mouse antibodies (cat. no. A120-101P, Bethyl Labo-
ratory, Inc., Montgomery, TX, USA) for 3 h at room temperature. The membranes were
then rewashed using TBS-T 10 times for 2 h. The proteins were detected with enhanced
chemiluminescence (ECL) buffer (Bio-Rad, Hercules, CA, USA), and the images were
acquired using the ChemiDoc imaging system (Version 6.0, Bio-Rad Laboratories, Inc.,
Hercules, CA, USA) and analyzed using the Image Lab 4.1 (Bio-Rad) program. The loading
control was the β-actin protein, and Western blot images were quantified using the Image J
software (https://imagej.nih.gov/ij/download.html, U.S. National Institutes of Health,
Bethesda, MD, USA).

2.7. Molecular Docking Analysis

Molecular docking analysis was carried out by retrieving the protein structure from
PDB (https://www.rcsb.org/, accessed on 10 May 2023) using the search ID 4Q3J (NF-кB),
and the 3D compound structures of chlorogenic acid (Compound CID: 1794427), narirutin
(Compound CID: 442431), and isorhamnetin (Compound CID: 5281654) were downloaded
from PubChem (https://pubchem.ncbi.nlm.nih.gov/, accessed on 10 May 2023). With the
default settings, docking analysis was carried out using UCSF Chimera and AutoDock Vina.
The docking results were visualized using PyMOL and Discovery Studio (DeLano, 2002).
Total intermolecular energy and estimated free energy binding were used to calculate the
binding affinities.

https://imagej.nih.gov/ij/download.html
https://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov/
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2.8. Statistical Analysis

The data are expressed as the mean ± SEM. Software called GraphPad Prism (version
9.3.1; GraphPad Software, Inc.) was used to analyze the data. Statistical analysis was per-
formed using SPSS version 12.0 (SPSS Inc., Chicago, IL, USA). One-way factorial analysis of
variance (ANOVA) was used to determine whether there were significant differences between
the groups. Dunnett’s multiple-comparison tests were then conducted, and p <0.05 was
regarded as statistically significant (# p < 0.05, ## p < 0.01, ### p < 0.001 vs. untreated, positive
control group; * p < 0.05, ** p < 0.01, *** p < 0.001 vs. LPS-treated, negative control group).

3. Results and Discussion
3.1. Separation and Characterization of Polyphenols in LCPE

HPLC-MS/MS was used to perform both quantitative and qualitative analyses of the
compounds found in LCPE. A total of 13 peaks were obtained from the HPLC retention
times and UV-vis spectra (Figure 1). HPLC chromatography was used to identify the peaks
of 13 phenolic compounds at a wavelength of 248 nm. The 13 polyphenol compounds
were chlorogenic acid [17], sweroside [18], isoliquiritin [19], liquiritin [20], narirutin [21],
isochlorogenic acid A [22], quercitrin [23], isorhamnetin [24], isoliquiritigenin [25], arc-
tiin [26], kaempferol-3-O-rutinoside [27], hesperidin [28], and arctigenin [29]. The results
are based on fragmentation patterns. The 13 polyphenolic compounds were quantified
using mass spectrometry data from published sources, as shown in Table 1.
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Figure 1. The HPLC chromatograms of the phenolic compounds in LCPE. While the orange line rep-
resents the chromatogram following the reaction with the DPPH solution, the blue line represents the
initial chromatogram of LCPE before the reaction. The compounds detected at the 284 nm wavelength
are chlorogenic acid (1), sweroside (2), isoliquiritin (3), liquiritin (4), narirutin (5), isochlorogenic acid
(6), quercitrin (7), isorhamnetin (8), isoliquiritigenin (9), arctiin (10), kaempferol-3-O-rutinoside (11),
hesperidin (12), and arctigenin (13).

