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Abstract: Particulate matter (PM) has deleterious consequences not only on the respiratory system
but also on essential human organs, such as the heart, blood vessels, kidneys, and liver. However,
the effects of PM inhalation on skeletal muscles have yet to be sufficiently elucidated. Female
C57BL/6 or mt-Keima transgenic mice were randomly assigned to one of the following four groups:
control (CON), PM exposure alone (PM), treadmill exercise (EX), or PM exposure and exercise (PME).
Mice in the three-treatment group were subjected to treadmill running (20 m/min, 90 min/day for
1 week) and/or exposure to PM (100 µg/m3). The PM was found to exacerbate oxidative stress
and inflammation, both at rest and during exercise, as assessed by the levels of proinflammatory
cytokines, manganese-superoxide dismutase activity, and the glutathione/oxidized glutathione ratio.
Furthermore, we detected significant increases in the levels of in vivo mitophagy, particularly in
the PM group. Compared with the EX group, a significant reduction in the level of mitochondrial
DNA was recorded in the PME group. Moreover, PM resulted in a reduction in cytochrome c
oxidase activity and an increase in hydrogen peroxide generation. However, exposure to PM had
no significant effect on mitochondrial respiration. Collectively, our findings in this study indicate
that PM has adverse effects concerning both oxidative stress and inflammatory responses in skeletal
muscle and mitochondria, both at rest and during exercise.

Keywords: particulate matter; oxidative stress; skeletal muscle; mitochondria; in vivo mitophagy;
treadmill exercise

1. Introduction

Particulate matter (PM) is primarily derived from the combustion of coal, vehicle
exhausts, and diverse industrial processes. It forms secondarily in the atmosphere through
intricate chemical reactions involving sulfur dioxide and nitrogen oxides [1,2]. The size
of PM is commonly classified as either coarse (PM10 < 10 µm) or fine (PM2.5 < 2.5 µm) [3].
When inhaled, suspended PM enters the body, and while coughing and saliva can remove
some of the inhaled PM10 particles from the oral and nasal cavities, the remaining PM2.5
particles can readily penetrate the distal parts of the lungs, depositing in the alveoli [4–6].
As PM2.5 particles attach to alveolar tissues and can circulate in the bloodstream, acute or
chronic exposure to PM can potentially contribute to an increase in systemic inflammation
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and oxidative stress [7–9]. Such exposure can accordingly exacerbate any preexisting respi-
ratory, cardiovascular, and endocrine system disorders, including hypertension, chronic
obstructive pulmonary disease, asthma, and type 2 diabetes [10–12].

Skeletal muscles play essential roles not only in movement but also as sites for a
range of key biochemical processes, including the production of myokines, regulation of
hormones, energy metabolism via the exchange of extracellular metabolites and oxygen,
and intracellular signaling [13,14]. Evidence obtained to date indicates that similar to other
organs, the detrimental effects of PM on skeletal muscle are associated with the circulation
of proinflammatory cytokines stimulated by the presence of PM accumulating in the lungs.
However, these discoveries are primarily based on the findings of in vitro studies [15–17],
making it difficult to identify any specific systemic mechanisms. Accordingly, gaining
more meaningful insights into the effects of oxidative stress and inflammatory responses
provoked by PM deposition in the lung on skeletal muscle function and integrity, requires
overcoming the limitations of in vitro studies by developing animal models that mimic
atmospheric inhalation of particulate matter.

Prolonged aerobic exercise offers numerous health benefits, including enhancement of
antioxidant and immune functions, which can contribute to inhibiting excessive inflamma-
tory responses and the generation of reactive oxygen species (ROS), particularly in skeletal
muscle [18–20]. Under normal physiological conditions, ROS play a key role in various
cellular activities, including cellular energy metabolism, signal transduction, and the reg-
ulation of gene expression. However, when produced in excess, they can cause damage
to cellular biomolecules, including lipids, proteins, and nucleic acids, thereby promoting
cellular aging and eventually cell death [21]. High-intensity acute exercise, accompanied by
a rapid increase in oxygen consumption, promotes excessive ROS production, leading to
an imbalance in the oxidative–antioxidative homeostasis of cells [22]. However, in skeletal
muscle adapted through long-term endurance training, the fibers undergo various struc-
tural adaptations and an increase in antioxidant enzyme activity, enhancing the capacity
to adapt to high-intensity acute exercises and reducing oxidative stress levels [23,24]. The
plasticity of skeletal muscle to adapt to exercise-related stress is characterized by an increase
in myofibrillar cross-sectional area and changes in myofibrillar composition, promoted by
resistance training and associated increases in metabolic and biochemical capacity. These
adaptations are accompanied by morphological and functional changes, particularly in
the mitochondria [25], the primary site of ROS production in response to exercise [26].
Morphological and functional changes in mitochondria, pivotal in cellular respiration and
signal transduction, often correlate with elevated levels of oxidative stress in cells, and
evidence indicates that PM may also influence mitochondrial homeostasis by inducing
ROS production and inflammation [27].

