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Abstract: Chronic neurodegenerative diseases are typically associated with oxidative stress condi-
tions leading to neuronal cell death. We aimed to investigate the neuroprotective effect of three
pyranocoumarins (decursin, decursinol angelate, and decursinol) targeting oxidative stress factors.
Decursin (also known as dehydro-8-prenylnaringenin) is a prenylated coumarin compound consist-
ing of a coumarin ring system with a prenyl group attached to one of the carbons in the ring. As a
secondary metabolite of plants, pyranocoumarin decursin from Angelica gigas Nakai presented pro-
tective effects against glutamate-induced oxidative stress in HT22, a murine hippocampal neuronal
cell line. Decursinol (DOH) is a metabolite of decursin, sharing same coumarin ring system but a
slightly different chemical structure with the prenyl group replaced by a hydroxyl group (-OH). In
our findings, DOH was ineffective while decursin was, suggesting that this prenyl structure may
be important for compound absorption and neuroprotection. By diminishing the accumulation of
intracellular reactive oxygen species as well as stimulating the expression of HO-1, decursin triggers
the self-protection system in neuronal cells. Additionally, decursin also revealed an anti-apoptotic
effect by inhibiting chromatin condensation and reducing the forming of annexin-V-positive cells.

Keywords: Angelica gigas; decursin; glutamate; HT22 cell line; neuroprotection

1. Introduction

Neurodegeneration-related diseases are defined by the dysfunction or loss of neurons
in the central nervous system resulting in dementia or ataxia. Therein, the vulnerable
adult hippocampal neurogenesis (AHN) were reported as elevated factor of neuronal
dysfunction in age-related diseases [1]. Losing their memory and social cognition can
put the patients’ life at risk [2]. The popular neurodegenerative disorders that have been
studied are Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS),
and amyotrophic lateral sclerosis (ALS) [3]. Among them, Alzheimer’s disease represents
60–70% of diagnosed dementia cases in elderly populations worldwide [4]. Since neu-
rodegenerative diseases appear to have no current available treatment, early diagnosis
and optimizing physical health and abnormal psychological symptoms are the goals of
neurological disorder therapies.

Besides genetic factors, most neurodegenerative diseases are consequences of neuronal
toxicity or oxidative stress. The accumulation of products of aerobic respiration called
reactive oxygen species (ROS) causes lipid peroxidation, following by cell membrane
and lipoprotein damage. Therefore, endogenous ROS scavengers play a very important
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role in neuroprotection. Some of the endogenous antioxidant enzymes that are directly
regulated by the nuclear factor Nrf2 signaling pathway are heme oxygenase-1 (HO-1) and
glutathione (GST) [5]. Oxidative stress leads to the translocation of Nrf2 from the cytosol to
the nucleus, activating the antioxidant response element (ARE) to trigger the transcription
of cytoprotective genes including HO-1 [6]. Heat shock proteins (HSPs) and immediate
early genes (IEGs) are the stress proteins induced in response to cellular stress. HSPs are
involved in chaperone functions that prevent incorrect protein folding and aggregation [7].
HSP32, together with HSP27 and HSP70, are the three main HSPs that respond to brain
injuries [8]. Heme oxygenase-1 (HO-1; also known as HSP32) is another heat shock protein
which takes part in the inflammatory mediation consisting of neuroinflammation in the
central nervous system. Oxidative stress with an excess of ROS is one of the common
factors that induces the HO-1 response [9].

Moreover, when xenobiotics such as foods, medicines or chemicals are unexpectedly
present in individuals’ bodies, they will become targets of endogenous enzyme metabolism
as a protective response. This response is carried out by three groups of enzymes which are
known as drug metabolizing enzymes (DMEs). While phase I group is in charge of xenobi-
otic oxidization and hydrolyzation, phase II enzymes conjugate or degrade the metabolites,
and phase III is responsible for the excretion of these metabolites [10]. Hence, phase II
of drug metabolism plays a key role in the whole endogenous protective procedure [11].
Therein, the Nrf2/ARE pathway has been proven to be a major regulator of the phase
II group which can be induced by products of phase I [12]. Nrf2 activities in neurons
were reported to emerged with certain enzymes in phase II consisting of detoxifying en-
zyme HO-1 and NAD(P)H: quinone oxidoreductase (NQO1) acting as neuroprotective
antioxidants [13]. These mechanisms protect physical health from acute neurological and
neurodegenerative diseases.