The following physiologically active compounds are results that can differ depending
on the growth conditions or the environment of the plant. However, this study focused
on characterizing the detected polyphenolic compounds. Polyphenols were identified
based on peaks and mass patterns of molecular ions, as determined by LC-MS/MS and
comparison with previously reported literature data [18–30]. The outcomes of predicting
the cleavage of compounds using LC-MS/MS data are shown in Figure 2.
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Table 1. The HPLC-MS/MS data of phenolic compounds from LCPE.

Peak
No. Rt (Min) Formula Compound UV Max [M + H]+ MS/MS

1 18.149 C16H18O9
Chlorogenic

acid 325, 250 355
181 (C9H8O4) [M + H-C7H10O5]+

163 (C9H6O3) [M + H-C7H10O5-H2O]+

135 (C8H6O2) [M + H-C7H12O6-CO]+

2 22.719 C16H22O9 Sweroside 245 359

197 (C10H12O4) [M + H-C6H10O5]+

169 (C9H12O3) [M + H-C6H10O5-CO]+

153 (C9H12O2) [M + H-C7H10O6-O]+

127 (C7H10O2) [M +
H-C7H10O7-C2H2]+

3 29.784 C21H22O9 Isoliquiritin 365, 235 419 257 (C15H12O4) [M + H-C6H10O5]+

4 31.097 C21H22O9 Liquiritin 275, 235 419
257 (C15H12O4) [M + H-C6H10O5]+

137 (C7H4O3) [M +
H-C6H10O5-C8H8O]+

5 34.840 C27H32O14 Narirutin 285, 220 581

435 (C21H22O10) [M + H-C6H10O4]+

419 (C21H22O10) [M + H-C6H10O4-O]+

273 (C15H12O5) [M +
H-C6H10O5-C6H10O4]+

6 36.749 C25H24O12
Isochlorogenic

acid A 330, 290 517

355 (C16H18O9) [M + H-C9H6O3]+

193 (C7H12O6) [M +
H-C9H6O3-C9H6O3]+

181 (C9H8O4) [M +
H-C9H6O3-C7H10O5]+

137 (C8H8O2) [M + H-C16H16O8-O]+

7 37.813 C21H20O11 Quercitrin 350, 260 449

303 (C15H10O7) [M + H-C6H10O4]+

273 (C14H8O6) [M +
H-C6H10O4-CH2O]+

181 (C8H4O5) [M +
H-C6H10O4-C7H6O2]+

153 (C7H4O4) [M + H-C13H16O6-CO]+

8 39.147 C16H12O7 Isorhamnetin 350, 255 317

302 (C15H9O7
-) [M + H-CH3]+

303 (C15H10O7) [M + H-CH3 + H]+

273 (C14H8O6) [M + H-CH2-CH2O]+

257 (C14H8O5) [M + H-CH2-CO-H2O]+

9 42.124 C15H12O4 Isoliquiritigenin 370, 240 257 137 (C7H4O3) [M + H-C8H8O]+

121 (C8H8O) [M + H-C7H4O3]+

10 44.192 C27H34O11 Arctiin 278, 225 535

557 (C27H34O11Na) [M + H + Na]+

373 (C21H24O6) [M + H-C6H10O5]+

137 (C8H9O2
+) [M +

H-C6H10O5-C12H15O4]+

11 44.805 C27H30O15
Kaempferol-3-
O-rutinoside 340, 270 595

449 (C21H20O11) [M + H-C6H10O4]+

287 (C15H10O6) [M +
H-C6H10O4-C15H10O6]+

12 49.781 C28H34O15 Hesperidin 280, 225 611
465 (C22H24O11) [M + H-C6H10O4]+

303 (C16H14O6) [M +
H-C6H10O4-C6H10O5]+

13 52.497 C21H24O6 Arctigenin 280, 230 373 237 (C14H16O4) [M + H-C8H8O2]+

137 (C8H8O2) [M + H-C13H16O4]+

Rt: retention time.
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3.2. Screening of Antioxidant Polyphenolic Compounds in LCPE

