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Abstract: Hyoseris radiata L. (Asteraceae), known as “wild chicory”, is a perennial herbaceous plant
native to the Mediterranean region, North Africa, and West Asia. Collected from the wild, the plant
is largely used in Italy for culinary purposes and in popular medicine, so that it can be included
in the list of phytoalimurgic plants. The present study aimed to investigate for the first time the
plant’s chemical profile, through a combined UHPLC-HR-ESI-Orbitrap/MS and NMR approach, and
its potential healthy properties, focusing on antioxidant and anti-inflammatory activities. The LC-
MS/MS analysis and the isolation through chromatographic techniques of the plant’s hydroalcoholic
extract allowed the authors to identify 48 compounds, including hydroxycinnamic acids, flavonoids,
megastigmane glucosides, coumarins, and lignans, together with several unsaturated fatty acids. The
quantitative analysis highlighted a relevant amount of flavonoids and hydroxycinnamic acids, with a
total of 12.9 ± 0.4 mg/g DW. NMR-based chemical profiling revealed the presence of a good amount
of amino acids and monosaccharides, and chicoric and chlorogenic acids as the most representative
polyphenols. Finally, the antioxidant and anti-inflammatory activities of H. radiata were investigated
through cell-free and cell-based assays, showing a good antioxidant potential for the plant extract
and a significant reduction in COX-2 expression.

Keywords: Hyoseris radiata L.; LC-HR-ESI-MS; NMR; antioxidant; anti-inflammatory; phytoalimurgy

1. Introduction

Wild food species constitute an important component of the diet of many people
across the world. The Food and Agriculture Organization (FAO) reported that around 20%
of the population in the EU appreciates the consumption of wild foods, including wild
edible plants (WEPs) [1]. The importance of WEPs has increased, especially in times of
war and famine, when they served as a crucial resource for poor communities, hence being
designated as “famine foods” [2]. Although their consumption has been decreasing over
time, wild plants have recently been rediscovered as a food and included both in the local
and haute cuisine of many countries, also due to their beneficial properties.

Hyoseris radiata L. (Figure 1), commonly known as “wild chicory”, is a perennial
herbaceous plant (hemicryptophyte rosulate) belonging to the Asteraceae family, native to
the Mediterranean region, in particular Europe (France, Greece, Italy, Malta, Spain, and
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ex-Yugoslavia), North Africa (Algeria, Canary Islands, Morocco, and Tunisia), and West
Asia (Turkey) [3,4]. It grows at altitudes of up to 1000 m a.s.l. and it can be found in
pastures, in uncultivated fields, on roadsides, and between the stones of dry walls. The
plant is 1–40 cm tall, the stems are erect, aphyllous, glabrous or hispid, with a tap root. The
leaves (2–2.5 × 10–14 mm) are collected in the basal rosette and are petiolates, oblanceolate,
and pinnate in shape, with ovate lobes (6–9 on each side), often runcinate, imbricate, and
dentate. The receptacle is flat without scales. The flowers are all ligulate, bright yellow
and collected in flower heads (3–4.5 cm) with involucral bracts in two rows: the outer
series are short and oblong bracts (4–5 mm), the inner series are long and linear bracts
(10–15 mm). The fruits are brown-colored achenes (8–11 mm) and have a silky pappus. The
plant flowers throughout the year. The karyotype is 2n = 16 [5].
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the “Zuppa delle 18 erbe“ from Barbagia in Sardinia [11], and the “Cucina massese/carra-
rese“ in Tuscany [16]. Furthermore, in Sardinia, young stems are eaten fresh as snacks by 
children due to their sweetish taste [11]; in Gargano (Puglia), the inflorescences are used 
raw as a snack, with bread or in salads [17]; in Calabria, the leaves are preserved in olive 
oil to be eaten as a vegetable side dish [18]. This plant is also used for medicinal purposes 
[19]. In Italy, popular medicine recommends an infusion of its leaves to drink as a diuretic 
[20,21], as a blood depurative [22] or as a litholithic against kidney stones [11]. Another 
common use is to boil the leaves as an intestinal depurative and in order to avoid excessive 
constipation. Moreover, the raw leaves are a food integrator for rabbits and sheep [14]. 

Despite its large use in popular medicine and traditional culinary purposes, H. radiata 
has been poorly studied to date. Previous old phytochemical studies reported the isolation 
of some acetylenes from the roots and lupeyl acetate and taraxasteryl acetate from the 
aerial parts [23], as well antioxidant activity, spectrophotometrically determined in ex-
tracts from the leaves, accounting for a good content of phenols and flavonoids [18,22]. 

Since WEPs such as H. radiata could show excellent organoleptic characteristics, dif-
ferent culinary uses, flavors, low maintenance to common diseases, and good capability 
of growing in wild and ruderal areas, their valorization is highly recommended. Thus, 
due to the lack of a complete phytochemical characterization of this popularly consumed 
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The traditional use of this “wild chicory“is well known in Italy [6], in particular, in the
central–southern areas [7–9] and on the major islands [10–12], while in northern Italy, it is
limited to some regions of the north-west [13], such as Liguria [14]. The young leaves are
eaten raw in salads or boiled, alone or together with other wild herbs, and drizzled with
olive oil and lemon or vinegar, browned in oil or stewed. The tender basal rosettes are also
used to prepared omelets, savory pies, vegetable potages, and other traditional dishes such
as “Gattafin di Levanto” in Liguria (fried pasta containing a mixture of vegetables) [6] and
mixed soups such as “Preboggion or Prebuggiun“, again in Liguria [15], the “Zuppa delle 18
erbe“ from Barbagia in Sardinia [11], and the “Cucina massese/carrarese“ in Tuscany [16].
Furthermore, in Sardinia, young stems are eaten fresh as snacks by children due to their
sweetish taste [11]; in Gargano (Puglia), the inflorescences are used raw as a snack, with
bread or in salads [17]; in Calabria, the leaves are preserved in olive oil to be eaten as
a vegetable side dish [18]. This plant is also used for medicinal purposes [19]. In Italy,
popular medicine recommends an infusion of its leaves to drink as a diuretic [20,21], as a
blood depurative [22] or as a litholithic against kidney stones [11]. Another common use is
to boil the leaves as an intestinal depurative and in order to avoid excessive constipation.
Moreover, the raw leaves are a food integrator for rabbits and sheep [14].

