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Abstract: During intrauterine life, external stimuli including maternal nutrition, lifestyle, socioe-
conomic conditions, anxiety, stress, and air pollution can significantly impact fetal development.
The human brain structures begin to form in the early weeks of gestation and continue to grow
and mature throughout pregnancy. This review aims to assess, based on the latest research, the
impact of environmental factors on fetal and neonatal brain development, showing that oxidative
stress and inflammation are implied as a common factor for most of the stressors. Environmental
insults can induce a maternal inflammatory state and modify nutrient supply to the fetus, possibly
through epigenetic mechanisms, leading to significant consequences for brain morphogenesis and
neurological outcomes. These risk factors are often synergic and mutually reinforcing. Fetal growth
restriction and preterm birth represent paradigms of intrauterine reduced nutrient supply and inflam-
mation, respectively. These mechanisms can lead to an increase in free radicals and, consequently,
oxidative stress, with well-known adverse effects on the offspring’s neurodevelopment. Therefore, a
healthy intrauterine environment is a critical factor in supporting normal fetal brain development.
Hence, healthcare professionals and clinicians should implement effective interventions to prevent
and reduce modifiable risk factors associated with an increased inflammatory state and decreased
nutrient supply during pregnancy.

Keywords: fetal neurodevelopment; maternal nutrition; anxiety; depression; air pollution;
socioeconomic status; inflammation; nutrient supply; oxidative stress

1. Introduction

Human brain development begins around the second–third gestational week and
extends through childhood, with a complex interplay of genetics, epigenetics, and environ-
ment factors influencing both short- and long-term outcomes [1]. The period between the
8th and 18th gestational weeks plays a pivotal role in the development of the neocortex,
which is responsible for sensation, action, cognition, and consciousness. During this time
window, extensive neurogenesis and cellular migration occur, wherein Neural Progenitor
Cells (NPCs) undergo division and differentiation into neurons and glia, the two fundamen-
tal cell types of the nervous system. The differentiation of brain structures occurs around
mid-pregnancy, along with the development of the cerebellum and the onset of myelination.
During the third trimester, a rapid brain growth, particularly in the cerebral cortex, with
increased myelination, further maturation of sensory organs, and refinement of neural
connections, occurs [2]. Finally, the blood–brain barrier is established [3]. Any derangement
of these developmental processes may lead to severe short- and long-term consequences.

Before and during pregnancy, maternal environmental exposures are known to impact
not only on short-term intrauterine development, but also on long-term offspring overall
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health, increasing the risk of non-communicable diseases during adulthood, such as cancer,
heart disease, obesity, or diabetes. Prenatal exposures to external stimuli may lead to
modifications in fetal and placental phenotype through epigenetic mechanisms, resulting
in the “reprogramming” of organ structure, physiology, and metabolism [4–7]. Organs
with greater plasticity, like the brain, are more susceptible to these effects. Although the
significant role of the prenatal environment in determining the adult phenotype is more and
more supported, the molecular mechanisms underlying the associations between external
factors and neurodevelopment alterations are poorly understood.

Several human studies investigated the associations between the external maternal
environment and offspring neurodevelopment by using infant questionnaires and tests,
while a few studies explored the association with fetal brain morphology and growth by
utilizing ultrasound or Magnetic Resonance Imaging (MRI) during pregnancy. Neverthe-
less, as the brain’s development is a dynamic and multifaced process influenced by both
genetic, environmental, and experiential factors, assessing the real causative effect of a
single exposure on brain development is often challenging. Additionally, external stimuli
often act synergically. Therefore, we included animal studies as experimental models
providing potential causal explanations for the pathophysiological pathways linking single
maternal exposures to fetal neurodevelopment.

The present review aims to examine the available evidence on the impact of single
maternal environmental exposures, diet, and lifestyle on intrauterine brain development
and child neurodevelopmental outcome. An extensive literature search was performed
using Pubmed and Scopus with the following terms: “maternal nutrition” [All Fields]
OR “Mediterranean diet” [All Fields] OR “iodine” [All Fields] OR “docosahexaenoic acid
(DHA)” [All Fields] OR “Iron” [All Fields] OR “anemia” [All Fields] OR “stress” [All
Fields] OR “Depression” [All Fields] OR “Anxiety” [All Fields] OR “Alcohol” [All Fields]
OR “Smoke” [All Fields] OR “Air pollution” [All Fields] OR “Socioeconomic status” [All
Fields] OR “Inflammation” [All Fields] AND “fetal development” [All Fields]) OR (“fetal
disease” [All Fields] OR “neurodevelopmental disorders” [All Fields] OR “brain alterations”
[All Fields] OR “neurodevelopmental” [All Fields]. Additionally, we conducted a manual
search to obtain articles listed in the reference lists of articles found in the initial search.
The search encompassed observational, retrospective, and prospective studies, as well
as case–control, cohort studies, systematic reviews, and meta-analyses. It was limited
to English-language studies published within the last 15 years (2009–2024). The review
included all articles providing sufficient information on the association between external
stimuli and fetal neurodevelopment, including both human and animal studies.

2. Environment, Lifestyle, and Specific Maternal Phenotypes and Risk Factors

Table 1 summarizes the primary human studies assessing the association between
external stimuli and fetal brain abnormalities. A detailed description of the main maternal
environmental stressors potentially affecting intrauterine neurogenesis is provided in the
following paragraphs.

Table 1. Detailed summary of the primary human studies on fetal neurodevelopment and maternal
risk factors.

Author, Year Type of Study Investigated Variable Population Main Findings

A. Nakaki [8],
2023

Randomized clinical trial
Mediterranean Diet 90 fetal MRI

TBV is positively associated with
walnut intake and biomarkers of
olive oil consumption.

Stress 90 fetal MRI The stress reduction group has larger
volume of left anterior cingulate lobe.