The search for potential antioxidant candidates present in LCPE was conducted using
DPPH-HPLC analysis. In general, the DPPH-radical-scavenging activity assay is used when
examining the antioxidant effect, which is useful for confirming the antioxidant activity
of complex compounds contained in natural products. The violet DPPH (2,2-Diphenyl-1-
picrylhdrazyl) reagent contains free radicals, which are removed by the hydrogen atom
of the antioxidant compound, and the electrons of the antioxidant provide electrons to
free radicals. The solution turns yellow due to the combination of the antioxidant and
DPPH reagent due to the mixing mechanism. At this time, the lower the binding force
between the hydrogen atom and the antioxidant and the lower the ionization energy of
the electrons of the antioxidant, the easier the electrons are transferred. These two are
important parameters for measuring antioxidant power [30]. According to the results of
HPLC-MS/MS obtained after DPPH bound to and reacted with LCPE, as shown in Figure 1,
LCPE contains various bioactive substances that change. In Table 2, the change in the peak
area value represents the competitive reaction of the compound with DPPH. In addition, in
the reaction with DPPH, the difference in peak area values before and after DPPH binding
indicates higher radical-scavenging activity.

Table 2. Screening of antioxidant potential of LCPE compounds.

Peak
No. Compound Initial Area (mAU) Area after DPPH

Reaction (mAU) Reactive Area (mAU)/(%)

1 Chlorogenic acid 19,594.67 ± 49.94 K 14,339 ± 7767 L 5255.67 ± 77.66 J

(26.82 ± 0.38 D)

2 Sweroside 2307.67 ± 51.94 D 1852 ± 50.03 E 455.67 ± 40.80 C

(19.74 ± 1.61 B)

3 Isoliquiritin 3051.33 ± 44.38 E 2360 ± 37.04 F 691.33 ± 56.08 D

(22.65 ±1.62 C)

4 Liquiritin 4449.67 ± 37.90 F 3428 ± 54.67 G 1021.67 ±22.01 E

(22.96 ± 0.64 C)

5 Narirutin 15,566.33 ± 16.62 J 11,835.33 ± 36.47 K 3731 ± 22.72 I

(23.97 ± 0.17 C)

6 Isochlorogenic acid A 14,661.67 ± 23.03 I 11,223.67 ±76.23 J 3438 ± 54.15 H

(23.45 ± 0.40 C)

7 Quercitrin 8555.67 ± 76.84 G 6594.67 ± 49.69 H 1961 ± 44.44 F

(22.92 ± 0.38 C)

8 Isorhamnetin 10,751.67 ± 14.57 H 7582.67 ± 25.40 I 3169 ± 37.03 G

(29.47 ± 0.31 E)

9 Isoliquiritigenin 731.33 ± 5.69 A 660.67 ± 6.43 B 70.67 ±3.79 A

(9.66 ± 0.51 A)

10 Arctiin 757.33 ± 28.02 A 587 ± 9.17 A 170.33 ± 19.22 B

(22.45 ± 1.70 C)

11 Kaempferol-3-O-rutinoside 946.33 ± 29.01 B 756.33 ± 25.58 C 190 ± 11 B

(20.08 ± 1.02 B)

12 Hesperidin 2278.67 ± 13.28 D 1855 ± 14.73 E 423.67 ± 27.59 C

(18.59 ± 1.10 B)

13 Arctigenin 2160 ± 16.52 C 1737.33 ± 8.14 D 422.67 ± 8.74 C

(19.57 ± 0.26 B)