Despite its large use in popular medicine and traditional culinary purposes, H. radiata
has been poorly studied to date. Previous old phytochemical studies reported the isolation
of some acetylenes from the roots and lupeyl acetate and taraxasteryl acetate from the aerial
parts [23], as well antioxidant activity, spectrophotometrically determined in extracts from
the leaves, accounting for a good content of phenols and flavonoids [18,22].

Since WEPs such as H. radiata could show excellent organoleptic characteristics, dif-
ferent culinary uses, flavors, low maintenance to common diseases, and good capability
of growing in wild and ruderal areas, their valorization is highly recommended. Thus,
due to the lack of a complete phytochemical characterization of this popularly consumed
plant and its potential in providing health benefits, the aim of this study was the investiga-
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tion for the first time of H. radiata’s chemical components in term of bioactive agents and
nutrients. Then, cell-free and cell-based assays were used to investigate the antioxidants
and anti-inflammatory activities of the plant extract for a future application of this species
for healthy and nutritional purposes and to valorize it as a possible future stress-tolerant
crop. This work could be included in the tentative strategies for the economic valorization
of WEPs, strongly encouraged to preserve native wild species and to generate economic
returns to local communities.

2. Materials and Methods
2.1. Chemicals and Apparatus

All analytical-grade solvents were purchased from VWR (Milano, Italy). MeOH, H2O,
and HCOOH used for ultra-high-performance chromatography (UHPLC) were purchased
from Merck KGaA (Merck KGaA, Darmstadt, Germany). Kaempferol 3-O-rutinoside (≥98%
purity) and chicoric acid (≥95% purity) were purchased from Extrasynthese (Extrasyn-
these, Genay, France) and Merck Life Science (Merck Life Science s.r.l., Milano, Italy),
respectively. Alanine (≥98% purity), asparagine (≥98% purity), proline (≥98% purity),
arginine (≥98% purity), threonine (≥99% purity), valine (≥98% purity), sucrose (≥98%
purity), fructose (≥98% purity), KH2PO4, D2O (99.9 atom % D), D2O (99.9 atom % D)
containing 0.75 wt. % of 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt (TSP) for
NMR analysis were purchased from Merck Life Science (Merck Life Science s.r.l., Milano,
Italy). Thin-layer chromatography (TLC) was carried out using silica gel 60 F254 (0.20 mm
thickness) plates, n-BuOH-CH3COOH-H2O (60:15:25) as an eluent, and cerium sulphate as
spray reagent (Merck Life Science s.r.l., Milano, Italy). 2,2′-Azino-bis-3-ethylbenzthiazoline-
6-sulphonic acid (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) were purchased from
Merck Life Science (Merk Life Science s.r.l., Milano, Italy). Gel filtration chromatogra-
phy was carried out over Sephadex LH-20 (40–70 µm) column using a peristaltic pump
(Pharmacia, Uppsala, Sweden). Reverse-phase high-performance liquid chromatography
(RP-HPLC) was conducted using a Shimadzu LC-8A series pumping system equipped
with a Shimadzu RID-10A refractive index detector (Shimadzu, Milano, Italy) and a C18
µ-Bondapak column (30 cm × 7.8 mm, 10 µm particle size; Waters, Milano, Italy). UHPLC
coupled to high-resolution mass spectrometry (HR-MS) was carried out with a Vanquish
Flex Binary pump coupled to a HR-MS Q Exactive Plus Orbitrap-based FT-MS equipped
with an electrospray ionization (ESI) source and Xcalibur 4.1 software (Thermo Fisher
Scientific Inc., Bremen, Germany). The separation was performed using C-18 Kinetex®

Biphenyl column (100 × 2.1 mm, 2.6 µm particle size) provided with a Security GuardTM

Ultra Cartridge (Phenomenex, Bologna, Italy). Mono- and bidimensional NMR spectra
for chemical characterization of pure compounds were acquired in methanol-d4 on Bruker
DRX-400 spectrometer (Bruker BioSpinGmBH, Rheinstetten, Germany). Data were pro-
cessed with Topspin version 3.2. The NMR experiments for quali-quantitative profiling
of the extract were acquired in D2O on Bruker Avance 600 spectrometer (Bruker BioSp-
inGmBH, Rheinstetten, Germany) equipped with a 5 mm probe operating at 298 K and
SampleJet autosampler.

2.2. Plant Material and Extract Preparation

Leaves of Hyoseris radiata L. (2434.5 g) were collected in Antignano (Livorno, Italy) in
March 2022 and identified by Dr. Fabiano Camangi. A voucher specimen (N◦ PI064810)
was deposited at the Herbarium Horti Botanici Pisani (Pisa, Italy).

The leaves were dried in a ventilated oven at 39 ◦C, obtaining 315.0 g of dried material,
that was powdered using a MF 10 basic Microfine grinder drive (IKA-Werke, Staufen,
Germany) with a sieve of 0.25 mm hole size, and subjected to a single ultrasound-assisted
extraction (LBS2 bath, Falc Instruments s.r.l., Treviglio, Italy) for 15 min at 20 ◦C and 59 kH
frequency, utilizing EtOH 80% v/v (solid:liquid ratio of 1:10 g/mL). After removing the
solvent under vacuum by using Rotavapor® (Buchi, Milano, Italy) 59.2 g of dried extract
was obtained.
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2.3. Extract Fractionation and Isolation of Pure Components

