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Abstract: Oxidative stress is a metabolic dysfunction that favors the oxidation of biomolecules,
contributing to the oxidative damage of cells and tissues. This consequently contributes to the
development of several chronic diseases. In particular, zinc is one of the most relevant minerals to
human health, because of its antioxidant properties. This review aims to provide updated information
about the mechanisms involved in the protective role of zinc against oxidative stress. Zinc acts as a
co-factor for important enzymes involved in the proper functioning of the antioxidant defense system.
In addition, zinc protects cells against oxidative damage, acts in the stabilization of membranes and
inhibits the enzyme nicotinamide adenine dinucleotide phosphate oxidase (NADPH-Oxidase). Zinc
also induces the synthesis of metallothioneins, which are proteins effective in reducing hydroxyl
radicals and sequestering reactive oxygen species (ROS) produced in stressful situations, such as in
type 2 diabetes, obesity and cancer. Literature provides strong evidence for the role of zinc in the
protection against oxidative stress in several diseases.
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1. Introduction

Oxidative stress is characterized by an imbalance between oxidants and antioxidants, due to the
excessive production of reactive oxygen species (ROS) and the reduction in the rate of its removal
by the antioxidant defense system. This metabolic disturbance favors the oxidation of biomolecules,
contributing to the oxidative damage in the cells and tissues and consequently to the development of
several chronic diseases such as obesity, diabetes and cancer [1–3].

Several studies have examined the role of minerals in the antioxidant defense system. In particular,
zinc is one of the essential minerals for human health because it serves as a co-factor for over 300
enzymes and 2000 transcription factors. Zinc is an important mediator of cellular signaling [4,5]. It acts
primarily to enhance insulin action. As an anti-inflammatory agent, zinc provides structural stability
to cell membranes and it is also an important regulator of gene expression [6–8].

Zinc acts as a co-factor for important enzymes that contribute to the proper functioning of the
antioxidant defense system. In addition, this mineral protects cells against oxidative damage because
it acts in the stabilization of membranes, inhibits the enzyme nicotinamide adenine dinucleotide
phosphate oxidase (NADPH-Oxidase), a pro-oxidant enzyme, and induces metallothionein synthesis.
Metallothionein is involved in the reduction of hydroxyl radicals (OH) and in the sequestration of the
reactive oxygen species produced under stress conditions [9,10].

Therefore, considering the complexity of oxidative stress and its detrimental effect on health
in addition to the potent antioxidant properties of zinc, this review aims to provide the latest
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information on the mechanisms involved in the role of zinc in the protection against oxidative stress in
chronic diseases.

This is a narrative review and a bibliographical survey of articles in the databases PubMed
and Science Direct without limit for the year of publication, selected from August to September 2016.
The keywords used in the search were “zinc”, “oxidative stress”, “zinc transporters”, and “antioxidant”.
The descriptors were used alone or combined using the Boolean operators “AND” and “OR”.

Studies that presented relevant aspects of the mechanisms involved in the role of zinc in protection
against oxidative stress were included. Dissertations, theses, articles in which only a summary was
available, and those duplicated in different databases were excluded.

Then, we proceeded with the analysis of the included articles, and started reading the titles,
followed by summaries, and later the full text. The application of the exclusion criteria was performed
at all stages, always by consensus of the reviewers. At the end, we selected 63 articles.

2. Biochemical Aspects

The role of zinc in the antioxidant defense system has been widely investigated. Studies have
highlighted its role in the regulation of glutathione peroxidase and in the expression of metallothionein,
as well as its role as a co-factor for superoxide dismutase. Moreover, zinc competes with iron and
copper in the cell membrane, inhibits the NADPH-oxidase enzyme, and reduces chronic inflammation
and hyperglycemia [11,12].