The beneficial effects of exercise on the human body are widely acknowledged, but
the repercussions of inhaling PM during physical activity are still being assessed, with a
major focus on cardiorespiratory complications [28]. In this context, in the present study
we sought to examine the effects of PM inhalation during exercise on oxidative stress,
inflammatory responses, and mitochondrial function in the skeletal muscle of mice.

2. Materials and Methods
2.1. Experimental Animals

To eliminate the potential effects of testosterone on the accumulation of ROS and
mitochondria-mediated cell death [29,30], female C57BL/6 mice (8 weeks old) were ran-
domly divided into one of the following four groups: control (CON), PM exposure (PM),
treadmill exercise (EX), and PM exposure + exercise (PME). For the study of in vivo mi-
tophagy, mt-Keima transgenic (heterozygous type (+/−) FVB/N) mice (kindly provided by
Dr. Jeanho Yun, Dong-A University) were bred and maintained in a specific pathogen-free
facility. These mice harbor a mitochondria-targeting sequence derived from COX VIII that
binds to the pH-dependent fluorescent protein Keima, thereby facilitating the detection
of mitophagy. This model reflects the physiological status of mitochondria based on a
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dual-fluorescence probe, with a green fluorescence being indicative of normal conditions
(pH 8.0) and red fluorescence signifying acidic lysosomal conditions (pH 4.5) [31,32]. All
mice were housed in a temperature (22 ◦C)- and humidity (40–60%)-controlled environment
illuminated on a 12 h light/12 h dark cycle, and had free access to allergen-free food and
water. The protocols used in this study were approved by the Institutional Animal Care and
Use Committee (IACUC: approval number INHA 190211-616, approval date 11 February
2019; TJUS: approval number TJUS 2022-021, approval date: February 2022).

2.2. PM Chamber and Treadmill Exercise

Commercial PM samples (Urban Particulate Matter; NIST1648A, Sigma, St. Louis,
MO, USA) were used in a specifically constructed PM chamber designed to maintain a PM
concentration of 100 µg/m3 during experimental assessments (Korea patent registration:
10-2529955 and 10-2529956, Republic of Korea). PM inhalation and/or exercise treatments
were performed for 90 min per day for 7 days, with the incline and speed of the mouse
treadmill being set at 20 m/min on a 5-degree uphill slope (Figure 1).
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Figure 1. A schematic diagram of the particulate matter (PM) chamber used in this study. The PM
generator introduces fine dust into the chamber, the concentration of which is continuously monitored
in real-time using an AeroTrak Handheld Particle Counter 9303 (TSI, Shoreview, MN, USA). The PM
chamber and its main controller include a mouse treadmill with adjustable speed and duration.

2.3. In Vivo Mitophagy Analysis

To evaluate in vivo mitophagy, we utilized mt-Keima transgenic mice. For in vivo
observations, quadriceps muscle tissues obtained from mice were initially washed with
cold phosphate-buffered saline, after which 1.0-µm-thick sections were cut using a brain
slicer matrix and placed in confocal dishes (SPL). Nuclear staining was performed on
ice using Hoechst 33342 and 4,6-diamidino-2-phenylindole solution (5 µg/mL) for 5 min
(Thermo Fisher Scientific, Waltham, MA, USA). Fluorescence measurements were obtained
using a laser confocal microscope (LSM 510 META; ZEISS) with excitation wavelengths
of 488 nm (green) and 561 nm (red) and an emission wavelength of 620 nm. Changes in
mitophagy were based on assessments of the red to green fluorescence ratio. Statistical
analysis was conducted using ImageJ version 1.8.0 software.
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2.4. Quantification of Mitochondrial DNA

The mitochondrial DNA (mtDNA) was purified from total DNA using a Nucleospin
RNA Plus kit (MACHEREY-NAGEL, Düren, Nordrhein-Westfalen, Germany), with nuclear
DNA (nDNA) being isolated using standard protocols. To quantify the amounts of mtDNA
present per nuclear genome, we used the following primers pairs: mtDNA forward primer,
5′-CCTATCACCCTTGCCATCAT-3′ and mtDNA reverse primer, 5′-GAGGCTGTTG-
CTTGTGTGAC-3′; nuclear DNA forward primer, 5′-ATGGAAAGCCTGCCATCATG-3′

and nuclear DNA reverse primer, 5′-TCCTTGTTGTTCAGCATCAC-3′. The quantification
of relative copy number differences was performed using the ∆∆Ct method of the differ-
ence in threshold amplification between mtDNA and nuclear DNA. The RT-PCR thermal
cycling conditions were 95 ◦C for 15 min and 50 ◦C for 40 s.