A part of the hydroalcoholic extract (9.5 g) was dissolved in 25 mL of MeOH and
centrifugated for 5 min at 2710× g, then the supernatant was chromatographed on Sephadex
LH-20 column, using MeOH as eluent at a flow rate of 1 mL/min. A total of 117 fractions of
17 mL each were collected and grouped into 11 major fractions (A-K) based on TLC results.
Fraction C (200.0 mg) was subjected to RP-HPLC eluting with MeOH-H2O (3:7, v/v) to give
compounds 23 (3.6 mg, tR 13.3 min), 8 (2.1 mg, tR 19.8 min), and 10 (3.2 mg, tR 25.7 min).
Fraction D (186.7 mg) was purified by RP-HPLC with MeOH-H2O (35:75, v/v) as eluent to
obtain compound 15 (0.1 mg, tR 58.4 min). Fraction E (42.6 mg) was submitted to RP-HPLC
with MeOH−H2O (3:7, v/v) to yield compound 7 (0.1 mg, tR 13.1 min). From fraction F
(238.8 mg) eluted with MeOH−H2O (3:7, v/v), compounds 9 (1.3 mg, tR 16.0 min) and 12
(2.2 mg, tR 23.1 min) were isolated. Fractions H and I were combined into one fraction
(60.0 mg) that was then separated by RP-HPLC eluting with MeOH−H2O (4:6, v/v) to give
compound 20 (2.1 mg, tR 47.1 min). Fraction J (25.4 mg) was submitted to RP-HPLC eluting
with MeOH−H2O (65:35, v/v) to yield compounds 2 (2.4 mg, tR 8.4 min) and 25 (1.4 mg, tR
12.6 min). Finally, fraction K was eluted as a pure compound (31) from Sephadex column
(7.1 mg).

2.4. Chemical Characterization of the Extract by LC-HR-Orbitrap/ESI-MS

The hydroalcoholic extract (10.0 mg) was dissolved in 5 mL of MeOH (2 mg/mL final
concentration), centrifuged for 5 min at 2710× g, and 5 µL of supernatant was directly
injected into the LC-MS/MS system. The operation was repeated three times to obtain
three solutions. The analysis was carried out using a mobile phase composed of a mixture
of HCOOH in H2O 0.1% v/v (solvent A) and HCOOH in MeOH 0.1% v/v (solvent B),
and a linear gradient of 5 to 100% of solvent B for 26 min at a flow rate of 0.5 mL/min.
The HR-MS spectra were acquired both in positive and negative ion mode, within a m/z
scan range of 135–2000, using the ionization parameters as previously reported [24]. The
MS operated in full MS/MS scan (70,000 resolution, maximum injection time 220 ms)
and data dependent (17,500 resolution, maximum injection time 60 ms). The column and
autosampler temperature were maintained at 35 and 4 ◦C, respectively. The identification
of all compounds was tentatively defined by their accurate measured mass, and the com-
parison of their elution order, and both full and fragmentation mass spectra, with data
reported in the literature. Isolated compounds were used as a reference to confirm their
identification in the LC-MS profile. For the quantitative analysis of the major chemical
constituents, chicoric acid and kaempferol 3-O-rutinoside were used as external standards
for phenolic acids and flavonoids, respectively. Stock methanol solutions (1 mg/mL) were
first prepared and then diluted by serial dilution to obtain solutions in triplicate at the
range of 0.05–0.00156 mg/mL for both standards. The calibration curves were constructed,
plotting two variables, concentrations, and areas obtained by MS peak integration, which
were related by the following linear simple correlation: R2 = 0.9992 for chicoric acid and
R2 = 0.9978 for kaempferol 3-O-rutinoside. Data were processed by Microsoft® Office Excel
(Microsoft 365 version 2312), and the amounts of components were finally expressed as
mg/g ± standard deviation (SD) of dried weight (DW) of leaves.

2.5. NMR Quali-Quantitative Profiling of H. radiata Extract

Briefly, three aliquots of 7 mg each of dried extract were dissolved in 0.7 mL KH2PO4
buffer in D2O (pH 6.0), containing 0.01% 3TSP for a final concentration of 10 mg/mL. After
centrifugation at 13,000 rpm for 10 min, the clear supernatants (600 µL) were transferred
into NMR tubes for further analysis. 1H NMR spectra were recorded using a NOESY
(noesygppr1d) pulse sequence with water signal suppression. Acquisition parameters
were 8000 Hz (13.3 ppm) spectral width, 4 dummy, and 64 scans, a recycle delay of 4 s,
mixing time 0.01 s, and a fixed value for receiver gain for all samples. NMR spectra
processing (baseline correction, ppm calibration, variable-sized bucketing) and metabolite
quantification were performed using NMRProcFlow (INRAE UMR 1332 BFP, Bordeaux
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Metabolomics Facility, Villenave d’Ornon, France) [25,26]. Alanine, valine, asparagine,
sucrose, glucose, and galactose were selected for quantification due to the presence of
isolate signals in NMR spectrum. Alanine and sucrose were used as external standards for
the quantification of amino acids and sugars, respectively. The calibration curve of alanine
was made in a concentration range from 10 to 500 µg/mL (y = 42618x − 8843.5 R2 = 1). The
calibration curve of sucrose was made in a concentration range from 20 to 10,000 µg/mL
(y = 3629.6x + 34,583 R2 = 0.9999). Data were exported into a spreadsheet workbook using
the “qHNMR” template and processed with Microsoft® Office Excel (Microsoft 365 version
2312), and the amounts of components were finally expressed as mg/g ± SD of leaf DW.

2.6. Radical-Scavenging Activity Assays

To evaluate the antioxidant power of the hydroalcoholic extract of H. radiata, two most
common radical-scavenging assays using ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-
6-sulfonic acid) and DPPH (2,20-diphenyl-1-picrylhydrazyl radical) radicals were per-
formed [27,28]. Samples were compared to known concentrations of Trolox standards, a
water-soluble analog of tocopherol (vitamin E), which is a very strong antioxidant that is
commonly used to measure antioxidant capacity. Different Trolox mM concentrations were
incubated in the presence of the DPPH and ABTS radicals, and calibration curves were
constructed with Trolox concentrations; the standard curve was linear between 0.025 and
1 mM Trolox. For both assays, extract was diluted between 500 and 2000-fold. For DPPH
assay, the reaction was allowed to proceed for 30 min in the dark at room temperature, and
then the decrease in absorbance at 515 nm was measured. For ABTS assay, after the addition
of 100 µL of extract solutions to 100 µL of ABTS•+ solution, the absorbance reading was
taken at 30 ◦C for 10 min after initial mixing and its absorbance was measured at 734 nm.
Following that, the appropriate dilution factor was applied to calculate the millimolar TE
of the extract at 10 mg/mL. All solutions were used on the day of preparation and all
determinations were carried out in triplicate. The absorbance of the sample was recorded
using spectrophotometer instrument.