Zinc is a structural component of the enzyme superoxide dismutase present in the cytoplasm
of cells. Superoxide dismutase has an active center with a copper ion and a zinc ion. This enzyme
promotes the conversion of two superoxide radicals to hydrogen peroxide and molecular oxygen,
reducing the toxicity of ROS because it converts a highly reactive species to a less harmful one [13].

Therefore, maintaining adequate concentrations of zinc in the cell compartments is essential for
the proper functioning of the antioxidant defense system. Examining this function, Homma et al. [14]
found that zinc deficiency appears to induce a mutant-like conformation in superoxide dismutase that
induces chronic endoplasmic reticulum stress. Consequently, this results in the inhibition of protein
synthesis and induction of zinc transporter Zip-14.

Another mechanism by which zinc acts as an antioxidant is by affecting the expression of
glutamate-cysteine ligase, which is the rate-limiting enzyme of glutathione de novo synthesis. This has
a two-fold effect of zinc to neutralize free radicals directly by glutathione or indirectly as a glutathione
peroxidase cofactor [15]. Ha et al. [16] showed that the administration of 100–150 mM of zinc in the
cultured human retinal pigment epithelial cell line ARPE-19 cells upregulates the mRNA levels of
glutamate-cysteine ligase via an nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2)-dependent
pathway. In this way, zinc modulates the total cellular glutathione concentration [17].

Zinc is a potent metallothionein inducer. Zinc is bound to metallothionein under normal
physiological conditions. In oxidative stress conditions, the micronutrient is released from its complex
with metallothionein and is redistributed in the cells to exert antioxidant actions [18,19]. Liang et al. [20]
observed increased metallothionein expression in the liver of rats receiving zinc supplementation
(5 mg/kg of body weight per day), which favored antioxidant and anti-inflammatory effects mediated
by metallothionein.

It is noteworthy that metallothionein has the ability to effectively bind heavy metal ions, such as
zinc, copper, chromium, cadmium, mercury [21–23]. Therefore, this enzyme plays a significant role
in cell protection against excessive amounts of metal ions, thus functioning as the main system of
detoxification against toxic heavy metals. In this way, metallothionein acts against oxidative stress [24].

Responsive metal transcription factor 1 (MTF-1) also has an important role in coordinating cellular
responses to metal homeostasis and oxidative stress. MTF-1 is a zinc-dependent transcription factor
that stimulates the expression of metallothionein and zinc transporter-1 (ZnT-1) genes when the
concentration of zinc increases. Zinc transporter ZnT-1 is located in cellular membranes and it allows
the efflux of excess zinc from the cell. Through this function, it diminishes zinc toxicity in the cytosol.
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Furthermore, metallothionein also binds excess zinc ions in the cytosol. Thus, the induction of the
expression of metallothionein and ZnT-1 is a mechanism that acts against elevated zinc levels [23,25].

MTF-1 also can protect cells from oxidative stress because this transcription factor is very sensitive
to fluctuations in the redox cell status and promotes the expression of the target genes after stimulation.
MTF-1 activates the expression of the Selenoprotein 1 (Sepw1) gene, which encodes an antioxidant
glutathione-binding protein which scavenges free radicals [26]. Furthermore, this transcription factor
regulates the immune response because it activates or suppresses the expression of genes encoding
inflammatory cytokines [27].

It is important to note the ability of zinc to compete with iron and copper in the binding sites
present in the cell membrane. Iron and copper ions can catalyze the production of radicals from lipid
peroxides. In this way, the replacement of iron and copper by zinc could prevent the formation of
highly reactive radicals because zinc is catalytically inert [11,28].

Linked to this, there is a close association between chronic low-grade inflammation and oxidative
stress. Various pro-inflammatory transcription factors, including nuclear factor κB (NF-κB) and
activator protein-1 (AP-1), can induce the production of ROS, causing the release of inflammatory
cytokines. This in turn enhances oxidative stress, thus setting a vicious cycle [29]. While it is
important that zinc also attenuates oxidative stress by acting as an anti-inflammatory nutrient,
the precise mechanism remains unclear. Studies show that zinc regulates NF-κB transcription via
the anti-inflammatory protein A20 and the receptor signaling pathway activated by peroxisome
proliferator-α (PPAR-α) [30].