2.5. Enzyme-Linked Immunosorbent Assay

Interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), su-
peroxide dismutase (SOD), and manganese superoxide dismutase (MnSOD) were measured
using a Quantikine™ ELISA kit (R&D System, Inc., NE Minneapolis, MN, USA). For each
assay, gastrocnemius muscle samples were prepared according to the manufacturer’s protocol.

2.6. Permeabilization of Muscle Fibers and Measurement of Respiration and H2O2 Generation

The permeabilization of muscle fibers and measurements of respiration and H2O2
production were performed using modified versions of previously described methods [33].
Samples of the red gastrocnemius muscle of mice (2–4 mg) were dissected and mechanically
separated. The muscle fibers were permeabilized for 30 min using saponin (30 µg/mL) in
buffer Z (pH 7.1; 30 mM KCl, 10 mM KH2PO4, 0.6 mg/mL BSA, 5 mM MgCl2-6H2O, 1 mM
EGTA, 105 mM K-MES) supplemented with 1 mM EGTA (wash buffer), after which the
preparations were washed three times with wash buffer. The permeabilized fiber bundles
thus obtained were utilized to simultaneously measure the rates of oxygen consumption
(OCR) and H2O2 generation using an Oroboros Oxygraph-2k device (O2k; OROBOROS
Instruments, Innsbruck, Austria). OCR was assessed using an oxygen probe, while the rate
of H2O2 production was evaluated using a green fluorescence sensor of the O2k-Fluo LED2
module. OCR measurements were standardized by incorporating antimycin A to account
for non-mitochondrial oxygen consumption. The production of H2O2 was determined
based on a standard H2O2 calibration curve.

2.7. Cyclooxygenase (COX) Activity Assay

COX activity was estimated using a COX activity assay (ab204699; Abcam, Cambridge,
UK) according to the manufacturer’s instructions. Fluorescence (λEx/Em = 535/587 nm)
was measured using a microplate reader in kinetic mode, and COX activity was expressed
as µU/mg.

2.8. Malondialdehyde (MDA) Measurements

For the determination of the levels of MDA in gastrocnemius muscle tissues, 20 mg
samples were initially homogenized in 250 µL of 7.5% trichloroacetic acid. After centrifuga-
tion and filtration, the resulting supernatants were combined with an equal volume of a
mixture containing 10% trichloroacetic acid and 0.5% TBA. The samples were then boiled
in a dry thermoblock for 30 min, followed by cooling. The absorbance of the TBA–MDA
complex thus obtained was measured at 532 nm and corrected for non-specific absorbance
at 600 nm to account for background noise.

2.9. Glutathione/Oxidized Glutathione Assay

Total and oxidized levels of glutathione (GSH and GSSG, respectively) were deter-
mined using a Glutathione Assay Kit provided by Cayman Chemical Company. Assays
were performed by initially homogenizing gastrocnemius muscles in cold buffer (50 mM
MES, pH 6 to 7, 1 mM EDTA) followed by centrifugation at 10,000× g for 15 min at 4 ◦C.
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The resulting supernatants were deproteinized using MPA reagent, followed by further
centrifugation at 3000× g for 2 min. The resulting supernatants were treated with TEAM
Reagent to quantify the total GSH present. To determine the levels of GSSG, we added 2-
vinylpyridine to the supernatants and determined the level of reduced GSH by subtracting
GSSG from the total GSH content.

2.10. Statistical Analysis

Data were analyzed using SPSS 22.0 software for statistics and GraphPad Prism 8
(v8.0.2, 2019) for visualization. The normality of the distribution for outcomes was assessed
using the Shapiro–Wilk test and QQ plot. The differences between groups were tested via
the student’s t-test, by comparing the groups. The interaction between PM exposure and
treadmill exercise was analyzed via a two-way analysis of variance (ANOVA). Test were
two-tailed, and significance was set at p < 0.05. All values are presented as the means and
standard error (SEM).