Natural compounds from medicinal plants are considered potential candidates for
the prevention and supportive treatment of neurodegenerative diseases [14]. The neuro-
protective effects of natural compounds have been demonstrated in various mechanisms
including free radical scavenging activities and anti-apoptotic/necrosis signaling path-
ways. Many phytochemicals presented neuroprotective effects in previous research such
as curcumin [15], kaempferol [16], quercetin, epigallocatechin gallate [3], polygeline [17],
and gartanin [18]. Angelica gigas Nakai belonging to Apiaceae family is a biennial plant and
classified as a short-lived perennial plant. The root of A. gigas was used in oriental medicine
for the treatment of anemia, migraine headaches, arthritis, injuries, and gynecological
diseases [19]. The main bioactive components of A. gigas roots that have been studied are
coumarins, polyphenols, phthalides, essential oils, and polysaccharides [20]. Therein, the
pyranocoumarins from A. gigas have been found to have many pharmacological properties
like anti-inflammatory [21,22], anticancer [20,23–25], and neuroprotective properties [26–28].
Pyranocoumarins also act as free radical scavengers in human blood [29,30].

Previous work from Lee et al. proved the neuroprotective effect of the root of Angelica
gigas Nakai (Apiaceae) on a mouse stroke model [31]. In the present study, we aimed to
investigate this effect of three pyranocoumarins (decursin, decursinol angelate (DA), and
decursinol (DOH)) which were prepared from the roots of A. gigas (as described in the
materials and methods) on glutamate-induced apoptosis in HT22 murine hippocampal
neuronal cells. Although playing a critical role in brain functions as an excitatory neuro-
transmitter of the central nervous system, an overbalance of glutamate release induces
excitotoxicity and oxidative stress, which leads to neuronal cell death [32]. Programmed
cell death, apoptosis, is characterized by changing chromatin from a heterogeneous active
form to an inert, highly condensed form and genomic DNA fragmentation. Together with
cell membrane blebbing, these hallmarks of the terminal stages were applied for apop-
tosis research [33]. The intracellular ROS level, chromatin condensation, and apoptotic
annexin V-positive cells were evaluated to check the efficacy of A. gigas Nakai-extracted
compounds in inhibiting apoptotic neuronal cell death. Biomarker expression levels were
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also assessed to clarify the underlying protective mechanism of these bioactive compounds
on glutamate-induced neurotoxicity.

2. Materials and Methods
2.1. Materials

The experimental reagents and HPLC-grade solvents were obtained from Sigma
Aldrich (St. Louis, MO, USA). The Angelica gigas Nakai was purchased from Hamyang-gun,
Gyeongsangnam-do.

2.2. Extraction of Angelica gigas Nakai

Ground Angelica (100 g) was extracted for 24 h with 0.3 L of 95% ethanol at room
temperature and filtered. The extract was incubated at−20 ◦C for 10 h and then centrifuged
at 5000 rpm for 10 min, and then ethanol was evaporated. To obtain a final decursin (JP-203)
and DA (JP-204) mixture of 3 g, the residue was vortexed with 60% ethanol of 0.5 L and
eluted [34].

2.3. Separation of Decursin (JP-203) and DA (JP-204)

The extracted decursin (JP-203) and DA (JP-204) mixture was separated by recycling
HPLC. The column used was a JAIGEL ODS-AP (20 × 500 mm). A 0.01% formic acid in
70% acetonitrile solution was used as the mobile phase. The oven temperature was set at
30 ◦C. The flow rate was 5 mL/min. The wavelength of the UV detector was 329 nm [34].
The JP-203 and JP-204 mixtures were made at a 15–17% concentration.

2.4. The Conversion of Decursin (JP-203) and DA (JP-204) to DOH (JP-202)

Lithium hydroxide was added to the mixture of decursin (JP-203) and DA (JP-204) in
a tetrahydrofuran: H2O (4:1) solution while stirring at room temperature. Tetrahydrofuran
was removed by decompression. The pH of the aqueous layer was adjusted to pH 4
and then extracted with ethyl acetate. The residue of the solvent after evaporation in
vacuo was purified in silica gel with flash column chromatography to obtain DOH (JP-202)
(12–16%) [35].