All values are mean ± SD (n = 3). A–L Means with different superscripts in the same column are significantly
different at p < 0.05 by Duncan’s multiple range tests. Also tested in the same column based on superscript A.
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In Table 2, the antioxidant effect can be confirmed through the difference between the
initial peak area value of each polyphenol compound in LCPE and the area value after
the DPPH reaction. Chlorogenic acid showed the largest reaction area with 5255.67 mAU,
but isorhamnetin had the reaction area value with the highest change rate of 29.47%.
Chlorogenic acid and narirutin followed with 26.82 and 23.9%, respectively. First of all,
chlorogenic acid is a plant polyphenol present in coffee, tea, and herbs and is known to
have anti-inflammatory effects by relieving oxidative stress and regulating a number of
important metabolic pathways [31]. Narirutin is also a flavanone, a natural phytochemical
that is abundant in citrus peels and has anticancer, neuroprotective, antioxidant, and anti-
inflammatory effects [32]. Isorhamnetin is also known to have anti-inflammatory and
antioxidant effects through the regulation of various pathways [33].

These results suggest that three compounds (chlorogenic acid, narirutin, and isorham-
netin) account for the main antioxidant activity of LCPE. Among them, isorhamnetin,
chlorogenic acid, and narirutin, which have high area ratios after the reaction, appear to
have more effective antioxidant activity.

3.3. Anti-Inflammatory Effects of LCPE

Free radicals caused by various biological and environmental factors cause inflamma-
tory diseases and increase the production of ROS in damaged areas due to increased oxygen
absorption by leukocytes and mast cells in the inflammatory response [10]. Based on the
antioxidant effect of this LCPE, we confirmed an additional in vitro anti-inflammatory
effect. To identify various anti-inflammatory factors of LCPE for dermatitis, a model in
which inflammation was induced by treating skin keratinocytes with LPS was used. Al-
lergic and atopic skin diseases appear as an inflammatory response due to an excessive
immune response. Since keratinocytes are closely related to the immune response, the
anti-inflammatory effect of LCPE was confirmed using a model in which inflammation was
induced by LPS in HaCaT cells [34].

3.3.1. Effects of LCPE on HaCaT Cell Viability

The 3-(3,4-dimethyl-thiazolyl-2)-2,5-diphenyl tetrazolium bromide (MTT) assay was con-
ducted on HaCaT keratinocytes to assess the cytotoxicity of the extract (Figure 3A,B). LCPE
was used to treat HaCaT cells at concentrations of 0, 0.1, 0.25, 0.5, 0.75, 1, 1.25, 2.5, 5, 7.5, and
10 µg/mL for 24 h with or without 1 µg/mL LPS. Figure 3A demonstrates the non-toxicity
of the extract at concentrations of 0.25 and 0.5 µg/mL. Therefore, those doses were used in
subsequent experiments, as they were not thought to be cytotoxic to HaCaT cells.

3.3.2. Inhibition of COX2 and iNOS Expression in LPS-Induced HaCaT Cells by LCPE

LPS releases various inflammatory cytokines through the activation of MAPK and NF-
кB. Among them, iNOS is a representative of pro-inflammatory enzymes that produce nitric
oxide (NO) [11,35]. COX2, when stimulated by LPS, acts as an inducer of arachidonic acid
conversion and is an enzyme that produces prostaglandins that cause inflammation. It is
transcribed through the MAPK or NF-кB pathway due to inflammatory stimulation [36,37].

Western blotting was employed to examine the impact of LCPE on the expression of
two pro-inflammatory cytokines (COX2 and iNOS) on HaCaT cells (Figure 3C,D). Addi-
tionally, Figure 4 shows that HaCaT cells that had been exposed to LPS expressed COX-2 at
much higher levels. The expression of COX-2 was, however, markedly downregulated in
LPS-induced HaCaT cells after LCPE treatment at concentrations of 0.25 and 0.5 µg/mL.
These findings indicate that LCPE suppresses COX-2 expression in LPS-induced groups.

3.3.3. Inhibition of NF-кB Pathway in LPS-Induced HaCaT Cells by LCPE

NF-кB is a family of transcription factors that play pivotal roles in regulating genes
involved in various processes in the immune and inflammatory responses [38]. In the
inflammatory response, NF-кB plays a role in regulating the activation of inflammatory T
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cells or differentiation; NF-кB activation induces chronic inflammation, and regulating this
pathway is a key part of the treatment strategy for inflammatory diseases [39].