3. Results

To assess the generation of lipid peroxidation by-products in gastrocnemius muscles,
we measured the levels of MDA. Compared with the CON and EX groups, we detected a
significant increase in MDA levels in the two respective PM inhalation groups (p < 0.001;
Figure 2A). To assess the levels of proinflammatory cytokines, we measured the production
of IL-6, TNF-α, and IL-1β. Compared with the levels in mice in the CON group, the levels
of IL-6 were found to be 2.75-fold higher in the PM-treated mice (p < 0.001; Figure 2B).
Similarly, compared with the levels in the EX group, the levels of IL-6 were found to
be 49% higher in the PME group mice (p < 0.001). Likewise, compared with the levels
in the CON and EX groups, we detected 2.6- and 4.0-fold higher levels of TNF-α in the
PM and PME groups, respectively (p < 0.001; Figure 2C). Notably, two-way ANOVA re-
vealed a significant interaction between exercise and PM inhalation regarding TNF-α levels
(p < 0.05). Furthermore, we detected increases of 79% and 90% in IL-1β in response to the
PM and PME treatments, respectively (both p < 0.001; Figure 2D).

Antioxidants 2024, 13, x FOR PEER REVIEW 6 of 14 
 

 

Figure 2. Inflammatory response levels in the gastrocnemius muscle of C57BL/6 mice exposed to 

particulate matter during exercise. (A) MDA (malondialdehyde), (B) IL-6, (C) TNFα, and (D) IL-1β. 

Control (CON, n = 8), particulate matter exposure (PM, n = 8), exercise (EX, n = 8), and particulate 

matter exposure + exercise (PME, n = 8). Data are expressed as the means ± SEM. Statistical signifi-

cance is assigned as * p < 0.05, ** p < 0.01, *** p < 0.001 vs. CON, # p < 0.05, ## p < 0.01, ### p < 0.001 vs. 

PM and $$$ p < 0.001 vs. EX. Two-way ANOVA results were shown with p values. Int, interaction. 

We detected no significant differences among groups regarding total SOD levels. The 

levels of MnSOD, the only SOD enzyme located within the mitochondrial matrix, were 

found to be 30% lower in the PM group compared with that in the CON group (p < 0.01; 

Figure 3B) and 40% lower in the PME group compared with that in the EX group (p < 0.01). 

We also observed a significant reduction of 7.3% in the total GSH content in response to 

PM treatment (p < 0.05), and a reduction of 17% in PME mice compared with that in the 

EX group (p < 0.01; Figure 3C). Conversely, we recorded a 29% increase in the levels of 

oxidized GSH (GSSG) in the PM group compared with that in the CON group (p < 0.05), 

and an increase of 19% in the PME group compared with that in the EX group (p < 0.05; 

Figure 3D). Moreover, compared with the CON and EX groups, we detected reductions 

of 25% and 28% in the ratio of GSH to GSSG (GSH/GSSG) in the respective groups exposed 

to PM (p < 0.01; Figure 3E). 

 

Figure 2. Inflammatory response levels in the gastrocnemius muscle of C57BL/6 mice exposed
to particulate matter during exercise. (A) MDA (malondialdehyde), (B) IL-6, (C) TNFα, and
(D) IL-1β. Control (CON, n = 8), particulate matter exposure (PM, n = 8), exercise (EX, n = 8),
and particulate matter exposure + exercise (PME, n = 8). Data are expressed as the means ± SEM.
Statistical significance is assigned as * p < 0.05, ** p < 0.01, *** p < 0.001 vs. CON, # p < 0.05, ## p < 0.01,
### p < 0.001 vs. PM and $$$ p < 0.001 vs. EX. Two-way ANOVA results were shown with p values.
Int, interaction.
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We detected no significant differences among groups regarding total SOD levels. The
levels of MnSOD, the only SOD enzyme located within the mitochondrial matrix, were
found to be 30% lower in the PM group compared with that in the CON group (p < 0.01;
Figure 3B) and 40% lower in the PME group compared with that in the EX group (p < 0.01).
We also observed a significant reduction of 7.3% in the total GSH content in response to
PM treatment (p < 0.05), and a reduction of 17% in PME mice compared with that in the
EX group (p < 0.01; Figure 3C). Conversely, we recorded a 29% increase in the levels of
oxidized GSH (GSSG) in the PM group compared with that in the CON group (p < 0.05),
and an increase of 19% in the PME group compared with that in the EX group (p < 0.05;
Figure 3D). Moreover, compared with the CON and EX groups, we detected reductions of
25% and 28% in the ratio of GSH to GSSG (GSH/GSSG) in the respective groups exposed
to PM (p < 0.01; Figure 3E).
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(MnSOD), (C) total glutathione (tGSH), (D) glutathione disulfide (oxidized glutathione, GSSG), and
(E) GSH/GSSG ratio. Control (CON, n = 8), particulate matter exposure (PM, n = 8), exercise (EX,
n = 8), and particulate matter exposure + exercise (PME, n = 8). Data are expressed as the
means ± SEM. Statistical significance is defined as * p < 0.05, ** p < 0.01, *** p < 0.001 vs. CON,
# p < 0.05, ### p < 0.001 vs. PM and $ p < 0.05, $$ p < 0.01 vs. EX.