E. Ogundipe [9],
2018

Double-blind randomized
placebo-controlled study DHA 84 neonatal MRI

Males born from supplemented
mothers (600 mg of DHA) showed
larger volume in total brain, cortex,
whole gray matter and corpus
callosum compared to controls.
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Table 1. Cont.

Author, Year Type of Study Investigated Variable Population Main Findings

A. Rifkin-Graboi [10],
2013

Prospective
observational study Depression 157 neonatal MRI Changes in microstructure of the

right amygdala.

C. Lebel [11],
2016

Prospective
observational study Depression 52 children MRI altered gray matter structure

in children.

Y. Wu [12],
2020 Prospective cohort study Anxiety 193 fetal MRI

Reduced fetal hippocampal volume,
particularly in the left hippocampus.
Maternal anxiety and stress are
associated with changes in fetal
cortical gyrification index of the
frontal and temporal lobes.

S. W. Jacobson [13],
2017

Prospective
observational study Alcohol 32 children MRI Smaller CC in infants with

FAS diagnoses.

A. Roos [14],
2021

Prospective
observational study Alcohol 83 children MRI

Alterations in white matter
microstructural integrity in children
with PAE.

C. Çetin [15],
2023

Prospective
observational study Smoke 250 fetal US

Significant reduction in second
trimester measurement compared to
non-exposed fetuses.

B. S. Peterson [16],
2015 Cross-sectional study PAH exposure 40 children MRI

Reduction in the surface area of WM,
predominantly confined to the left
hemisphere of the brain.

R. L. Triplett [17],
2022

Prospective longitudinal
cohort study

Prenatal
social disadvantage 280 neonatal MRI

Reductions in WM, cortical gray
matter, and subcortical gray matter
volumes and cortical folding.

Y. Lu [18],
2021

Prospective longitudinal
cohort study Socioeconomic status 144 fetal MRI

Higher socioeconomic status is
associated with:

- increased volumes of the
developing fetal brain WM,
DGM, cerebellum, and
brainstem during pregnancy

- decreased CGM volume.

M. P. Herzberg [19],
2023

Longitudinal
observational study Socioeconomic status 241 neonatal MRI

Socioeconomic disadvantages are
associated with higher cortisol level
and smaller amygdala volumes.

MRI: magnetic resonance imaging, TBV: total brain volume, DHA: docosahexaenoic acid, CC: corpus callo-
sum, FAS: fetal alcohol syndrome, PAE: prenatal alcohol exposure, US: ultrasound, HC: head circumference,
BPD: biparietal diameter, LV: lateral ventricular, CM: cisterna magna, PAH: polycyclic aromatic hydrocarbon,
WM: white matter, DGM: deep gray matter, and CGM: cortical gray matter.

Table 2 summarizes the available animal studies on the effects of external factors on
the offspring’s neurodevelopment. Animal models provide the opportunity to control
the type, intensity, duration, and timing of maternal stressors, as well as to observe the
interaction of the mother with her offspring in a controlled model. Furthermore, pregnancy
in animals has a shorter duration than in humans (rats = 21.5 days and monkeys = 165 days
vs. human = 270 days), allowing researchers to investigate the long-term outcomes in a
shorter time frame.

Table 2. Detailed summary of the animal studies on fetal neurodevelopment and maternal risk factors.

Author, Year Model Investigated Variable Main Findings

Belluscio L [20],
2014 Mouse Low protein diet Delays in the surface righting reflex and negative

geotaxis response.

Fragoso J [21],
2021 Rat Low protein diet Reduction in the expression of BDNF in the

hypothalamus and motor cortex.

Li C [22],
2017 Baboon Undernourished

Suppression of neurotrophic factors, dysregulated
cell proliferation, and impaired glial maturation
and neural synthesis.
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Table 2. Cont.

Author, Year Model Investigated Variable Main Findings

Rajarethnem HT [23],
2017 Rat DHA supplementation Significant increase in the number of hippocampal

neural cells.

Fedorova I [24],
2009 Rat DHA

Low brain DHA is associated with a deficit in
spatial reversal learning that could be related to
changes in dopamine transmission in critical
brain circuits.

Liu D [25],
2010 Rat Iodine

Hypothyroidism is associated with:
-decrease in BDNF mRNA expression in the
hippocampus
-long-term memory deficits of pups.

Zhan Y [26],
2015 Rat Iodine

Hypothyroidism is associated with:
-decreased activation of the CREB
signaling pathway
-impairments of cognitive function.

Tran P [27],
2015 Rat Iron Deficiency Significant epigenetic modifications lead to

long-term repression of BDNF.

Lien Y [28],
2019 Rat Iron Deficiency Changes in DNA methylation in neural gene.

Barks A [29],
2022 Rat Iron Deficiency TET/DNA hydroxymethylation system is

disrupted in a brain region-specific manner.

Zhan X [30],
2012 Rat Folic Acid deficiency Reduces neuronal cell proliferation by impairing

mitosis and increases apoptosis.

Araki R [31],
2021 Mouse Low folate

Influences DNA and histone methylation, leading
to the downregulation of neural gene expression
and impaired fetal neurogenesis.

Gawlinska K [32],
2021 Rat High-fat diet

Changes in genes methylation, which are involved
in synaptic function, chromatin remodeling and
transcription regulation.

Gawlinska K [33],
2021 Rat High-fat diet Alteration in mTOR and MAPK pathways are

associated with autistic-like behavior.

Czarzasta K [34],
2019 Rat Depression

Altered levels of BDNF in the cerebellum and
hippocampus have been associated with
neurodevelopmental and behavioral delays
in offspring.

Jones J [35],
2010 Mouse Prenatal stress Combination of 5-HTT polymorphisms and

prenatal stress increases the risk of ASD.

Matsui F [36],
2018 Mouse Prenatal stress

In mice with 5-HTT polymorphisms, dopamine
levels increase significantly in the striatum. DHA
supplementation reduces dopamine levels.