2.7. Cell Culture

Human cell lines of alveolar adenocarcinoma (A549) and epidermal keratinocyte
(HaCaT) were grown in Dulbecco’s Mixture F-12 Ham and Dulbecco’s modified Eagle’s
medium, respectively, containing high glucose supplemented with 10% fetal bovine serum,
100 U/mL each of penicillin and streptomycin, in a humidified atmosphere of 5% CO2 at
37 ◦C. Cells were used at less than 80% of confluence.

2.8. Cell Viability Assay

Cell viability was analyzed via MTT (3-[4,5-dimetiltiazol-2,5-diphenyl-2H-tetrazolium
bromide]) assay [29]. Briefly, cells (3.5 × 103/well) were grown in 96-well plates and, after
24 h, were treated with fresh medium alone or containing different extract concentrations
(100, 50, 25, and 10 µg/mL), for 24 or 48 h. Staurosporin 0.2 µM was used as a positive
control. After treatment, MTT (5 mg/mL) was added to each well and plates were incubated
for further 3 h, allowing salt formazan to crystallize. Then, salt formazan was solubilized
with 100 µL of DMSO, and absorbance at 550 nm for each well was evaluated with a
Multiskan Spectrum Thermo Electron Corporation Reader. Cell vitality was determined as
% vitality = 100 × (OD treated/OD DMSO).

2.9. Cellular Antioxidant Activity Assay

H. radiata extract’s antioxidant activity was analyzed via a cytofluorimetric assay
using 2′,7′-dichlorofluorescein diacetate (H2DCF-DA, D6883, Sigma-Aldrich, St. Louis,
MO, USA). Intracellular esterases hydrolyze H2DCF-DA, a non-polar molecule that readily
diffuses into cells, removing the acetate groups to make the molecule polar and imperme-
able. Intracellular Reacting Oxygen Species (ROS) rapidly oxidize H2DCF-DA into highly
fluorescent DCF detectable and quantifiable via flow cytometry (excitation wavelength:
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504 nm, emission wavelength: 529 nm). Shortly, A549 and HaCaT cells were seeded with
a density of 3.0 × 104 cells/well in 12-well plates. Based on the data obtained from the
viability assay, 50 and 25 µg/mL of plant extract was added for 1 h, and the mixture was
then co-exposed to lipopolisaccaride (LPS) from Escherichia coli (0.1 µg/mL) [30]. After 24
and 48 h, cells were collected, washed twice with phosphate buffered saline (PBS), and
incubated in PBS containing H2DCF-DA (10 µM) at 37 ◦C. After 45 min, cell fluorescence
was measured via flow cytometry and analyzed with Cell Quest software version 4.1 [31].

2.10. Measurement of COX-2 Expression

COX-2 (sc-19999, Dallas, TX, USA) expression was detected via fluorescence-activated
cell sorting (FACSscan; Becton–Dickinson, BD Biosciences, San Jose, CA, USA). Cells were
cultured in a 12-well plate (3 × 104 cells/well) and, after 24 h of adhesion, treated as for the
antioxidant activity assay. After, cells were collected and incubated with a fixing solution
(4% formaldehyde, 2% fetal bovine serum (FBS), and sodium azide 0.1% in PBS) for 20 min,
and then permeabilized with a buffer containing 4% formaldehyde, 2% FBS, Triton X-0.1%,
and PBS in presence of 0.1% sodium azide for 30 min. Subsequently anti-COX-2 was added,
and anti-goat Texas-Red (T6390, Waltham, MA, USA) was used as a secondary antibody.
After washing, cells were fixed and detected via flow cytofluorometry and analyzed with
Cell Quest software. Data were depicted as positive cells percentage [31].

2.11. Data Analysis

Data evaluations and statistical analysis were reported with commercially available
software GraphPad Prism8 (GraphPad Software Inc., version 8.0.2, San Diego CA, USA).
Results are represented as mean ± standard error of the mean (SEM) values of at least three
different experiments performed in technical triplicate. Statistical analyses were obtained
thanks to non-parametric Mann–Whitney U test. Differences were considered significant if
p-values were from <0.01 to 0.05.

3. Results
3.1. Isolation and Identification of Pure Components

The hydroalcoholic extract of H. radiata leaves was subjected to fractionation via
different chromatographic techniques, leading to the isolation of eight pure components.
All compounds were structurally characterized by comparison of 1D and 2D NMR and
MS spectra with the literature data, leading to identification of two hydroxycinnamic acids
as chlorogenic acid (9) [32] and chicoric acid (12) [33]; three megastigmane glucosides
as debiloside C (23) [34], alangionoside E (8), and plucheoside B (10) [35]; a lignan as
secoisolaricinesinol O-β-D-glucopyranoside (15) [36]; a coumarin as cichoriin (7) [37]; three
flavonoids as luteolin 7-O-rutinoside (20), kaempferol 3-O-glucoside (25), and luteolin
(31) [38]; and a purine nucleoside as adenosine (2) [39]. The purity of all compounds met
the criteria of >95% purity as inferred using UHPLC and NMR analyses.

3.2. Chemical Fingerprimt and Amount of Components via LC-MS/MS Analysis
3.2.1. Qualitative Analysis

The combination of different techniques can be useful for a comprehensive metabolomic
study of complex natural mixtures. Therefore, the hydroalcoholic extract of H. radiata leaves
was investigated firstly via UHPLC-HR-ESI-Orbitrap/MS, leading to the identification of a
great number of components, also present in traces, compared to the fractionation process,
which failed in some cases due to very close retention times and the poor quantity of several
samples. According to MS data, retention time, and comparison with isolated compounds
and the literature data [24,26], the LC-MS profile (Figure 2) was characterized by 48 com-
pounds, mostly phenols belonging to different subclasses (Table 1). According to the results
obtained via extract fractionation, hydroxycinnamic acids, flavonoids (kaempferol, luteolin,
quercetin, and apigenin derivatives), megastigmane glucosides, coumarins, and lignans
were identified, together with a great number of unsaturated fatty acids.
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Table 1. UHPLC-HR-ESI-Orbitrap/MS data of compounds detected in the leaf extract of H. radiata.