2.5. HPLC Analysis

The employed HPLC equipment was a Thermo Scientific UltiMate 3000 HPLC with
Chromeleon 7. Phages separations were performed using an Agilent C18 column (4.6 ×
250 mm, 5 µM). The flow rate was adjusted to 1.0 mL/min. Also, the detection wavelength
was 330 nm. Water (solvent A) and 95% acetonitrile (solvent B) were used as the mobile
phase. The gradient elution protocol was as follows: 0–0.1 min, 80:20; 0.1–15 min, 10:90;
15–16 min, 80:20; 16–18 min, 80:20 [36].

2.6. Cell Culture

The HT22 murine hippocampal neuronal cells were acquired from ATCC and cultured
in Dulbecco’s Modified Eagle Medium (Corning, Manassas, VA, USA) supplemented
with 10% fetal bovine serum (Atlas Biologicals, Fort Collins, CO, USA) and 100 units/mL
penicillin and 100 mg/mL streptomycin (P/S) (Gibco, Grand Island, NY, USA). Cells were
maintained in an incubator with a 37 ◦C humidified atmosphere and 5% CO2. The cell
confluency was evaluated every two days.

2.7. Cell Viability Assay

HT22 cells were grown in 96-well plates at a density of 1 × 104 cells/well for 24 h.
Then, the cells were treated with test samples (JP-202, JP-203, and JP-204) at varying
concentrations (3.125, 6.25, 12.5, 25, and 50 µM) to evaluate their protective effect against
cell death induced by 5 mM glutamate. After 24 h of treatment, to determine cell viability,
10 µL EZ-Cytox assay reagent (DoGen, Seoul, Republic of Korea) was added to every single
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well and incubated for 1–4 h. The colorimetric absorbance was measured at 450 nm with a
microplate reader (PowerWave XS; Bio-Tek Instruments, Winooski, VT, USA).

2.8. Hoechst 33342 Staining

A density 2 × 105 cells/well of HT22 cells were seeded into 6-well plates for 24 h.
After that, the cells were exposed to 25 µM of JP-203 for 12 h in the presence or absence of
5 mM glutamate. Then, the cells’ chromatin was marked with Hoechst 33342 and chromatin
condensation was observed by fluorescence microscopy.

2.9. ROS Assay

HT22 cells were cultivated in 96-well plates the day before and then treated with
5 mM glutamate and JP-203 at 25 and 50 µM for 8 h. After that, the cells were stained with
10 M 2′,7′-dichlorodihydrofluorescein diacetate (H2DCF-DA) to detect the accumulation
of ROS. The fluorescence intensities were measured by a fluorescence microplate reader,
with 488 nm excitation and 525 nm emission fluorescent peaks.

2.10. Western Blotting Analysis

HT22 cells were seeded into 6-well plates at 2× 105 cells/well for 24 h and then treated
with JP-203 at 25 and 50 µM in the presence or absence of 5 mM glutamate. After 6 h, cell
pellets were collected and washed with DPBS. RIPA buffer supplemented with protease
inhibitor cocktail (1X) was added to obtain whole-cell protein extracts according to the
manufacturer’s instructions. The protein concentration of the cell extracts was evaluated
using the Pierce™ BCA Protein Assay Kit (Thermo Scientific, Waltham, MA, USA).

Each 10 µg of extracted samples was separated by SDS-PAGE and blotted onto
PVDF transfer membranes. The primary antibodies included HO-1 and glyceraldehyde
3-phosphate dehydrogenase (GAPDH) (Cell signaling Technology, Danvers, MA, USA) and
horseradish peroxidase (HRP)-conjugated secondary antibodies (Cell Signaling, USA) were
used to label the target proteins. The blots were developed using PierceTM ECL Advance
Western Blotting Detection Reagents (Thermo Scientific, Waltham, MA, USA) and detected
with FUSION Solo Chemiluminescence System (PEQLAB Biotechnologie GmbH, Erlangen,
Germany).

2.11. TALI Assay

The hippocampal HT22 cells were plated in 6-well plates at a population of 2× 105 cells/well
for 24 h. Next, the cells were treated with 5 mM glutamate and JP-203 at the indicated
concentration (25 and 50 µM). After 12 h, cell pellets were collected and washed in DPBS.
The cells were later stained with annexin V–Alexa Fluor 488 to measure apoptosis and
propidium iodide to count the number of dead cells.

2.12. Statistical Analysis

The bar graphs show the mean ± standard deviation (SD). Statistical significance was
determined using Student’s t-tests. p ≤ 0.05 was considered statistically significant.