Chan Y [37],
2016 Mouse Smoke exposure

Smoke increases markers of hypoxia, oxidative
stress and inflammation in neural cells, which may
render dams and their offspring vulnerable to
additional brain insults.

Jung S-Y [38],
2010 Rat Smoke exposure

Neuroligin-1 can modulate synaptic plasticity in
the amygdala circuits of adult animals, likely by
regulating the abundance of postsynaptic
NMDA receptors.

Xiao M-F [39],
2009 Mouse Smoke exposure

NCAM is a modulator of the dopaminergic system,
playing an important role in the etiology of
psychiatric disorders.

Niedzwiedz-Massey V-M [40],
2021 Mouse Alcohol

Ethanol induces neuroinflammation, reduces the
expression of molecules associated with mature
oligodendrocytes, and leads to a decrease in genes
expressed in oligodendrocyte progenitor cells.

Cantacorps L [41],
2019 Mouse Alcohol

Alcohol induces persistent epigenetic
modifications, leading to long-term cognitive and
behavioral impairments.
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Table 2. Cont.

Author, Year Model Investigated Variable Main Findings

Milbocker K [42],
2022 Rat Alcohol Alcohol leads to alterations in corpus callosum

development and in myelination process.

Cui J [43],
2019 Mouse Air pollution

Activation of the dopamine pathway with the
inhibition of glycine pathway can lead to
locomotor hyperactivities.

Ehsanifar M [44],
2019 Mouse Air pollution

Alteration in the expression of pro-inflammatory
cytokines and N-methyl-D-aspartate receptor
subunits in the hippocampus, leads to increased
anxiety and spatial memory dysfunction
in offspring.

Nicolas Z M [45],
2017 Mouse Air pollution

Prenatal exposure to diesel exhaust particles leads
to a significant upregulation of TLR4 expression
and alterations in microglia activation, resulting in
a higher vulnerability to behavioral deficits in
male adult offspring.

BDNF: brain-derived neurotrophic factor, DHA: docosahexaenoic acid, CREB: cAMP response element-binding
protein, TET/DNA: ten eleven translocation/DNA, mTOR: mechanistic target of rapamycin, MAPK: mitogen-
activated protein kinase, 5-HTT: serotonin transporter, ASD: autism spectrum disorder, NMDA: N-methyl-D-
aspartate receptor, NCAM: neural cell adhesion molecule, and TLR: toll like receptor.

2.1. Maternal Nutrition

The 1944 Dutch famine represents one of the first settings providing evidence of an
association between maternal nutritional environment and neurodevelopment outcome in
the offspring, firstly, by showing increased rates of congenital abnormalities of the central
nervous system [46]. Indeed, it has been observed that insufficient maternal nutrient
intake during the early stages of pregnancy impacts neural cell proliferation, while in the
later stages, mainly affects neural differentiation [47]. Mouse models confirmed that a low-
protein diet affects fetal neurodevelopment, resulting in delays in surface righting reflex and
negative geotaxis response [20]. This effect may be explained by the reduction in expression
of BDNF (Brain-Derived Neurotrophic Factor) in the hypothalamus and motor cortex [21].
BDNF is a neurotrophic protein that plays a crucial role in the development, survival, and
plasticity of neurons. Additionally, in baboon models, fetuses of undernourished mothers
exhibited suppression of neurotrophic factor, imbalanced cell proliferation, and impaired
glial maturation and neural synthesis [22,46]. Alterations in the methylation process are
strongly associated with maternal undernutrition and alterations in the activity of the fetal
hypothalamic–pituitary–adrenal axis, leading to changes in cortisol levels [47,48], which
could contribute to an increased risk of schizophrenia, antisocial personality disorder, and
admittance to addiction programs. These behaviors are more frequent in fetuses born to
undernourished mothers [49]. In line with these results, unhealthy dietary patterns, such
as the Western one characterized by low-quality and low-cost foods, result in excessive
intake of macronutrients, which is concomitant with micronutrient deficiencies. Therefore,
the fetal brain may experience both a lack of crucial components, such as DHA, folate,
or iodine, and excessive exposure to macronutrients (i.e., carbohydrates and fats). The
Mediterranean diet has been considered one of the healthiest dietary patterns in the world.
Several studies investigating the associations between the Mediterranean diet and brain
health in the adult population show larger brain volume, higher executive function scores,
improved white matter integrity, and reduced risks of Alzheimer’s and Parkinson’s diseases
in adults highly adherent to this dietary pattern [50–52]. Similarly, maternal adherence to
the Mediterranean diet during periconception and pregnancy improved social relatedness
behaviors and autonomic stability, reducing depression, anxiety, atypical behaviors, and
the risk of autism spectrum disorders in the infant population [8,53].

Nevertheless, few studies assessed fetal neurodevelopment in relation to the maternal
diet. A significant association was reported in a randomized controlled trial involving
90 pregnant women between maternal Mediterranean diet and larger total fetal brain



Antioxidants 2024, 13, 453 6 of 21

volume, corpus callosum, and right frontal lobe, with higher scores being recorded for
autonomic stability at 1–3 months of life [8]. Other maternal dietary patterns, such as
ketogenic diet, which is characterized by low carbohydrates and high fat, may impact on
fetal neurodevelopment [54]. Animal models demonstrated an association between the
ketogenic diet and reduced glucose uptake in the brains of offspring, leading to the larger
volume of the cerebellum and spinal cord, as well as reductions in the volume of the cerebral
cortex, hippocampus, corpus callosum, and lateral brain ventricles [55–57]. Indeed, ketones
are unable to replace the critical function of glucose in prenatal neurodevelopment [58].
This subsequently resulted in the development of hyperactivity and anxiety in adult
offspring [47].

However, the role of specific aspects of nutrition and micronutrients in determining
fetal neurodevelopment is not completely understood [1].