N. a Compound tR (min) [M − H]− Product Ions b Formula Error

Hydroxycinnamic acids

3 Caftaric acid 2.6 311.0403 292.89, 274.88, 179.03, 149.01 C13H12O9 −1.46
5 Caffeic acid hexoside 3.6 341.0872 179.03, 135.05 C15H18O9 −1.79
6 Chlorogenic acid (isomer I) c 4.7 353.0879 191.05, 173.04 C16H18O9 +0.25
9 Chlorogenic acid (isomer II) 6.3 353.0879 191.05, 173.04 C16H18O9 +0.25

11 Feruloylquinic acid 7.9 367.1027 191.06, 173.04 C17H20O9 −2.04
12 Chicoric acid (isomer I) c 8.2 473.0717 311.04, 293.03, 179.03, 149.01 C22H18O12 −1.80
14 Chicoric acid (isomer II) 8.9 473.0717 311.04, 293.03, 179.03, 149.01 C22H18O12 −1.80
19 Dicaffeoylquinic acid (isomer I) 9.9 515.1186 353.09, 191.06, 173.04 C25H24O12 −1.73

26 Caffeoylferuloyltartaric acid
(isomer I) 10.8 487.0873 325.05, 293.03, 193.05, 179.03,

112.99 C23H20O12 −1.83

27 Dicaffeoylquinic acid (isomer II) 11.1 515.1186 353.09, 191.06, 173.04 C25H24O12 −1.73

32 Caffeoylferuloyltartaric acid
(isomer II) 12.7 487.0873 325.05, 293.03, 193.05, 179.03,

163.02, 112.99 C23H20O12 −1.83

Flavonoids

13 Kaempferol/Luteolin O-dihexoside 8.4 609.1454 447.09, 285.04 C27H30O16 −1.15
17 Rutin 9.2 609.1456 300.02 C27H30O16 −0.84
18 Quercetin hexoside 9.4 463.0877 300.02 C21H20O12 −1.08
20 Luteolin 7-O-rutinoside c 9.9 593.1505 447.09, 285.04 C27H30O15 −1.16

21 Luteolin/Kaempferol hexoside
(isomer I) 9.9 447.0926 285.04 C21H20O11 −1.52

22 Kaempferol/Luteolin O-uronide 10.2 461.0720 285.04 C21H18O12 −1.17
25 Kaempferol 3-O-glucoside c 10.5 447.0926 285.04 C21H20O11 −1.52
28 Apigenin hexoside 11.4 431.0977 269.04 C21H20O10 −1.55
29 Apigenin uronide 11.7 445.0770 269.04 C21H18O11 −1.41

30 Luteolin/Kaempferol hexoside
(isomer II) 12.1 447.0926 285.04 C21H20O11 −1.52

31 Luteolin c 12.5 285.0406 C15H10O6 +1.96

Megastigmane glucosides

8 Alangionoside E c 6.2 433.2069
[M + HCOO]− 387.20, 165.04 C19H32O8 −2.25

10 Plucheoside B c 6.8 433.2069
[M + HCOO]− 387.20, 161.04, 113.02, 101.02 C19H32O8 −2.25

23 Debiloside C c 10.2 405.1762 243.12, 225.12, 181.23, 163.12 C18H30O10 −1.04
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Table 1. Cont.

N. a Compound tR (min) [M − H]− Product Ions b Formula Error

Cumarins

7 Cichoriin c 5.3 339.0715 177.02 C15H16O9 −1.77

Lignans

15 Secoisolariciresinol glucoside c 8.9 523.2173 361.17 C26H36O11 −2.25

24 Secoisolariciresinol glucoside isomer 10.2 569.2231
[M + HCOO]− 361.17 C26H36O11 −1.51

Monoterpenes

16 Loliolide d 9.0 197.1167
[M + H]+ 179.11, 161.10, 135.12 C11H16O3 −2.64

Primary metabolites

1 Hexosylglutamic acid 0.8 290.0879 290.09, 272.07, 254.07, 230.07,
200.06, 128.03 C11H17O8N −0.83

2 Adenosine c,d 1.1 268.1032
[M + H]+ 136.06 C10H13N5O4 −3.10

4 Tryptophan 2.8 203.0819 186.05, 159.09, 142.06, 116.05 C11H12O2N2 −3.45

Fatty acids

33 Trihydroxyoctadecadienoic acid 14.5 327.2170 327.21, 309.21, 291.20, 229.14,
211.13 C18H32O5 −2.14

34 Trihydroxyoctadecenoic acid 15.1 329.2329 329.23, 311.22, 293.21 C18H34O5 −1.37
35 Dodecenoic acid 15.5 227.1287 209.12, 183.34 C12H20O4 −0.79
36 Dihydroxyhexadecanoic acid 15.8 287.2223 269.21 C16H32O4 −1.67
37 Dioxooctadecadienoic acid isomer I 17.1 307.1910 289.18, 260.96, 235.14 C18H28O4 −1.56
38 Dioxooctadecadienoic acid isomer II 17.6 307.1910 289.18, 260.96, 235.14 C18H28O4 −1.56
39 Dihydroxyoctadecatrienoic acid 17.8 309.2066 309.21, 291.20, 273.18 C18H30O4 −1.71
40 Dihydroxyoctadecenoic acid 18.1 313.2380 313.24, 295.22, 277.22 C18H34O4 −1.37
41 Dioxooctadecatrienoic acid 18.2 305.1752 287.16, 249.15, 135.08 C18H26O4 −2.06
42 Dihydroxyoctadecadienoic acid 18.5 311.2223 311.22, 293.21, 274.88 C18H32O4 −1.54

43 Hydroxyoctadecatrienoic acid
isomer I 19.1 293.2116 293.21, 275.20, 249.16, 183.14 C18H30O3 −2.11

44 Hydroxyoctadecatrienoic acid
isomer II 19.3 293.2116 293.21, 275.20, 249.16, 183.14 C18H30O3 −2.11

45 Hydroxyoctadecadienoic acid 19.7 295.2272 295.23, 277.22, 259.21, 195.14 C18H32O3 −2.23
46 Oxooctadecatrienoic acid 20.1 291.1989 273.18 C18H28O3 −0.69
47 Octadecatrienoic acid 21.5 277.2168 259.21 C18H30O2 −1.80
48 Octadecadienoic acid 21.8 279.2323 261.22 C18H32O2 −1.97

a Peaks are listed by their elution order. b Base peak is shown in bold. c Confirmed by injection of reference
standards. d MS data are recorded in positive ion mode.