3. Results
3.1. Decursin (JP-203) and Its Derivatives Isolated from A. gigas Protected HT22 Cell from
Glutamate-Induced Cell Death

The neuroprotective effect of pyranocoumarins and its derivatives from A. gigas
roots were first evaluated through cell cytotoxicity assays measuring glutamate-induced
murine hippocampal neuronal HT22 cell death. The cells were cultured for 24 h and
exposed to glutamate, decursinol (JP-202), decursin (JP-203), and decursinol angelate
(JP-204) compounds. While glutamate treatment induced neuronal apoptosis of HT22
cells, treatment with the other compounds appeared to have no effect on cell viability.
Moreover, the JP-203 and JP-204 co-treated with glutamate groups presented a significant
recovery from apoptotic induction. As shown by the results, the exposure of HT22 to 5 mM
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glutamate diminished the number of living cells to 24.26 ± 0.73% while treatment with
pyranocoumarin compounds recovered the cell numbers in a dose-dependent manner
(Figure 1).
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Figure 1. Protective effects of pyranocoumarins extracted from A. gigas on HT22 cell death induced
by glutamate. HT22 cells were cultured in 96-well plates at a density of 1 × 104 cells/well. After
24 h, cells were treated with test samples at a range of concentrations (3.125–50 µM) to evaluate their
protective effects against cell death induced by 5 mM glutamate. The EZ-Cytox assay was employed
to determine cell viability 24 h after the treatment. (*) p < 0.05 vs. glutamate-treated group indicates
significant difference.

Of the different treatments, treatment with JP-203 at concentrations of 12.5 and 25 µM
significantly improved the cell viability to 70.78 ± 3.27% and 82.95 ± 2.81%, respectively,
compared to the induced group. Moreover, JP-204, an isomer of JP-203, also rescued the
cells at a dose of 50 µM. However, JP-202 showed no effect on HT22 cell viability with or
without apoptosis induction.

3.2. Decursin (JP-203) Prevented the Oxidative Stress-Induced Chromatin Condensation and
Neuroinflammation in HT22 Cells Treated with Glutamate

To examine the protective effect of decursin on HT22 neural cells, we conducted four
groups of in vitro tests including non-treatment, glutamate-induced apoptosis, JP-203 only,
and glutamate and JP-203 co-treatment groups. The morphology examination in bright
field images (Figure 2A) revealed that cell death condition after glutamate exposure was
recovered in the JP-203 co-treated group. The Hoechst 33342 staining was applied for
condensed chromatin determination. According to the fluorescence microscopic images
(Figure 2B), treatment with decursin (JP-203) at a concentration of 25 µM clearly attenuated
the chromatin condensation of glutamate-induced HT22 cell death. The amount of con-
densed DNA (yellow arrow) with brighter and smaller shapes than normal nuclear DNA,
was lower in the JP-203 co-treated group in comparison with the control group.

Oxidative stress triggers neuronal cell death through both the necrotic and apoptotic
signaling pathways. Excessive glutamate in the central nervous system leads to oxidative
stress which is characterized by the accumulation of intracellular free radicals [37]. We
performed ROS assays with four experimental groups including non-treatment, glutamate,
JP-203, and glutamate and JP-203 co-treated groups. The ROS level was investigated
by fluorescent intensity of H2DCF-DA. As a result, treatment with decursin successfully
diminished oxidative stress through a reduction in ROS accumulation, which was sharply
induced by glutamate, to normal levels (Figure 3A).
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orescence microscopy. The yellow arrow indicates condensed chromatin. Scale bar indicates 20 µm.
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Figure 3. The protective effect of JP-203 on oxidative stress resulting from excessive glutamate in HT22
cells. (A) JP-203 diminished the accumulation of intracellular ROS in HT22 cells which was stimulated
by glutamate. HT22 cells were incubated with 5 mM glutamate and JP-203 compound at concen-
trations of 25 and 50 µM. After 8 h, cells were stained with 10 µM 2′,7′-dichlorodihydrofluorescein
diacetate (H2DCF-DA) to detect the accumulation of ROS. (B) JP-203 stimulated the expression of
HO-1. Cells were treated with JP-203 at the indicated concentrations in the presence or absence
of glutamate for 6 h and then total protein was collected for Western blotting analysis. The target
proteins were detected by conjugation with epitope-specific primary and secondary antibodies.
(C) The quantitative graph of relative expression levels of HO-1 to GAPDH from the Western blot
analysis. (*) p < 0.05 vs. glutamate-treated group; (#) p < 0.05 vs. non-treated group.
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Moreover, Western blot analysis was performed to clarify the underlying mechanism
of the reaction between JP-203 and the oxidative stress-response enzymes. As displayed
in Figure 3B, with or without glutamate stimulation, the presence of JP-203 elevated the
protein level of heme oxygenase-1 (HO-1), an inducible enzyme that takes part in the
mediation of inflammation, consisting of neuroinflammation in the central nervous system.
Additionally, HO-1 also plays an important role in anti-apoptotic enzyme responses and
atherosclerotic disease [38,39].