DHA, a n-3 long-chain polyunsaturated fatty acid (LCPUFA), regulates the functions
of synaptic proteins and the membranes of astrocytes, microglia, and oligodendrocytes.
Animal models showed that DHA supplementation during pregnancy was associated with
a significant increase in the number of hippocampal neural cells [23]. Indeed, its accumula-
tion in the fetal brain during the third trimester is crucial for fetal neurodevelopment [59–61].
Ogundipe et al. identified a significant effect of supplementation, with 600 mg DHA taken
during pregnancy for at least 13 weeks impacting on larger head circumference at birth,
as well as on larger total brain, cortex, whole gray matter, and corpus callosum volumes
compared to the placebo group, and, additionally, observed higher neurodevelopmental
scores at two years [9]. Animal models showed that insufficient intake of n-3 fatty acids
resulted in reduced DHA levels in the brain, leading to impaired neurogenesis, altered
neurotransmitter metabolism (dopamine and serotonin), and compromised learning and
visual function [24,62]. In contrast, excessive exposure to PUFAs during pregnancy may
lead to an altered stress response and a tendency to avoid open spaces. This behavior,
known as thigmotactic behavior, is considered an index of anxiety in the offspring [47,63].
Further human studies confirmed the association between DHA supplementation and
improved development and cognitive outcomes in children [59,64,65].

Iodine deficiency is one of the most common micronutrient deficiencies worldwide
and a recognized cause of preventable impairment of mental function [1]. Iodine plays a
pivotal role in the production of thyroid hormones, which regulate neurogenesis, promote
neuronal maturation, and facilitate myelination. Additionally, thyroid hormones also act as
transcription factors, regulating the expression of genes involved in brain development [26].
Animal studies observed that maternal hypothyroidism during pregnancy is associated
with a reduction in the CREB (cAMP response element-binding protein) pathway and
BDNF protein expression [25,26]. CREB is a nuclear transcription factor that plays a crucial
role in many aspects of neuronal development, including the survival and proliferation
of neurons, synapse formation, neuronal synaptic plasticity, and long-term memory for-
mation. A reduction in the CREB pathway resulted in irreversible neurodevelopmental
damage in rat pups, which could not be recovered even with prolonged training [26]. A
reduction in BDNF expression is observed in the developing hippocampus of pups from
both subclinical and hypothyroid mothers, which is associated with deficits in both short-
term and long-term spatial memory [25]. Considering this, it is not surprising to find an
association between severe maternal iodine deficiency and neurodevelopmental issues in
human offspring, including motor function deficits, cognitive impairment, language delay,
behavioral disorders, and hypodevelopment [66,67]. However, iodine supplementation is
recommended in areas with severe iodine deficiency (Urinary Iodine Concentration (UIC)
< 50 µg/L), whereas its efficacy is not well supported by quality evidence in regions with
mild-to-moderate iodine deficiency (UIC 50–150 µg/L). Indeed, in women with a habitually
low iodine intake (<160 µg/d), iodine supplementation is negatively associated with child
behavior, including an increased risk of attention deficit hyperactivity disorder (ADHD)
and internalizing-behavior problems [68,69].
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Iron deficiency (ID) anemia (IDA) is the most common nutritional deficiency among
pregnant women, with a reported prevalence as high as 15–20% [70]. Iron is an essential
trace element for myelinization promotion, hemoglobin formation, and oxygen delivery
to the developing brain [1,71]. Most symptoms observed in individuals with IDA are
associated with a lack of neuronal iron [71]. The impact of maternal ID on the fetal
brain depends on the affected brain region and the gestational week in which it occurs,
potentially leading to permanent structural deficits [72,73]. Additionally, fetal ID increases
the postnatal risk of long-term mental health abnormalities such as autism, schizophrenia,
and neurocognitive disorders [1,74]. Indeed, animal models showed that alterations in the
neurodevelopment of rat pups with maternal ID were associated with significant epigenetic
modifications in hippocampus and cerebellum, resulting in significant short- and long-term
reprogramming of gene expression. Specifically, alterations in DNA methylation, DNA
hydroxymethylation, and histone methylation due to maternal ID were associated with
persistent downregulation of BDNF, resulting in long-lasting impairments in cognition and
socio-emotional behaviors [27–29].

Folic acid is required for neural cell proliferation, migration, differentiation, vesicular
transport, and synaptic plasticity, and its role in preventing neural tube defects and neu-
rodevelopmental disorders is widely accepted [47,75]. During pregnancy, the demand for
folic acid increases by around 50%, leading to the recommendation of supplementation
of 400–800µg for all women of childbearing age from two months before to three months
after conception [76,77]. Animal models have shown that maternal folic acid deficiency
reduces neuronal cell proliferation by impairing mitosis and increases apoptosis [30]. Folate,
serving as an important methyl donor, influences DNA and histone methylation, leading
to the downregulation of neural gene expression and impaired fetal neurogenesis [31]. Ad-
ditionally, folic acid supplementation reduces the risk of autism spectrum disorders (ASD)
in offspring by nearly 40% [78–80]. However, two studies have shown that higher supple-
mentation (≥1000 µg) was associated with a higher risk of ASD [81,82]. Overall, moderate
amounts of folic acid supplementation may be effective in the prevention of ASD [83].

Vitamin D is a steroid hormone primarily obtained through sunlight exposure. It
plays a crucial role in neuronal differentiation, axonal connectivity, dopamine ontogeny,
and transcription control of genes [84]. The vitamin D receptor is extensively expressed in
the brain [85], particularly in the hippocampus and prefrontal cortex, regions associated
with learning and memory. Hypovitaminosis D during pregnancy has been strongly linked
to an increased risk of ASD and cognitive impairment [86,87]. Furthermore, low vitamin
D levels lead to greater susceptibility to antioxidant stress, in turn leading to abnormal
immune responses and an elevated risk of developing chronic inflammatory conditions,
with an increased risk of alteration in fetal neurodevelopment [88].