The study conducted by Prasad et al. [30] using cell cultures showed that cells with a high zinc
concentration had increased expression of the A20 protein as well as reduced activation of the IκB
kinase (IKK)-α/NF-κB signaling and pro-inflammatory cytokines. Bao et al. [31] found that zinc
supplementation reduced the inflammatory molecules interleukin 6 (IL-6), TNF-α, chemoattractant
protein monocytes (MCP-1), C-reactive protein, intercellular adhesion molecule 1 (ICAM-1), and
E-selectin concentrations, and it increased the expression of PPAR-α and A20.

Research has shown the role of zinc deficiency in causing oxidative damage and, consequently,
endothelial dysfunction. Zinc deficiency in endothelial cells enhances the inflammatory response
mediated by cytokines and lipids, possibly via mechanisms associated with increased cellular oxidative
stress. In contrast, zinc supplementation exerts a protective role against damage to the vascular system.
The mechanisms by which zinc protects the blood vessels include the regulation of Nrf2, a transcription
factor important for the expression of genes encoding antioxidant enzymes and for the induction and
expression of metallothionein [32–34].

Studies have also demonstrated the role of zinc as an inhibitor of N-methyl-D-aspartate
(NMDA) receptors, involved in the transport of calcium from the extracellular environment to the
cytosol. Through this function, zinc deficiency promotes the activation of NMDA receptors and
increases intracellular calcium concentration [35]. This increased intracellular calcium concentration
promotes the release of substance P by neuronal cells. This neural mediator activates leukocytes and
macrophages, which increases the release of inflammatory cytokines and the production of free radicals,
contributing to the manifestation of oxidative stress [35]. Furthermore, in conditions where zinc is
deficient, NADPH oxidase and nitric oxide synthase are activated, thereby favoring the production of
reactive oxygen and nitrogen species [28] (Figure 1).

Zinc also improves insulin sensitivity and glycemic control because it contributes to reducing the
synthesis of ROS under hyperglycemic conditions, thereby inhibiting the activation of oxidative stress
pathways [12]. In this way, this micronutrient stimulates insulin secretion by the β-pancreatic cells, the
phosphorylation of the β subunit of the insulin receptor and the activation of phosphatidylinositol
protein 3-kinase and protein kinase B or Akt, important substrates for glucose uptake into cells. Thus,
zinc favors glucose transport into the cells [36,37].

Recent research looking into the influence of zinc carrier proteins on cellular oxidative stress has
shown the coordinated action of these carrier proteins in mitigating cellular damage. Liang et al. [38]
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demonstrated that zinc transporter ZnT-7 plays an important role in the survival of osteoblastic cell
line MC3T3-E under oxidative stress conditions. The authors also found that hydrogen peroxide can
induce the increase of intracellular zinc. ZnT-7 can protect these cells because this zinc transporter
reduces the aggregation of free zinc ions and inhibits hydrogen peroxide–induced apoptosis. This
function of ZnT-7 seems to involve the activation of tyrosine kinase proteins, which inhibit apoptosis
by the phosphorylation of pro-apoptotic proteins when activated.

Moreover, oxidative stress appears to be capable of altering the expression of zinc carrier proteins.
Sun et al. [39] demonstrated that chronic alcohol exposure reduces the expression of zinc transporters
Zip-5 and Zip-14 in hepatocytes. Chronic ethanol exposure was also found to increase the expression
of zinc transporters Zip-7 and ZnT-7 in hepatocytes, and this increase in protein expression was also
observed in the treatment with hydrogen peroxide in vitro [39]. The altered expression of hepatic zinc
transporters by ethanol exposure may disrupt the homeostasis of zinc in the liver. Zip-5 and Zip-14
are located on the plasma membrane of hepatocytes and, therefore, decreased expression of these
transporters by ethanol exposure may be the cause of decreased zinc levels in the liver. Zip-7 and
ZnT-7 are located on organelles, such as the endoplasmic reticulum and Golgi apparatus. Thus, altered
expression of these zinc transporters may not only interfere with the homeostasis of zinc in organelles
but may also lead to organelle dysfunction [39–42].