Oxidative stress with a surplus of ROS is one of the common factors that induces
the HO-1 response [9]. It is known that HO-1 transcription is regulated by the nuclear
factor erythroid 2-related factor 2 (Nrf2). In general, oxidative stress leads to the transloca-
tion of Nrf2 from the cytosol to the nucleus, activating the antioxidant response element
(ARE) and triggering the transcription of cyto-protective genes including HO-1 [6]. HT22
cells were exposed to glutamate-induced neurotoxicity and decursin at concentrations of
25 and 50 µM for 6 h. Western blot analysis showed that the expression of HO-1 protein in
HT22 cells was stimulated in a decursin-concentration-dependent manner (Figure 3B). The
dose-dependent elevation of HO-1 with or without glutamate stimulation is presented as
quantitative results (Figure 3C) which also correlated with the blotting images.

3.3. Decursin (JP-203) Ameliorates Apoptosis Index of Glutamate-Induced HT22 Cell Death

The common signs of apoptosis are cell shrinkage, nuclear fragmentation, plasma
membrane blebbing, and chromatin condensation [40]. As mentioned before, decursin
inhibited the chromatin condensation in the progress of apoptotic cell death caused by
glutamate-induced oxidative stress. Therefore, we conducted a TALI assay with control,
glutamate, and co-treatment of glutamate and JP-203 groups to verify the anti-apoptotic
effect of decursin. The apoptotic cells were labeled with annexin V–Alexa Fluor 488 dye
and the dead cells were characterized by propidium iodide staining. In Figure 4A, the
fluorescent microscopy images demonstrated a reduction in annexin-V-as well as PI-stained
cells in the JP-203 co-treated group indicating a rescue of glutamate-induced cytotoxicity
by decursin. Therefore, the comparative graph also revealed that glutamate significantly
stimulated the apoptotic cell death to 60 ± 1.20% whereas treatment with decursin at a
concentration of 25 µM diminished it to 37 ± 1.33% (Figure 4B).
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Figure 4. The anti-apoptotic activity of JP-203 against glutamate-induced HT22 cell death. (A) The
microscopy pictures from TALI image-based cytometric analysis of JP-203. After treatment with
5 mM glutamate and 25 µM JP-203 for 12 h, cells were stained with annexin V–Alexa Fluor 488 for
apoptotic cell identification or propidium iodide (PI) for dead cell labeling. (B) The comparative
graph illustrating the percentage of apoptotic cells between the JP-203 treated and untreated groups
was made using counting of annexin-V-stained cells. (*) indicates p < 0.05 vs. glutamate-treated
group. Scale bar indicates 20 µm.
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4. Discussion

Recent studies exhibited that A. gigas Nakai appears to have neuroprotective effects
in mouse and rat models. A methanol extract of A. gigas Nakai improved the abnormal
morphology and infarction volume of tMCAO mouse brains (a stroke model) by attenuating
ERK-related MAPK signaling pathways [31]. The root and single compound extracts of this
herbal remedy have been recognized as neuroprotective and cognitive enhancers in animal
models as well [28]. Moreover, an experimental report on rat ischemic brains established
the protective actions of A. gigas Nakai extracts including stabilizing the blood–brain barrier
(BBB) permeability and inhibiting the elevation of astrocyte numbers [41]. As mentioned
previously, decursin is a major bioactive component of A. gigas Nakai and could play a
certain role in its neural protection mechanisms.