Also, LCPE’s effect on NF-кB (IкBα and P65) expression in HaCaT cells was investi-
gated by Western blot analysis (Figure 4A,B). The phosphorylation of IкBα was significantly
reduced in LPS-induced HaCaT cells after LCPE treatment at concentrations of 0.25 and
0.5 µg/mL. Also, the phosphorylation of P65 was reduced at a high concentration. It can
be seen that inflammation is inhibited through the NF-кB pathway as a result of LCPE
treatment in HaCaT cells in which inflammation was induced by LPS.
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3.3.4. Inhibition of MAPK Pathway in LPS-Induced HaCaT Cells by LCPE

The mitogen-activated protein kinase (MAPK) pathway is involved in proliferation,
differentiation, and cell survival and also plays an important role in the inflammatory
response, causing the release of inflammatory cytokines due to the increased expression of
target genes through transcription factors such as AP-1 [40]. Extracellular-signal-regulated
kinase 1/2 (ERK1/2), c-Jun NH-2-terminal kinase (JNK), and p38-MAPK are important
proteins involved in the MAPK pathway [41].

The expression of phosphorylated proteins (ERK1/2, JNK, P38) related to the MAPK
pathway was observed through Western blot analysis by applying LCPE treatment at 0.25
and 0.5 µg/mL to HaCaT cells inflamed with LPS (Figure 4C–E). The phosphorylation
of ERK1/2 was inhibited in LPS-induced HaCaT cells after LCPE treatment at a high
concentration of 0.5 µg/mL. In addition, the phosphorylation of p38 was significantly
reduced at concentrations of 0.25 and 0.5 µg/mL. The phosphorylation of JNK decreased
in concentration, but it was not significant. In the MAPK pathway, ERK1/2 responds to
inflammatory stimuli, but JNK and p38 are activated in response to inflammatory stimuli
and the cellular stress environment [42]. Of course, the downregulation of phosphorylated
ERK1/2, JNK, and p38 was confirmed, but a significant decrease in relative p-p38 indicates
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an inflammatory effect, likely due to environmental stress, growth factors, and cytokines,
as well as inflammatory stimuli.

Following antioxidant experiments, additional anti-inflammatory experiments con-
firmed that the phosphorylation of COX2 and iNOS, which are representative inflamma-
tory factors, was suppressed, and the phosphorylation of MAPK- and NF-кB-pathway-
related factors involved in inflammation was also suppressed in inflammation-induced
keratinocytes (Figure 5).
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3.4. Molecular Docking of Chlorogenic Acid, Narirutin, Isorhamnetin, and Isoliquiritigenin with NF-кB

Chlorogenic acid, narirutin, and isorhamnetin are candidate polyphenolic compounds
that are considered to have high peak-area change ratios and to have antioxidant effects
based on the results of DPPH-binding HPLC (Table 2). Isoliquiritigenin, which had the
lowest peak-area change rate, as reported in Table 2, and three compounds (chlorogenic
acid, narirutin, and isorhamnetin) were compared and analyzed through molecular docking
with NF-кB, a representative anti-inflammatory factor.

The UCSF Chimera program was used to analyze ligand–protein docking. Figure 6A
shows that the active site is occupied by chlorogenic acid and NF-кB. It has also been
demonstrated that several active sites facilitate ligand binding. The following molecules
were found to be active sites in the binding of NF-кB to chlorogenic acid: ARG237, ASN240,
GLU233, PHE146, and TYR227 (Table 3). It was discovered that the molecular binding
energy score was −6.6 kcal/mol.
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Table 3. Molecular docking studies of chlorogenic acid, narirutin, isorhamnetin, and isoliquiritigenin
with NF-кB complex and their binding energies.