Further analysis of the levels of in vivo mitophagy, using model transgenic mice that
express the pH-dependent fluorescent protein mt-Keima, revealed a significant increase in
the levels of mitophagy (as indicated by an increase in the red/green fluorescence ratio) in
the PM, EX, and PME groups compared with that in the CON group (p < 0.001). Interest-
ingly, although we detected a significant increase in mitophagy in mice subjected to exercise
(p < 0.001) compared with the CON group mice, this increase was significantly reversed
following exposure to PM (p < 0.01; Figure 4A). To examine mitochondrial biogenesis, we
assessed the ratio of mtDNA to nDNA and, in line with expectations, detected a significant
exercise-induced increase in this ratio in the CON and PM group mice (p < 0.001; Figure 4B).
However, compared with the CON or EX groups, we detected no significant difference in
those mice exposed to PM.

To evaluate mitochondrial function, we initially analyzed the activity of mitochon-
drial cytochrome c oxidase (COX), which plays an essential role in ATP production, and
accordingly detected reductions in activity of 8.5% and 32% in PM vs. CON (p < 0.01),
and PME vs. EX (p < 0.001) comparisons, respectively (Figure 5A). Moreover, we detected
an interactive effect between PM inhalation and exercise (p < 0.05). We then evaluated
mitochondrial respiration and H2O2 generation in permeabilized red gastrocnemius muscle
fiber bundles, and in line with expectations, recorded an exercised-induced increase in the
rate of mitochondrial complex I + II oxygen consumption (+glutamate, malate, ADP, and
succinate) (p < 0.001; Figure 5B). In contrast to COX activity, compared with the CON and
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EX groups, we detected no significant changes in the corresponding groups in which mice
had been exposed to PM, although non-significant reductions in levels were detected in
the PME group compared with those in the EX group. Similarly, there were no significant
exercise-associated differences between the CON, PM, EX, and PME groups concerning
respiratory control ratio values (p < 0.001; Figure 5C). However, exercise was found to
promote a significant increase in the generation of state I H2O2 (p < 0.001), with exposure
PM also inducing the production of 48% and 60% higher levels of H2O2 compared with
those of CON and EX groups, respectively (p < 0.001; Figure 5D).

Antioxidants 2024, 13, x FOR PEER REVIEW 7 of 14 
 

Figure 3. Redox status in the gastrocnemius skeletal muscle of C57BL/6 mice exposed to particulate 

matter during exercise. (A) Total superoxide dismutase (SOD), (B) manganese superoxide dis-

mutase (MnSOD), (C) total glutathione (tGSH), (D) glutathione disulfide (oxidized glutathione, 

GSSG), and (E) GSH/GSSG ratio. Control (CON, n = 8), particulate matter exposure (PM, n = 8), 

exercise (EX, n = 8), and particulate matter exposure + exercise (PME, n = 8). Data are expressed as 

the means ± SEM. Statistical significance is defined as * p < 0.05, ** p < 0.01, *** p < 0.001 vs. CON, # p 

< 0.05, ### p < 0.001 vs. PM and $ p < 0.05, $$ p < 0.01 vs. EX. 

Further analysis of the levels of in vivo mitophagy, using model transgenic mice that 

express the pH-dependent fluorescent protein mt-Keima, revealed a significant increase 

in the levels of mitophagy (as indicated by an increase in the red/green fluorescence ratio) 

in the PM, EX, and PME groups compared with that in the CON group (p < 0.001). Inter-

estingly, although we detected a significant increase in mitophagy in mice subjected to 

exercise (p < 0.001) compared with the CON group mice, this increase was significantly 

reversed following exposure to PM (p < 0.01; Figure 4A). To examine mitochondrial bio-

genesis, we assessed the ratio of mtDNA to nDNA and, in line with expectations, detected 

a significant exercise-induced increase in this ratio in the CON and PM group mice (p < 

0.001; Figure 4B). However, compared with the CON or EX groups, we detected no sig-

nificant difference in those mice exposed to PM. 

 

Figure 4. In vivo mitophagy levels in the skeletal muscles of mt-Keima mice were modified by 

particulate matter exposure and exercise. (A) Representative confocal images showing superim-

posed red/green signals in the skeletal muscle of mt-Keima mouse. The yellow signal Indicates 

merged red and green fluorescence. The white square indicates area shown magnified in each in-

set (4x magnification). Control (CON, n = 4), particulate matter exposure (PM, n = 4), exercise (EX, 

n = 4), and particulate matter exposure + exercise (PME, n = 4). (B) Level of mitochondrial biogene-

sis (mtDNA to nDNA ratio). Control (CON, n = 8), particulate matter exposure (PM, n = 8), exer-

cise (EX, n = 8), and particulate matter exposure + exercise (PME, n = 8). Data are presented as the 

mean ± SEM. Statistical significance is assigned as *** p < 0.001 vs. CON, ## p < 0.01 and ### p < 0.001 

vs. PM, and $$ p < 0.01 vs. EX. Scale bar, 50 μm. 