2.2. Obesity

Maternal obesity has gained pandemic proportions in both low- and high-income
countries. Both maternal obesity and a high-fat diet (HFD) can impact fetal programming,
predisposing the offspring to the development of adverse cardiometabolic and neurodevel-
opmental outcomes [89]. Animal models investigated the associations between maternal
obesity and adverse neurodevelopmental and psychiatric outcomes in the offspring, re-
vealing a reduction in the proliferation and maturation of stem-like cells in the ventricular
layer surrounding the third ventricle, hypothalamic region, hippocampus, and cerebral
cortex [89]. At the same time, epidemiological studies suggested an association between
maternal obesity and unfavorable neurodevelopmental outcomes in human offspring [89].

Several studies supported the association between maternal obesity and cognitive
deficits, ADHD, autism, and psychoses in the offspring [90]. Animal studies showed that
maternal HFD is associated with significant changes in genes methylation involved in
synaptic function, chromatin remodeling, and transcription regulation, which play a crucial
role in the development of autism spectrum disorder [32]. Moreover, disorders within
the mTOR and MAPK pathways have been observed in offspring exposed to maternal
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HFD, which can strongly increase the maternal inflammation state [33]. Alterations in these
pathways are associated with autistic-like behavior in male mice (but not in females) [33].
This difference seems to be associated with the different exposure to androgens, which also
influence the increased susceptibility of the male fetus to inflammation in utero, and the
different activities of astrocytes and microglia [33]. Additionally, maternal obesity during
pregnancy was reported to increase the odds of offspring cerebral palsy in a dose-dependent
way [89]. Nevertheless, the association between the mother being overweight/obese and
the offspring’s cognition is controversial, with some studies hypothesizing that the associa-
tion may be confounded by genetic, socioeconomic, or postnatal factors [91]. Moreover,
animal models found that maternal bariatric surgery led to significant changes in fetus
DNA methylation without association with neurodevelopment delay in the offspring.
Only one study reported more externalizing problems in children of mothers with pre-
conception bariatric surgery compared to the control group [92]. A likely explanation
is that the education level was significantly lower in mothers who underwent surgery.
Other studies found no associations between bariatric surgery and offspring neurodevelop-
ment [93,94]. However, further studies should evaluate the effects of bariatric surgery on
fetal neurodevelopment [95].

2.3. Depression, Anxiety, and Stress

Depression and anxiety are the most common mental health symptoms during preg-
nancy, with prevalence rates varying depending on population characteristics, timing,
and screening method. Approximately 14% to 54% of women are reported to experience
anxiety symptoms during pregnancy within a low-risk, healthy, well-educated, and em-
ployed pregnant cohort [12]. Moreover, antenatal depression affects around 10–15% of
pregnant individuals, with a significant number of women being affected by subsyndromal
depressive symptoms, which are frequently overlooked [96–98]. Clinical evidence shows
a chronic elevation of maternal glucocorticoids under stressful or depressive maternal
conditions, accompanied by increased levels of pro-inflammatory cytokines associated
with the increased risk of preterm birth (PTB) and neurodevelopmental pathologies [34].
Two prospective studies observed an association between antenatal maternal depression
and alterations in neonatal microstructure of the right amygdala [10] and a decrease in
cortical thickness [11]. Subsequently, antenatal depression is shown to be associated with
disturbed or disorganized sleep [99], delays in acquiring language skills [100,101], and
emotional and behavioral dysfunction [100,102–104] in neonates. Additionally, neonates
born to mothers with depression during pregnancy have elevated levels of cortisol and
catecholamines, resulting in more frequent crying and greater difficulty in being consoled
compared to babies born to non-depressed mothers [97].

Studies on animal models subjected to prenatal stress showed alterations in the con-
centration of various neurotransmitters in the offspring, including dopamine and serotonin.
These alterations appear to be associated with the development of idiopathic psychiatric
disorders in adulthood, such as psychosis, mania, schizophrenia, and ADHD. Dopamine
activity within the mesocorticolimbic pathways plays a pivotal role in cognition, emotion,
positive reinforcement, food intake, and decision making [105]. While animal models
confirmed the association between changes in dopaminergic mesolimbic and mesocortical
pathways and psychiatric disorders, this link has not been directly assessed in human
studies [105]. Additionally, mouse models demonstrated that a combination of maternal
serotonin transporter (5-HTT) gene polymorphisms and prenatal stress increases the risk of
ASD in the offspring. This condition may be associated with an imbalance between intra-
and extra-cellular serotonin levels and reduced transporter binding availability. Indeed,
serotonin is crucial for neurodevelopment during intrauterine life and subsequently reg-
ulates social behavior [35]. Furthermore, alterations in dopamine levels in the striatum
have been observed in fetuses of pregnant dams with 5-HTT polymorphisms, which may
be mitigated by DHA supplementation [36]. However, several human studies confirmed
an increased risk of ASD in fetuses born after prenatal maternal stress exposure [106–108].
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A recent cross-sectional study involving 459 mothers of children with autism showed
an association between moderate family income and severity of ASD compared to high
family income. A previous study reported that family income may act as a mediator in the
progression of ASD [109].

Maternal anxiety and stress were associated with alterations in the fetal cortical gyri-
fication index within the frontal and temporal lobes and reduced hippocampal volume
during the late second and third trimesters of pregnancy [12]. According to this, a rat model
showed an association between maternal stress and a significant reduction in hippocampal
BDNF [34]. A recent trial involving pregnant women randomized via a mindfulness-based
stress reduction program, reported that the left anterior cingulate lobe exhibited a larger
volume and higher scores in regulating states of behavior on the Neonatal Behavioral
Assessment Scale [8].