Our study revealed that decursin, a prenylated coumarin compound consisting of
a coumarin ring system with a prenyl group, improved the cell viability induced by
glutamate in HT22 cells at doses of 12.5 and 25 µM (Figure 1). Moreover, DA, an isomer of
decursin, also recovered the apoptosis condition to 65% at a dose of 50 µM. However, DOH,
a metabolite of decursin with a simple hydroxyl group instead of a prenyl group, showed
no rescue effect on HT22 cells. This could be due to the permeability of cell membranes
to certain compounds. Since mammalian cells are constructed with a double-layer lipid
membrane, hydrophobic molecules which have a high affinity with lipids will easily
be transferred to intracellular cytostomes via passive diffusion. The post-translationally
modified prenylation increases the lipophilicity of natural products which means that
decursin has a higher diffusion ability to the cell membrane than the other two modified
compounds [42].

This higher absorbability of decursin by the cell membrane was also observed in the
previous report from Zhang et al. about the distribution of decursin, DA, and DOH in
rodent and human bodies [43]. When an individual takes a medication, the drugs inter-
act with the body reacting system prior to being delivered to target tissues. Studies on
these actions are called pharmacokinetic studies. Pharmacokinetic parameters include
the absorption, distribution, metabolism, and elimination of certain medicines. The max-
imum concentration of a drug in the plasma and the drug’s volume of distribution are
primary pharmacokinetic parameters in evaluating its therapeutic efficiency. In brief, the
distribution of a drug in the absence of elimination is an inverted proportion of plasma
maximum concentration.

Cmax = D/Vd

where Cmax is the plasma concentration of the drug, D is the total amount of drug admin-
istered, and Vd is the distribution of the drug in ideal conditions. Zhang et al. proved that
the plasma level of DOH is roughly 400 and 700 times higher than decursin in human and
rodent plasma, respectively. This means that the tissue/plasma ratio of decursin is much
greater than that of DOH in both models. The study also found that the termination half-
life t1/2 of decursin and DA were much longer than that of DOH (17.4 and 19.3 vs. 7.4 h)
(Table 1). Therefore, the exposure time of decursin and DA to the human body was
significantly increased compared to that of DOH.

There are many pathogenic factors leading to injury of the brain and central nervous
system. Since neurodegeneration can be the result of genetic and environmental issues,
the research directions and therapeutic approaches are varied as well. Among the various
external factors, chronic exposure of neural cells to certain neurotransmitter chemicals
and metals causes toxicity to neurons. The work of Li et al. demonstrated the protec-
tive effect of decursin isolated from A. gigas Nakai on amyloid-25-35-induced apoptosis
of adrenal pheochromocytoma PC12 cells by suppressing mitochondria-related caspase
expression [44]. This group also found elevated nuclear transcription factor Nrf2 regulation
of antioxidant enzymes with decursin treatment [26]. In addition, decursin and DOH have
been shown to improve cortical cell death caused by excessive glutamate [45]. Previous
data also indicated that abnormal glutamatergic neurotransmission systems altered the
hippocampus of Alzheimer patients via N-methyl-D-aspartate (NMDA) receptors [46,47].
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We focused on the rescue effect of JP-203 on cell toxicity of surplus glutamate on the murine
hippocampal neuron HT22 cell line through the inhibition of oxidative stress. An imbalance
in ROS formation during neurotoxicity followed by excess production of certain proteins,
including β-amyloid and α-synuclein, can result in major neurodegenerative disorders [16].
In the present study, treatment of HT22 cells with glutamine resulted in oxidative stress
and apoptosis, in which the overabundance of ROS induced the HO-1 response and chro-
matin condensation. This finding demonstrated the protective ability of decursin (JP-203)
against oxidative stress-induced apoptosis in cells (Figure 3). The change in HO-1 protein
expression might be regulated by certain signaling pathways that should be investigated
further. Consistent with our results, a study by Song et al. investigated the antioxidant-like
activity of decursin via AMPK pathway activation in AA+-induced apoptosis of human
HepG2 cells and a murine liver injury model [48].

Table 1. The primary pharmacokinetic parameters of decursin, DA, and DOH in human models (n = 20)
versus those in rats. Reprinted with permission from [43]). Copyright (2015) Plos One publications.