To evaluate mitochondrial function, we initially analyzed the activity of mitochon-

drial cytochrome c oxidase (COX), which plays an essential role in ATP production, and 

accordingly detected reductions in activity of 8.5% and 32% in PM vs. CON (p < 0.01), and 

PME vs. EX (p < 0.001) comparisons, respectively (Figure 5A). Moreover, we detected an 

interactive effect between PM inhalation and exercise (p < 0.05). We then evaluated mito-

chondrial respiration and H2O2 generation in permeabilized red gastrocnemius muscle 

fiber bundles, and in line with expectations, recorded an exercised-induced increase in the 

Figure 4. In vivo mitophagy levels in the skeletal muscles of mt-Keima mice were modified by
particulate matter exposure and exercise. (A) Representative confocal images showing superim-
posed red/green signals in the skeletal muscle of mt-Keima mouse. The yellow signal Indicates
merged red and green fluorescence. The white square indicates area shown magnified in each inset
(4x magnification). Control (CON, n = 4), particulate matter exposure (PM, n = 4), exercise (EX,
n = 4), and particulate matter exposure + exercise (PME, n = 4). (B) Level of mitochondrial biogenesis
(mtDNA to nDNA ratio). Control (CON, n = 8), particulate matter exposure (PM, n = 8), exercise
(EX, n = 8), and particulate matter exposure + exercise (PME, n = 8). Data are presented as the
mean ± SEM. Statistical significance is assigned as *** p < 0.001 vs. CON, ## p < 0.01 and ### p < 0.001
vs. PM, and $$ p < 0.01 vs. EX. Scale bar, 50 µm.
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(D) basal rate of hydrogen peroxide (H2O2) generation. Control (CON, n = 8), particulate matter
exposure (PM, n = 8), exercise (EX, n = 8), and particulate matter exposure + exercise (PME, n = 8).
Data are presented as the means ± SEM. Statistical significance is assigned as ** p < 0.01, *** p < 0.001
vs. CON, # p < 0.05 vs. PM and $$$ p < 0.05 vs. EX. Two-way ANOVA results were shown with
p values. Int, interaction; EX, exercise.

4. Discussion

It is assumed that PM has adverse effects on skeletal muscle integrity, either through
direct deposition in skeletal muscle tissues or by inducing the release of proinflammatory
cytokines in the lungs. In this study, we accordingly examined the effects of PM inhalation
on the redox status, inflammatory responses, and mitochondrial function of skeletal muscle.
To date, experimental animals have been injected with or exposed to different concentra-
tions of PM to gain insights into the mechanisms by which these particles influence the
function and integrity of different body tissues [34]. In the present study, we developed a
novel experimental model based on a PM generation chamber containing a mouse treadmill
designed to mimic actual human PM inhalation conditions (Figure 1), using which, we
examined the effects of PM inhalation during exercise on selected dependent variables. The
findings of several studies conducted to date have indicated that exposure to PM increases
oxidative stress in the pulmonary and cardiovascular systems, leading to lipid peroxidation
and subsequent downstream inflammatory signals [9,35]. It has also been demonstrated
that in addition to the lungs, deposits of PM can accumulate in a number of other organs,
including the brain, liver, heart, and peripheral blood vessels [13,36]. These findings ac-
cordingly indicate that by triggering local and/or systemic inflammation and oxidative
stress, prolonged exposure to PM may heighten the risk of direct damage to multiple
vital organs [37]. In the present study, we also detected elevated levels of lipid oxidation
(as evaluated by the oxidative stress-related production of MDA) in the gastrocnemius
muscle of mice exposed to PM, signifying that PM may also have a detrimental effect on
skeletal muscles.

Biological ROS and reactive nitrogen species can be generated in different cellular
compartments, including the mitochondria, peroxisomes, endoplasmic reticulum, and
phagocytes. An excessive production of ROS can disrupt cellular homeostasis and compro-
mise the immune system [38], and multiple studies have provided evidence of elevated
levels of oxidative stress in skeletal muscle following exercise, associated with the produc-
tion of diverse ROS free radicals, including superoxide anion radicals (O2

•−), hydroxyl
radicals (·OH), hydroperoxyl radicals (HOO.), singlet oxygen (1O2), and free nitrogen radi-
cals [39]. Consistently, in the present study we established the inhalation of PM exacerbates
oxidative stress, as evidenced by a reduction in MnSOD activity and GSH/GSSG levels.
However, heightened oxidative stress in skeletal muscles, resulting from either exercise
or PM exposure, can engender varying degrees of adaptability. For example, an acute
spike in exercise-induced oxidative stress is unlikely to culminate in chronic problems.
However, due to the establishment of higher antioxidant capacities promoted by regular
exercise [40,41], this may not hold true for PM exposure.