Among phenols, eleven hydroxycinnamic acids were detected and tentatively identi-
fied as derivatives of caffeic, ferulic, and quinic acids. The most represented compounds
were chlorogenic acid (9, [M − H]− at m/z 353.0879) and chicoric acid (12, [M − H]−

at m/z 473.0717), confirmed by injections of pure isolated compounds. The peak at m/z
311.0403 ([M − H]−) displayed deprotonated tartaric acid at m/z 149.01 and caffeic acid at
m/z 179.03 in the MS2 experiments; thus, it was assigned as caftaric acid (3). Compound
26 was tentatively identified as caffeoylferuloyltartaric acid showing a molecular depro-
tonated ion [M − H]− at m/z 487.0873 and product ions [M – H − 162]− at m/z 325.05
and [M – H – 162 − 132]− at m/z 193.05, due to the loss of a caffeoyl and subsequently
of a tartaroyl unit, respectively. Similarly, compound 32 showed the same molecular
deprotonated ion and fragmentation pattern as 26 but a base ion peak at m/z 163.02
([M – 162 − 162]−) due to the loss of both caffeoyl and feruloyl residues; therefore, it
was identified as a caffeoylferuloyltartaric acid isomer. Furthermore, eleven compounds
were tentatively identified as flavonoids. In detail, compound 20 showed a molecular
deprotonated ion at m/z 593.1505 and product ions at m/z 447.09 ([M – H − 146]−) and
285.04 ([M – H – 146 − 162]−), generated by the loss of a rhamnose and a rutinose unit,
respectively, leading the authors to identify the molecule as luteolin 7-O-rutinoside, also
confirmed by the injection of the pure isolated compound. Compounds 21 and 30 were
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annotated as luteolin or kaempferol hexoside isomers based on the deprotonated aglycone
at m/z 285.04 in the MS2 due to the loss of a hexose residue. Compound 13 ([M − H]− at
m/z 609.1454) was identified as kaempferol or luteolin O-dihexoside due the sequential
loss of two hexose residues in the fragmentation process and the product ion at m/z 285.04.
On the other hand, compound 17 showed the same deprotonated molecular ion as 13 but
a base ion peak at m/z 300.02, allowing its characterization as rutin. The presence of the
product ion at m/z 269.04 in the fragmentation pathway of compounds 28 and 29 allowed
their annotation as apigenin hexoside and apigenin uronide, respectively. Compound 25
([M − H]− at m/z 447.0926) and compound 31 ([M − H]− at m/z 285.0406) were assigned
as kaempferol 3-O-glucoside and luteolin, respectively, and their structure was confirmed
by comparison with the isolated standards. The loss of uronic moiety ([M – H − 176]−) and
the presence of the base ion peak ion at m/z 285.04 in the MS2 of compound 22 allowed
its tentative identification as kaempferol or luteolin O-uronide. Moreover, other minor
compounds were detected: megastigmane glucosides (8, 10, and 23), coumarin (7), lignans
(15 and 24), monoterpene (16), and unsaturated fatty acids (33–48), mainly hydroxylated
and with a C18 chain. Compounds 2 and 16 were recorded only in positive ionization mode
as protonated molecular ions ([M + H]+ at m/z 268.1032 and 197.1167, respectively); thus,
ESI+ ion product ions were reported.

3.2.2. Quantitative Analysis

LC-MS quantitative analysis (Table 2) highlighted a relevant amount of flavonoids
and hydroxycinnamic acids in H. radiata hydroalcoholic extract. Luteolin/kaempferol
hexoside and luteolin/kaempferol uronide (2.31 ± 0.06 and 2.60 ± 0.02 mg/g DW ± SD,
respectively) were among the most abundant flavonoids in the extract, followed by luteolin,
present in the form of aglycone in a comparable amount. Among phenolic acids, chicoric
acid (12) was the most abundant (2.62 ± 0.04 mg/g DW ± SD), followed by chlorogenic
acid (0.936 ± 0.04 mg/g DW ± SD), while compound 26, annotated as caffeoylferuloyl
tartaric acid, was the less abundant component (0.0482 ± 0.01 mg/g DW ± SD).

Table 2. Amount (mg/g DW ± SD) of major flavonoids and hydroxycinnamic acids detected in H.
radiata leaves.

Peak Compound mg/g DW ± SD

Flavonoids
18 Quercetin hexoside 0.695 ± 0.1
20 Luteolin 7-O-rutinoside 0.576 ± 0.06
21 Luteolin/Kaempferol hexoside (isomer I) 2.31 ± 0.06
22 Luteolin/Kaempferol uronide 2.60 ± 0.02
30 Luteolin/Kaempferol hexoside (isomer II) 0.120 ± 0.01
31 Luteolin 2.15 ± 0.03

Hydroxycinnamic acids
3 Caftaric acid 0.126 ± 0.004
5 Caffeic acid hexoside 0.102 ± 0.007

6 + 9 Chlorogenic acid 0.936 ± 0.04
12 Chicoric acid 2.62 ± 0.04

19 + 27 Dicaffeoylquinic acid 0.628 ± 0.04
26 Caffeoylferuloyltartaric acid 0.0482 ± 0.01

Total flavonoids 8.45 ± 0.3
Total hydroxycinnamic acids 4.46 ± 0.1

Total 12.9 ± 0.4
DW: dry weight; SD: standard deviation.