2.4. Smoking

Maternal smoking during pregnancy is one of the most prevalent environmental
factors affecting fetal and neonatal growth. Nicotine and carbon monoxide exposure
reduces oxygen availability, which is crucial for proper fetal development, leading to
intrauterine chronic hypoxic status. Moreover, tobacco smoke contains numerous harmful
chemicals, including tar (tobacco residue), which can cross the placenta and reach the
developing fetus, potentially causing inflammation processes [110]. Indeed, chemicals in
smoke may induce neuroinflammation by promoting oxidative stress, increasing levels
of proinflammatory cytokines, and disrupting mitochondrial function. These damaging
events may alter the immune functions of the fetal brain, making such offspring more
vulnerable to brain insults [37,111].

Additionally, nicotine exposure is associated with alteration in DNA and histone
methylation processes of the pivotal gene for neurodevelopment [112]. Animal models
showed an association between maternal smoking and an altered expression of genes’ tran-
scribing for Neural Cell Adhesion Molecule 1 and Neuroligin1, which modulate synapse
development. Indeed, alterations in the expression of these genes appear to be implicated
in offspring neuropsychiatric disorders [38,39]. Recently, several studies observed that
smoking during pregnancy affects the formation of the fetal head shape by modulating the
closure of cranial sutures [15,113]. Specifically, maternal smoking is associated with a statis-
tically significant reduction in head circumference, without changes in biparietal diameter,
left ventricular size, and cisterna magna [15]. Therefore, severe consequences for offspring
are associated with maternal smoking [110]. Studies focusing on neonates born to mothers
who smoke have reported an increased risk of neurodevelopmental disorders [114], such
as ADHD, autism, schizophrenia, and behavioral issues [115–117].

2.5. Alcohol

According to the Global Status Report on Alcohol and Health 2018 by the World
Health Organization (WHO), 42% of pregnancies are unplanned. At the same time, 65.5%
of women of childbearing age in Europe consume alcohol, thereby increasing the risk of
fetal exposure during the early weeks of pregnancy [118]. Fetal alcohol spectrum disorders
(FASD) is an umbrella term that encompasses a range of adverse effects linked to alcohol
exposure in utero. Fetal alcohol syndrome is a subset of FASD characterized by central
nervous system damage, minor facial features, and growth alterations. The prevalence of
FASD in Europe is 19.8 per 1000 children. Currently, there is no safe amount of alcohol
consumption throughout the entire gestational period [119,120].

Prenatal alcohol exposure appears to affect fetal brain development by inducing utero-
placental insufficiency and hypoxic–ischemic lesions. This, in turn, leads to apoptosis
in the developing neurons with a subsequent reduction in the overall number. Addi-
tionally, animal studies showed that ethanol metabolism to acetaldehyde and acetic acid
induces neuroinflammation and generates ROS, leading to an increase in pro-inflammatory
molecules, including IL-1α and CD24a mRNA, a suppression of anti-inflammatory PPAR-γ
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signaling, and induce programmed cell death. This subsequently results in crucial damage
to the fetal brain [119,121], especially in the developing hippocampus [40].

Additionally, epigenetic mechanisms play a pivotal role. Alcohol exposure may lead to
DNA methylation and histone modifications, such as acetylation [122]. These mechanisms
are key epigenetic modifications that can alter chromatin structure and gene accessibility,
thereby influencing gene expression. These epigenetic changes can be stable and may
persist throughout an individual’s lifetime [41,123].

Furthermore, studies showed that cranial neural crest cells are the most susceptible
to alcohol exposure, influencing the development of facial features in the fetus. Addi-
tionally, a reduction in cerebellar and brainstem volumes, as well as white matter, has
been observed [42,124]. Human studies showed a reduction in brain size, particularly in
the parietal and temporal lobes, and the corpus callosum. Moreover, MRI studies in chil-
dren showed alterations in white matter microstructural integrity [13,14,119,125]. Among
neonates exposed to prenatal alcohol, those with longer durations and higher doses showed
poorer outcomes, including mild to severe behavioral and cognitive delays [126].

2.6. Air Pollution

The increasing emissions from rapidly growing modern industry and urbanization
are extensively impacting on air quality. The WHO expressed concerns about the global
impact of poor air quality on human health, based on studies showing the harmful effects of
direct exposure to Particulate Matters (PMs) originating from fossil fuel, biomass burning,
and traffic, as well as polycyclic aromatic hydrocarbons (PAH), which are a widespread
environmental pollutant produced from the incomplete combustion of fossil fuels, tobacco,
and other organic materials. PAHs may adhere to PM particles.

Currently, over 90% of the global population breathes air not meeting the WHO stan-
dards [127]. Additionally, prenatal exposure to air pollutants was shown to adversely
affect fetal neurodevelopment, with male offspring being more susceptible to long-term
cognitive and behavioral disorders [127]. Animal models showed that PM2.5 (PM with
diameter of 2.5 µm or smaller) can cross the placenta and circulate in fetal blood, induc-
ing oxidative stress and inflammatory responses in the growing fetus, thereby affecting
fetal development [43,104,127–129]. Due to the immature or impaired blood–brain barrier
function, PM can enter the fetal brain, activating inflammatory responses in astrocytes
and microglia. Subsequently these cells release proinflammatory cytokines locally and
activate inflammatory pathways, such as JNK and NF-κB, leading to the impairment of
oligodendrocytes and damage to myelination in the white matter [127]. Additionally, PM
can induce the production of reactive species of oxygen in the mother, which pass into
fetal circulation and induce oxidative stress responses in the fetal brain, causing damage in
brain regions such as the hippocampus [127,130]. Indeed, the exposure to PAH and PM2.5.
during intrauterine life is associated with a reduction in weight and head circumference at
birth [131]. Moreover, PAH is associated with a reduction in the white matter surface of
the left hemisphere in childhood [16,131]. The alterations in brain developmental result in
a lower Mental Development Index and have adverse effects on neonatal neurobehavior,
manifesting as symptoms of anxiety, depression, and attention problems [132,133]. Par-
ticularly, maternal exposure to PM2.5 during pregnancy is associated with a higher ASD
risk [134–136]. Animal models showed an association between prenatal exposure to PM in
mice and increased anxiety and spatial memory dysfunction in adult male offspring, caused
by altered expression of pro-inflammatory cytokines and N-methyl-D-aspartate receptor
subunits in the hippocampus [44]. Similarly, prenatal exposure to diesel exhaust particles
leads to a heightened susceptibility to behavioral deficits in adult offspring, particularly in
males. This susceptibility is attributed to a significant upregulation of toll-like receptor 4
(TLR) expression and subsequent alterations in microglia activation [45].