Binding Ligand Amino Acid Residue That Interacts Docking Score

Chlorogenic acid ARG237, ASN240, GLU233, PHE146,
TYR227 −6.6 kcal/mol

Narirutin ARG237, CYS149, GLU233, LEU236,
PRO147, TYR227 −7.4 kcal/mol

Isorhamnetin ARG232, ALA228, CYS149, TYR227,
LEU236 −7.5 kcal/mol

Isoliquiritigenin ARG237, PHE146, PRO147 −6.0 kcal/mol

Figure 6B shows that the active site is occupied by narirutin and NF-кB. It has been
proven that a number of active sites promote ligand binding. The binding of NF-кB to
narirutin was discovered to involve the following molecules as active sites: ARG237,
CYS149, GLU233, LEU236, PRO147, and TYR227 (Table 3). The docking result for narirutin
showed higher binding strength with the binding site than chlorogenic acid, and the
molecular binding energy score was −7.4 kcal/mol.

Isorhamnetin and NF-кB are present at the active site, as shown in Figure 6C. Addi-
tionally, it has been proven that a number of active sites promote ligand binding. The
following molecules were found to be active sites in the binding of NF-кB to isorham-
netin: ARG232, ALA228, CYS149, TYR227, and LEU236 (Table 3). The docking result for
isorhamnetin was similar to that of narirutin, but the molecular binding energy score
was −7.5 kcal/mol, the highest.

As seen in Figure 6D, the active site contains isoliquiritigenin and NF-кB. It has
also been demonstrated that many active sites promote ligand binding. The binding of
isoliquiritigenin to NF-B was discovered to involve the following molecules as active
sites: ARG237, PHE146, and PRO147 (Table 3). The molecular binding energy score
was −6.0 kcal/mol. It was lower than those of the other three polyphenolic compounds
(chlorogenic acid, narirutin, and isorhamnetin).

The docking scores of three polyphenolic compounds (chlorogenic acid, narirutin, and
isorhamnetin) were higher than that of isoliquiritigenin. This suggests that, in addition
to their antioxidant effects, these three compounds would be sufficient anti-inflammatory
candidates in terms of anti-inflammatory-related molecular structure binding.

As mentioned earlier, it is important to keep in mind that the outcomes of the molecular
docking procedure are not evaluated by determining the precise binding affinity. Here, the
absolute docking result value is meaningless, and comparing the outcome values between
structures is the key purpose. Additionally, even when a high value is attained, there are
instances where the binding structure does not truly bind, so the molecular docking result
unavoidably calls for visually verifying structural binding [15].

Based on these results, docking scores were obtained for the binding of the polyphenol
compounds in LCPE that had the most significant effect on anti-inflammatory-related
proteins. These docking results suggest that LCPE, containing a variety of herbal extracts,
has strong antioxidant and also anti-inflammatory effects. Furthermore, we suggest that it
can be an effective drug for dermatitis according to the predicted docking data, as well as
in vitro results.

4. Conclusions

LCPE is a complex extract in which various medicinal materials are mixed. In the
complex extract called LCPE, polyphenol compounds were confirmed, and antioxidant
and anti-inflammatory effects were observed. Clearly, each compound has antioxidant and
anti-inflammatory effects, but synergistic effects of the various polyphenolic compounds
are also to be expected.
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In this study, the polyphenol compounds in LCPE were identified, and through a com-
bined analysis based on DPPH and HPLC, compounds with the potential to have high
antioxidant activity were identified. In addition, through the molecular docking of representa-
tive inflammation-related receptors, NF-кB, and the compounds, it was confirmed that the
components of LCPE had a significantly high binding score in terms of structural binding.

Therefore, the composition of polyphenolic compounds in these complex extracts,
their antioxidant effects, their anti-inflammatory effects on skin inflammation, and their
molecular structural binding suggest that LCPE is a potential drug for various inflammation-
related pathways, with structural affinity and antioxidant effects. The results also suggest
that it could be a promising and predictable drug model for treating purulent dermatitis
and reducing inflammation.
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