3.3. NMR-Based Metabolomic Profiling
3.3.1. Qualitative Analysis

To complete the metabolomic profiling of H. radiata hydroalcoholic extract, an NMR-
based approach was also applied. 1H NMR analysis is a rapid and reproducible tool for
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the detection of primary metabolites and highly concentrated constituents. The 1H NMR
spectrum of the plant extract showed the presence of seven amino acids, five sugars, two
polyphenols, and an alkaloid. In detail, the aliphatic region, from 0 to 3 ppm (Figure 3A),
displayed resonances corresponding to valine, threonine, alanine, arginine, proline, and
asparagine. The annotation of these metabolites was also confirmed using standard com-
pounds. In the sugar region, from 3 to 5.5 ppm, it was possible to recognize sucrose, glucose
(α and β), and galactose, thanks to the chemical shift of anomeric protons (Table 3). The
aromatic region of the spectrum (Figure 3B) was dominated by the resonance of chicoric
acid, one of the most abundant polyphenols according to LC-MS analysis, and chlorogenic
acid. The 1H-NMR spectrum resonances were first assigned according to the literature
data [26,40], as well as public databases (HMDB, BMRB), and then confirmed through
2D NMR experiments (1H-13C HSQC and 1H-13C HMBC) and the use of pure standard
compounds. Table 3 lists the chemical shift data for the annotated metabolites, with their
level of identification according to Sumner et al., 2007 [41].
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Table 3. Metabolites and 1H chemical shifts identified by 600 MHz 1D 1H-NMR for H. radiata
leaf extract.

Compound Chemical Shift (ppm)
Multiplicity (J in Hz)

Identification
Confirmation MSI Status a

Valine 0.99 d (J = 7.4), 1.04 d (J = 7.4) Spike, HSQC 1
Threonine 1.33 (J = 6.8) Spike, HSQC 1

Alanine 1.48 d (J = 7.2) Spike, HSQC 1
Arginine 1.54 m Spike, HSQC 1
Proline 2.03 m, 2.35 m Spike, HSQC 1

Asparagine 2.85 dd (J = 16.7; 7.3), 2.96 dd
(J = 16.2; 4.0) Spike, HSQC 1

Choline 3.20 s HSQC 2
α-Glucose 5.16 d (J = 4.40) HSQC 2
β-Glucose 4.54 d (J = 7.95) HSQC 2

Sucrose 5.40 d (J = 3.80) Spike, HSQC 1
Fructose 4.01 m Spike, HSQC 1

α-Galactose 5.20 d (J = 3.90) HSQC 2
Chlorogenic acid 7.64 d (J = 16.0), 6.38 d (J = 16.0) HSQC 2

Phenylalanine 7.37 m HSQC 2

Chicoric acid 7.71 d (J = 17.0), 6.47 d (J = 17.0),
7.23 s, 6.90 d (J = 8.0) HSQC 2

Trigonelline 9.13 s, 8.07 t HSQC 2
a MSI level of identification based on Sumner et al., 2007 [42].

3.3.2. Quantitative Analysis
1H NMR-based quantitative analysis of selected compounds, displaying well-resolved

resonances, was performed. Among amino acids, alanine, valine, and asparagine were se-
lected for quantitative analysis, and the results showed a content of 0.36 ± 0.01, 0.77 ± 0.01,
and 1.05 ± 0.06 mg/g DW ± SD, respectively, in H. radiata dried leaves. Among selected
sugars, sucrose is the most abundant in the dried leaves (4.17 ± 0.15 mg/g DW ± SD),
followed by glucose (2.87 ± 0.16 mg/g DW ± SD) and galactose (0.29 ± 0.02 mg/g
DW ± SD).

3.4. Antioxidant Activity
3.4.1. Cell-Free Assays

The antioxidant activity assay of H. radiata extract was performed with ABTS and
DPPH tests. These assays showed the antioxidant capacity of the extract estimated in
terms of Trolox Equivalent Antioxidant Capacity (TEAC). TEAC was expressed as mM
TE. The extract was tested at 10 mg/mL, and the TE was calculated. The results showed
a radical-scavenging potential of 3.13 ± 0.04 mM and 2.43 ± 0.05 mM TE for ABTS and
DPPH assays, respectively, suggesting good antioxidant activity for the extract, if compared
to quercetin (TE 7.52 mM), a flavonoid with potent antioxidant activity [42].

3.4.2. In-Cell Assay

The antioxidant activity of H. radiata extract was also evaluated in cells. Firstly,
the extract was assayed to evaluate its effect on cell viability. Results obtained in our
experimental models showed that different concentrations (50, 25, 10, and 5 µg/mL) of the
extract did not induce a reduction in cell viability on the analyzed cell lines (Figure 4), both
at 24 and 48 h of treatment. Furthermore, based on these data, 50 and 25 µg/mL were the
selected concentrations for the subsequent in-cell antioxidant assay.
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Figure 4. Cell vitality of A549 (A) and HaCaT (B) cells was calculated as % vitality = [100 × (OD
treated/OD control)]. Results were analyzed by non-parametric Mann–Whitney U test.

To test the antioxidant effect of the plant extract on ROS release in LPS-stimulated
cells, the intracellular ROS via incubating cells with the H. radiata hydroalcoholic extract (50
and 25 µg/mL) 1 h before and simultaneously with LPS (0.1 µg/mL) was evaluated. After
24 and 48 h, LPS induced a significant ROS increase. The extract at the higher concentration
tested, in the presence of LPS, significantly (p < 0.0001) reduced ROS release in respect to
cells treated with LPS alone, at both experimental times (Figure 5).
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Figure 5. ROS formation was evaluated through the probe 2′.7′-dichlorofluorescein diacetate (H2DCF-
DA) in A549 (A) and HaCaT (B) cells. H. radiata leaf extracts (50 and 25 µg/mL) were added for
1 h and then for further 24 h exposed to LPS from Escherichia coli (0.1 µg/mL). ROS production
is expressed as mean ± SEM of the percentage of DCF-positive cells of at least three independent
experiments, each performed in triplicate. Data were analyzed with Mann–Whitney U test. * p < 0.05,
** p < 0.005, and *** p < 0.001 versus untreated cells; ◦◦ p < 0.005, and ◦◦◦ p < 0.001 versus LPS;
# p < 0.05, and ## p < 0.005 versus treated cells at the same experimental conditions.
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3.5. Anti-Inflammatory Activity