Antioxidants 2024, 13, 453 11 of 21

2.7. Socioeconomic Status

Socioeconomic status (SES) can be determined by using variables such as health
insurance status, education level, household income, material resources, and occupa-
tion [17,18,137]. A holistic approach that considers multiple indicators provides a more
accurate and complete view of social condition. SES is one of the most significant factors
linked to medical outcomes. Previous studies suggested that socially disadvantaged con-
ditions are associated with pregnancy complications, including spontaneous miscarriage,
preterm delivery, preeclampsia, eclampsia, and gestational diabetes [138–140]. A low SES
is associated with more difficult access to healthcare, leading to poor fetal and maternal
outcomes. Similarly, an unhealthy diet, lack of physical exercise, smoking, and alcohol
consumption are more frequent in socially disadvantaged conditions, with significant
consequences for both the fetus and the mother, as previously described.

Despite limited research, some studies observed that the prenatal maternal socioeco-
nomic environment may affect infant neurodevelopment. Socially disadvantaged condi-
tions were associated with a reduction in cortical and subcortical gray and white matter,
as well as cortical folding in the first weeks of life [17]. Conversely, higher socioeconomic
status is associated with increased volumes of developing fetal brain white matter, deep
gray matter, cerebellum, and brainstem during pregnancy and decreased cortical gray
matter volume [18,141]. Additionally, socioeconomic disadvantages are linked to increased
stress levels, which, in turn, elevate maternal cortisol levels and result in smaller amygdala
volumes [19]. Subsequently, a low maternal SES is associated with adverse outcomes in
childhood neurodevelopment, impacting physiological and psychological health, cognitive
development, educational attainment, and socio-emotional well-being [142].

2.8. Gut Microbiota

The gut microbiota refers to the entirety of microorganisms residing in the gastroin-
testinal tract of an individual, particularly the colon. This complex ecosystem consists
of bacteria, viruses, fungi, and other microbes [143]. Environmental factors, along with
nutritional status, diet, stress, infection, lifestyle, and antibiotic and antidepressant use,
can influence the composition of maternal and fetal gut microbiota leading to a condi-
tion of dysbiosis. Dysbiosis is associated with a subsequent increase in inflammation
and metabolic endotoxemia, leading to higher adverse risk for both the mother and the
fetus [144,145]. Several studies observed a link between maternal dysbiosis and fetal brain
development [143,146]. Two distinct theories were proposed to explain how the maternal
intestinal microbiota could significantly affects the fetal side. One hypothesis suggests that
microbes from the maternal site are translocated from the intestinal epithelium into the
bloodstream and then delivered to the placenta. The second possible pathway involves the
passage of microbiota-derived metabolites trans-placentally to the fetus [143].

Several animal and human studies observed that an alteration in the composition
of maternal microbiota during pregnancy is associated with worse behavioral outcomes,
primarily due to higher internalizing symptoms and autism-like behaviors [144,146]. Ro-
dent studies demonstrated alterations in gene expression related to neurotransmission,
neuroplasticity, metabolism, and morphology in both the hippocampus and thalamocortical
neurodevelopment, linked to sensorimotor behavior and pain perception postnatally [144].

3. Inflammation and Altered Nutrient Supply: Models of Intrauterine
Health Programming

A wealth of studies indicated an association between pathological pregnancy condi-
tions, such as fetal growth restriction (FGR) and PTB, and neurodevelopmental derange-
ments in the offspring. It is possible to delineate two different phenotypes that can lead to
alterations in fetal programming and neurodevelopment: first, altered fetal nutrient supply
and second, intrauterine inflammation (Figure 1), both implying placental involvements.
FGR and PTB serve as paradigms, illustrating how these mechanisms lead to a substantial
impact on fetal brain development.
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3.1. Fetal Growth Restriction: Model of Reduced Nutrient Supply

FGR is a condition in which the fetus does not reach its genetic growth potential [147].
Approximately 60–70% of FGR cases are associated with placental dysfunction, leading
to a reduced supply of nutrients and oxygen to the fetus, thereby inducing a state of
chronic hypoxia and fetal undernutrition. In response, the fetus sends signals to the
brainstem via carotid and central chemoreceptors, triggering an adaptative response known
as brain sparing. This adaptation involves the redistribution of cerebral–placental blood
flow, optimizing enhanced oxygenation to the essential organs, particularly the brain.
Despite these mechanisms, FGR fetuses can experience significant consequences to fetal
neurodevelopment, leading to long term adverse outcomes [148,149].

Indeed, intrauterine chronic hypoxia is associated with a reduction in cortical grey
and white matter [150], accompanied by a larger depth of the Sylvian fissure. Areas more
sensitive to hypoxia include the hippocampus, amygdala, basal ganglia, thalamus, and
cortical areas [151]. Moreover, FGR fetuses may undergo increased stress, resulting in
higher cortisol levels that can impact gyrification [152]. Following childbirth, a subsequent
delay in both developmental and behavioral outcomes have been observed in the FGR
offspring [149,151,152].