Concerning cytokine production, a previous study on humans, in which the authors
measured the levels of IL-6 and TNF-α in the exhaled breath condensate of individuals
with and without asthma, revealed a strong correlation between the concentration of PM
and elevated levels of proinflammatory cytokines in people with asthma [42]. Consistently,
other studies have established a positive association between short-term exposure to PM10
and elevated levels of circulating IL-1β, IL-6, and TNF-α in the general adult population.
These positive correlations accordingly indicate an association between air pollution and
heightened cardiovascular risk [43]. Furthermore, the findings of other studies have re-
vealed elevated levels of proinflammatory cytokines in different organs, including the
brain, kidneys, and lungs, of animals exposed to different concentrations of PM, either via
inhalation or injection [37,44–46]. In the present study, we similarly found that respiratory
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inhalation of PM during exercise induced an increase in proinflammatory cytokines in the
skeletal muscles of mice. Rapid fluctuations in the levels of IL-6, IL-1β, and TNF-α within
skeletal muscle imply their role in regulating muscle cell degradation and apoptosis, as
well as muscle fiber atrophy and hypertrophy [47]. These responses would thus tend to
indicate that prolonged exposure to heightened levels of proinflammatory cytokines is
associated with unfavorable physiological outcomes [48]. Notably, we detected a correla-
tion between PM inhalation and exercise regarding their effects on TNF-α, indicating the
necessity for further mechanistic studies to gain a more comprehensive understanding of
the specific mechanisms by which PM inhalation stimulates the release of TNF-α during
exercise. Interestingly, in addition to modifying the inflammatory cytokine profile, we
also established that PM induces changes in the activity of MnSOD, an enzyme found
exclusively in the mitochondrial matrix. Similar to the findings of previous studies indi-
cating that PM also inhibits MnSOD activity in various different tissues, in addition to
its effect on muscle tissue, we found that PM significantly reversed the exercise-induced
increase in MnSOD activity. Additionally, it has previously been observed that the lung
tissues of mice exposed to high concentrations of PM2.5 for three months were character-
ized by a significantly lower GSH/GSSG ratio, while the findings of another study on
PM2.5-induced lung fibrosis revealed a reduction in the GSH/GSSG ratio and MnSOD
activity [49,50]. It is worth noting that the gastrocnemius muscle of both the control and ex-
ercise groups of mice examined in the present study were characterized by reductions in the
GSH/GSSG ratio, which we speculate could be attributable to the systemic dissemination of
inflammatory factors induced by PM in the lungs and airways, as stated in the introduction.
However, it is also plausible that PM with extremely small particle size can be deposited
directly in muscle tissue. Accordingly, further research is required to determine the precise
contributory mechanisms.