To investigate if H. radiata hydroalcoholic extract influences the inflammatory pathway,
the COX-2 expression in A549 and HaCaT cells was analyzed, incubating cells with the
extract (50 and 25 µg/mL) 1 h before and simultaneously with LPS (0.1 µg/mL). After 24
and 48 h, LPS induced a significant (p < 0.0001) COX-2 expression increase. The extract at the
higher concentration tested, in the presence of LPS, significantly reduced COX-2 expression
if compared to cells treated with LPS alone, at both experimental times (Figure 6).
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4. Discussion

H. radiata is an unexplored WEP, despite its widespread use in traditional culinary
recipes and popular medicine. In our study, a combined LC-MS and NMR approach was
applied for the first time to analyze the specialized and primary small metabolites con-
tent of this WEP. The LC-MS/MS analysis and the isolation and characterization through
chromatographic and spectroscopic techniques allowed the authors to identify 48 com-
pounds, mainly including polyphenol derivatives, together with megastigmane glucosides
and several unsaturated fatty acids. The quantitative analysis highlighted a relevant
amount of bioactive molecules such as hydroxycinnamic acids and flavonoids, with a total
of 12.9 ± 0.4 mg/g DW, chicoric acid and luteolin derivatives being the most abundant
components. The NMR-based metabolomic profiling revealed the presence of a good
quantity of amino acids, monosaccharides, and chicoric acid as the most representative
polyphenol. A comparison of H. radiata’s specialized metabolites composition with that of
correlated species, such as chicory (Cichorium intybus L.) and escarole cultivars (Cichorium
endivia L.), revealed some similarities regarding the presence of phenolic compounds and
flavonoids [26,43]. Anyway, cultivated chicory is mainly characterized by the presence
in the roots of sesquiterpene lactones that were also revealed in the leaves of escarole
cultivars. The chicoric acid content of H. radiata (2.62 ± 0.04 mg/g DW) was detected to be
in the range of the one reported for cultivated chicory leaves (0.87 to 6.14 mg/g) [44]. The
nutritional composition, although the comparison is not easy due to the variability among
the different chicory and escarole cultivars, depending also on the cultivation technique,
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mineral fertilization, and/or soil salinization, is comparable and could justify further stud-
ies to enhance H. radiata’s exploitation. In fact, the edible leaves of H. radiata reported a
high content of phenolic acids, flavonoids, and unsaturated fatty acids, conferring to the
species important nutraceutical value.

This interesting profile in terms of nutritional and bioactive molecules prompted the
investigation of the potential health properties of H. radiata leaves. In the last decades, it
became evident that the antioxidant and anti-inflammatory properties of plant extracts and
molecules seems to exert a beneficial effect upon several chronic inflammatory diseases and
impairments. In particular, the presence of unsaturated fatty acid and polyphenols is very
important, due to their effect on the inflammation process and on the cardiovascular system.
Hence, to evaluate if the H. radiata polyphenols-rich extract possessed antioxidant and anti-
inflammatory activities, cell-free and cell-based assays were implemented. Inflammation,
a pathological condition considered as the cause of aging processes, generally induces
oxidative stress, reducing antioxidant capacity. Consequently, the consumption of food
and phytoalimurgic plants exerting both antioxidant and anti-inflammatory activities
is desirable.

The preliminary evaluation of the potential cytotoxicity of this extract showed no
activity at the tested concentrations. Since the ABTS and TEAC assays showed an interesting
antioxidant activity for the plant extract, the antioxidant effect on ROS release in LPS-
stimulated cell was also evaluated. Overproduction of ROS, due to LPS induction, leads
to pathological effects caused by deleterious oxidative changes in cellular lipids, proteins,
and DNA, as well as the formation of inflammatory proteins. Furthermore, it is known
that the pro-inflammatory pathway is also induced by increased ROS levels [31]. Flow
cytometric analysis using the fluorescent probe DCHF-DA showed that the H. radiata
extract significantly reduced cytosolic ROS, confirming the results obtained by in vitro
assays. The antioxidant activity, studied through cell-free and cell-based assay, exhibited by
this extract could be linked to high phenolic content, confirming a correlation between these
constituents and antioxidant activity. Indeed, in this study, the leaf extract of H. radiata
showed a high amount of phenolic compounds, chicoric acid and luteolin derivatives being
the most abundant components. Since the antioxidant activity of these molecules is well
known and established in the literature [45–47], the total antioxidant activity exerted by H.
radiata extract could be attributed to these phytocomplex components.

It has been reported that LPS-induced COX-2 expression is reduced by antioxidant
treatment [48]. Therefore, the effect of H. radiata extract on COX-2 expression was evaluated.
COX-2 is easily induced by LPS, supporting the establishment of an inflammatory condition,
and represents the predominant protein at sites of inflammation. H. radiata extract was
able to significantly reduce the expression of this protein, thus reducing the ongoing
inflammatory state.

5. Conclusions

In popular tradition, wild plants, berries, and mushrooms have always represented
an undisputed food resource, sometimes even an economical one, especially during times
of war and famine. Among these species, the so called “phytoalimurgic plants” or WEPs,
edible species of wild flora, are still used in the traditional folklore, although in a clear
phase of decline due to the well-known and modified lifestyles and socio-cultural values
imposed by progress and globalization. To counteract the loss of these traditional habits
and enhance their value, our group was involved in a project aimed at biodiversity recovery
and the exploitation of Mediterranean wild plants and fruits [26,49,50].

The results presented herein for the first time demonstrated that the WEP H. radiata,
being a good source of polyphenols, amino acids, sugars, and polyunsaturated fatty acids
could be used as a vegetable or in food preparations. According with these valuable
data, a future aim will be to collect the species from different habitats and regions, to
compare their chemical content, confirming these data, and to select the best area for its
future cultivation and exploitation as new stress-tolerant crop. The agri-food sector could
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benefit from its exploitation and introduction to market, since this WEP has antioxidant
and anti-inflammatory properties which corroborate its health and nutritional potential.
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