Analyte→ PK Parameter D DA DOH Statistical Analyses Linear Coefficient of
Determination

Human p value (post-hoc power) r2 values
Tmax, h, Mean (SD) 2.1 (1.2) 2.4 (1.4) 3.3 (1.6) Paired t-test, 1-sided D vs. age r2 = 0.035

D vs. DA p = 0.0094 (20%) D vs. weight r2 = 0.0201
D vs. DOH p = 0.0002 (80%) DA vs. age r2 = 0.0014

DA vs. DOH p = 0.0023 (51%) DA vs. weight r2 = 0.0261
DOH vs. age r2 = 0.096

DOH vs. weight r2 = 0.071
Cmax, nmol/L Mean (SD) 5.3 (4.7) 48.1 (56.4) 2480.3 (842.2) Paired t-test, 1-sided D vs. age r2 = 0.0492

D vs. DA p = 0.0010 (92%) D vs. weight r2 = 0.0214
D vs. DOH p < 0.0001 (>95%) DA vs. age r2 = 0.0053

DA vs. DOH p < 0.0001 (>95%) DA vs. weight r2 = 0.024
DOH vs. age r2 = 0.0001

DOH vs. weight r2 = 0.0004

AUC0–48h, nmol/L, Mean (SD) 37.1 (29.2) 335.4
(398.0)

27,579
(13,769) Paired t-test, 1-sided D vs. age r2 = 0.164

D vs. DA p = 0.0011 (92%) D vs. weight r2 = 0.2178
D vs. DOH p < 0.0001 (>95%) DA vs. age r2 = 0.009

DA vs. DOH p < 0.0001 (>95%) DA vs. weight r2 = 0.059
DOH vs. age r2 = 0.129

DOH vs. weight r2 = 0.005
Terminal t1/2, h, Mean (SD) * 17.4 (6.8) 19.3 (8.5) 7.4 (2.0) Paired t-test, 1-sided D vs. age r2 = 0.0106

D vs. DA p = 0.2406 D vs. weight r2 = 0.0186
D vs. DOH p < 0.0001 (95%) DA vs. age r2 < 0.0001

DA vs. DOH p < 0.0001 (>95%) DA vs. weight r2 = 0.0043
DOH vs. age r2 = 0.2927

DOH vs. weight r2 = 0.001
Rat (n = 3)

Tmax, h, median (range) 1 (0.5–2) 1 (0.5–2) 4 (3–8)
Cmax, nmol/, Mean (SD) 7.3 (4.0) 7.3 (3.4) 5638 (378)

AUC0–48h, h nmol/L, Mean (SD) 36.0 (14.3) 64.3 (8.8) 81,272 (6829)

* The excluded terminal half-life of outliers.

Excess glutamate, an excitatory neurotransmitter controlling synaptic signals in the
mammalian brain, leads to ROS-dependent neuronal cell death. Many hallmarks are
involved in the subcellular shifts during apoptosis, and the condensation of nucleus chro-
matin is one of the obvious signs. Chromatin impaction has been shown to be an indicator
during apoptotic process in brain dysfunction [49]. From Hoechst 33342 staining fluo-
rescence microscopy images, decursin treatment at 25 µM also prevented the chromatin
condensation in glutamate induced HT22 cell death (Figure 2). Therefore, decursin might
play a key protective role against DNA fragmentation and inert chromatin condensation in
apoptotic neuronal cells. Additionally, major changes in neuronal cell morphology can be
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detected when cells undergo the apoptotic process. The TALI assay showed a remarkable
reduction of annexin V–Alexa Fluor 488-labeled cells in the glutamate-induced HT22 group
co-treated with decursin (Figure 4). Not only does it protect neurons from programed cell
death, decursin also has the ability to cross through blood vessels. The previous finding
of Madgula et al. using the TEER values of Caco-2 and MDR-MDCK cell mono layers
suggested that decursin can potentially transport across the BBB [50]. Another study on
brain ischemic injury reflected a protective action of decursin on pyramidal neurons of the
hippocampus in gerbil forebrains [51]. This study suggested a BBB-crossing capacity of
decursin through protecting against the astrocyte endfeet damage caused by brain ischemia
in a rodent animal model.

In conclusion, decursin exerted a significant protective effect against murine hip-
pocampal HT22 neuronal cell death induced by glutamate among the pyranocoumarins
isolated from A. gigas. Our findings proved that decursin reduced the accumulation of ROS
in cellular oxidative stress conditions. By activating the expression of the HO-1 enzyme,
decursin triggered the antioxidant self-defense system of HT22 cells in response to excess
exogenous glutamate. Decursin also prevented apoptotic neuronal cell death, one of the
consequences of oxidative stress.
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