Muscle loss and weakness associated with reduced physical activity and exercise are
common features of a range of disorders, including diabetes, cancer, kidney failure, and
heart failure, and occur as part of the general aging process, a condition referred to as
sarcopenia [51]. This catabolic state is associated with marked changes in mitochondrial
content, morphology, and function. A deterioration in skeletal muscle functional capac-
ity may involve a reduction in oxidative capacity and resistance to fatigue [52], which
may occur because of mitochondrial dysfunction. Mitochondria are the primary energy-
producing organelles in cells that support a diverse range of biological processes associated
with metabolism, growth, and the regeneration of skeletal muscle [53]. The maladaptive
responses linked to malfunctioning mitochondria are attributed to changes in mitochon-
drial quality control, which includes mitochondrial synthesis (biogenesis), remodeling
(dynamics), and degradation (mitophagy) [54,55]. Physical activity contributes to enhanc-
ing mitochondrial function by activating mitochondrial biogenesis and mitophagy, which
may underlie the beneficial effects of physical activity in the context of several diseases [56].
As anticipated, we discovered that exercise was associated with a significant increase
in the mtDNA/nDNA ratio of skeletal muscle. Nevertheless, we found no evidence to
indicate that PM inhalation influences mitochondrial biogenesis, which thereby tends
to indicate that mitochondrial quality control, which reflects mitochondrial homeostasis,
is activated by other factors. Mitophagy has frequently been evaluated by quantifying
proteins associated with this process. For example, it has been established that in skeletal
muscle, mitophagy is mediated via the activation of Unc-51-like autophagy-activating
kinase (ULK1), resulting in the formation of autophagosomes. Additionally, the expression
of BNIP3/NIX has been found to trigger the initiation of mitophagy. Subsequently, light
chain 3-I (LC3-I) undergoes conversion to a lipid-modified form, light chain 3-II (LC3-II,
the phosphatidylethanolamine conjugated form of LC3-I). Additionally, the autophagoso-
mal structural protein, p62/SQSTM1, recruits damaged mitochondria, which leads to the
clearance of damaged mitochondria via the degradative activity of LC3. Finally, lysosomal
degradative enzymes degrade the mitochondria after several additional processes [57,58].
However, although multiple studies have quantitatively analyzed these proteins to as-
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sess mitophagy, it is notably more difficult to characterize the dynamics of mitophagy
in vivo by scrutinizing these proteins as a static representation. Consequently, in this
study we employed an in vivo model of mitophagy, using mt-Keima mice, which express
a pH-dependent fluorescent protein, mt-Keima, thereby enabling a more intuitive and
accurate assessment of mitophagy [32]. Using this model, we established that exercise was
associated with an increase in in vivo mitophagy, as previously observed in other studies.
Moreover, the level was significantly increased by the PM, with values 4–6 times higher
than those observed in the EX and PME groups. Accordingly, this in vivo PM-induced
increase in mitochondrial removal signaling within skeletal muscles can be considered a
novel finding of the present study. Nevertheless, the systemic effects of PM remain unclear,
and it is yet to be established whether localized inflammatory and oxidative stresses are
promoted directly by the deposition of PM in tissues. In addition, further studies are
needed to determine whether PM molecules mediate regulation of the specific proteins
involved in mitophagy.

Using permeabilized red gastrocnemius muscle fibers to assess mitochondrial function,
we detected increases in both O2 consumption and respiratory control ratio for co mplex
I + II in response to exercise, whereas levels tended to decline in mice exposed to PM
treatment, albeit non-significantly. Contrastingly, exposure to PM induced a significant
increase in the production of H2O2, with the most pronounced effects being detected in
response to the inhalation of PM during exercise. Collectively, these findings indicate that
although PM triggers a marked increase in mitochondrial ROS production, this does not
appear to significantly impair mitochondrial respiration. This outcome would imply that
the implicated reactions are controlled dose-dependently by pollutants, such as PM, which
should be verified by further experiments assessing different PM exposure concentrations,
and durations and intensities of exercise. As an initial investigation into the impact of PM
hyper-inhalation on skeletal muscles during exercise, the findings of this study certainly
merit additional validation regarding diseases affecting muscle. Models of sarcopenia,
an age-related degeneration of skeletal muscle, can also be used. Furthermore, conduct-
ing additional studies to examine the effects of different types and intensities of exercise
could contribute to the development of appropriate exercise programs to counteract the
potentially detrimental effects of exposure to ambient air pollution, particularly that at-
tributable to PM. Additionally, it remains unclear whether intramuscular adhesion of PM
or circulatory effects of inflammatory responses in the respiratory system, such as the lungs,
are responsible. Any recommendations in this regard should, nevertheless, consider the
tradeoff between the benefits of physical activity and the adverse effects of PM inhalation.

5. Conclusions

PM adheres to the lung bronchi and alveoli, causing localized inflammation. Given its
small particle sizes, PM2.5 can circulate systemically, and has potentially adverse effects
on the heart, blood vessels, liver, and kidneys. Our findings in this study reveal that
inhaling PM also exacerbates inflammation and oxidative stress in skeletal muscle. We
also observed mitochondrial oxidative stress, which is comparable to excessive inhalation
of PM during exercise (Figure 6). Further studies should focus on analyzing the effects
of exposure to different concentrations of PM, in conjunction with different intensities
and durations of exercise, which could contribute to guiding exercise schedules for PM-
polluted environments.
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Figure 6. A graphical summary depicting the impact of particulate matter (PM) and exercise on
mouse skeletal muscle and mitochondrial function. The exercise group exhibited an increase in mito-
chondrial biogenesis (mtDNA/nDNA), mitophagy, and mitochondrial respiration. PM inhalation
during treadmill exercise leads to increased oxidative stress and elevated levels of proinflammatory
cytokines, as evaluated based on analyses of malondialdehyde (MDA) and interleukin-6 (IL-6), tumor
necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β). The ratio of reduced (GSH) to oxidized
(GSSG) glutathione levels is reduced in response to PM exposure, and mitochondrial biogenesis and
mitophagy are reduced in the muscles of mice exposed to PM during exercise.
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