3.2. Preterm Born Children: Model of Intrauterine Inflammation

The incidence of PTB accounts for about 10% of live births globally, with a significant
discrepancy between high- and low- income countries. Approximately 50% of preterm
deliveries are linked to maternal inflammation or infection [153]. PTB is the leading
cause of death in children under 5 years worldwide and is strongly associated with both
short- and long-term morbidities in the offspring [154], including neurodevelopment
impairments [153].

MRI studies conducted on preterm born children showed alterations in the axonal
and neuronal development [155]. Injury to the developing white matter can result in
multiple brain abnormalities, including interruptions in thalamocortical, corticothalamic,
and cortico-cortical connections, as well as a decrease in cortical and deep nuclear grey
matter volumes [155]. This results in different pathologies, from neurocognitive delay to
cerebral palsy or periventricular leukomalacia.

The premature brain is vulnerable to injury for various reasons, including the immatu-
rity of the blood–brain barrier, limited myelination, inability to produce anti-inflammatory
cytokines, and deficiency in endogenous trophic factors, such as allopregnanolone, partic-
ularly in early gestational stages [153]. After intraventricular hemorrhage, which occurs
in 20% to 40% of all preterm infants born weighting less than 1500 g [156], inflamma-
tion and infection play a pivotal role in brain injury and developmental abnormalities in
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preterm neonates [152,155]. Infectious and inflammatory processes lead to the activation
of microglia and the production of chemokines and cytokines. In high concentrations,
these molecules can damage oligodendrocytes and neurons. Additionally, the activation
of microglia may contribute to an increase in free radical production and subsequent cell
death [155,157,158]. Moreover, FGR fetuses that are born prematurely may show altered
placental biomagnification of omega 3 fatty acids [159] and delayed cerebral maturation in
association with brain sparing [160].

3.3. Inflammation

Inflammation influences the regulation of insulin, glucose, and leptin signaling in
the developing brain, alters dopaminergic and serotonergic signaling, and impairs re-
ward circuitry. These processes can lead to a decrease in the expression of brain-derived
neurotrophic factor, resulting in the dysregulation of synaptic plasticity [89].

Obese pregnant women further represent a model of chronic low-grade systemic
inflammation, attributed to the release of circulating pro-inflammatory cytokine levels
(tumor necrosis factor-alpha (TNF-a), IL-1, IL-6, insulin, and leptin) and oxidative stress
from adipose fat cells [145,161–163]. Furthermore, stress, depression, and anxiety are
associated with an increase in maternal inflammatory status. The underlying reason is not
well understood, but it appears to be linked to dysregulation in glucocorticoid production,
resulting in the exacerbation of pro-inflammatory cytokine secretion, the alteration of
maternal gastrointestinal microbiome, and a higher level of chronic stress [164]. Other
conditions, such as maternal gut dysbiosis and air pollution, may contribute to an increase
in maternal inflammation [128,165,166]. Particularly, air pollution and maternal immune
activation appear to act together on the fetal brain [166], causing neuroinflammation and
increasing the risk of neuropathology in offspring, including ASD, schizophrenia, bipolar
disorder, major depressive disorder, epilepsy, and cerebral palsy [167].

Additionally, temporary conditions such as periodontal diseases may be more fre-
quent in pregnant women. Smoking has an enormous influence on the development and
progression of periodontal disease, impacting the gums and supporting structures of the
teeth. Therefore, smoking and obesity can synergistically amplify the maternal inflam-
matory and oxidative status [113,168,169]. Several studies showed that maternal immune
system activation leads to the release of proinflammatory cytokines. These cytokines cross
the blood–brain barrier, leading to microglia activation, which, in turn, induces oxidative
stress and mitochondrial dysfunction [167]. Oxidative stress is an imbalance between
reactive oxygen species and antioxidants. Inflammation and oxidative stress form a self-
perpetuating vicious cycle, resulting in downstream abnormalities in brain development
and behavior [167]. Furthermore, both animal and human models showed how exposure
to toxic, environmental, or occupational chemicals may lead to the production of maternal
antibodies, likely as a response of the maternal immune system to external stimuli. In
instances where the blood–brain barrier is compromised, these antibodies are facilitated to
cross into the fetal brain, leading to additional impairment [170].

In conclusion, maternal conditions such as obesity, infection, and smoking, along with
external stimuli like air pollution, act synergistically to play a crucial role in increasing the
maternal inflammatory state [171].

4. Conclusions and Future Directions

The present review highlights the crucial role of external stimuli during pregnancy in
influencing fetal growth and development. The intrauterine environment has an impact on
fetal brain development, influencing long-term neurodevelopmental outcomes.

Recently, several studies investigated the alteration of the fetal brain in medical condi-
tions such as FGR and PTB, showing that changes in nutrient supply and inflammation
are associated with alterations in the morphometry of fetal brain regions and significant
consequences for offspring. Similarly, unhealthy dietary patterns before or during preg-
nancy, often prevalent in obese women, or associated with anxiety disorder, depression,
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and low SES, can lead to a decrease in micronutrient supply. All these factors may lead
to a reduction in total brain volume and impairment in brain structures. Moreover, air
pollution, smoke, stress, depression, anxiety, and obesity increase the state of maternal in-
flammation, which is known to play a pivotal role in epigenetic mechanisms and, therefore,
fetal neurodevelopment. Thus, the environment plays a crucial role in fetal development
processes through epigenetic mechanisms modified by inflammation or alterations in nu-
trient supply. Identifying modifiable environmental risk factors should be mandatory for
healthcare professionals and clinicians to reduce adverse effects. In fact, long-term out-
comes impact not only individual health but also public healthcare. Therefore, in today’s
world, prevention should be the focus for healthcare providers. To achieve this, further
studies with longitudinal follow-up are necessary to understand the intricate interplay
between the intrauterine environment, epigenetic modifications, fetal brain development,
and offspring outcomes.
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