Chronic exposure to ethanol also significantly reduces zinc levels in the endoplasmic reticulum
and mitochondria of isolated liver cells. Accordingly, treatment with zinc supplementation promotes
the increased expression of Zip-8 and Zip-13, which transport zinc from the mitochondria and
endoplasmic reticulum to the cytosol. Zinc supplementation also increases the expression of ZnT-4,
which transports zinc from the cytosol to the mitochondria [43]. Zinc deficiency in these organelles
appears to be associated with oxidative stress pathways, including the phosphorylation of initiation
factor eukaryotic 4, the increased expression of C/EBP, the release of cytochrome c, and the insertion
of Bax, a protein of the Bcl-2 family which activates cell death, with subsequent activation of caspase-3
and apoptosis [43].
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Figure 1. Zinc participation in antioxidant mechanisms. GPx: Glutathione peroxidase; MT:
Metallothionein; MTF-1: Metal-responsive transcription factor 1; NADPH: nicotinamide adenine
dinucleotide phosphate; NMDAR: N-methyl-D-aspartate receptor; SOD: superoxide dismutase enzyme;
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Zinc is a potent inducer of metallothionein and is bound to metallothionein. Zinc is released from
its complex with metallothionein in oxidative stress conditions. MTF-1, a zinc-dependent transcription
factor, activates metallothionein gene expression, which can protect cells against oxidative stress. Zinc
is a structural component of the enzyme superoxide dismutase, which promotes the conversion of two
superoxide radicals to hydrogen peroxide and molecular oxygen. Zinc influences the expression of
glutamate-cysteine ligase, an enzyme involved in the synthesis of glutathione, which acts directly on
the neutralization of free radicals. Zinc also inhibits the NMDA receptors involved in the transport
of calcium from the extracellular environment to the cytosol. Thus, zinc deficiency promotes the
activation of NMDA receptors, which increase the intracellular concentration of calcium. In conditions
where zinc is deficient, the NADPH oxidase enzymes and nitric oxide synthase are activated, favoring
the production of reactive species of oxygen and nitrogen.

On the other hand, zinc also acts as a pro-oxidant when its concentration is either deficient
or in excess and becomes pro-inflammatory and pro-apoptotic. Zinc excess also induces copper
deficiency, which has been related to multiple adverse effects. These adverse effects include decreased
expression of copper-dependent enzymes, such as superoxide dismutase and ceruloplasmin, which
are important in antioxidant defense [44,45]. Moreover, zinc ions have a limited ability to bind to
metallothionein, which is sensitive to situations of oxidative stress. This oxidative stress results in
elevated concentrations of free zinc and induces a pro-oxidative status. A low concentration of zinc
also leads to oxidative stress since this condition causes cell death and promotes the production of
ROS [46,47].

3. Chronic Diseases

Research has shown that zinc status may be altered under pathophysiological conditions, such
as diseases characterized by elevated oxidative stress, which impairs the control of these diseases.
In particular, obese individuals may present with a deficiency of zinc, which aggravates the oxidative
stress present in this disease [48,49]. A study conducted by Habib et al. [50] in obese individuals
found high concentrations of malondialdehyde, a biomarker of lipid peroxidation, when compared
with the control group. Associated with this, research has shown that low levels of glutathione
and the reduction of superoxide dismutase activity may be due to zinc deficiencies observed in the
patients studied.

Chronic hyperglycemia in type 2 diabetes mellitus has been associated with lipid peroxidation and
oxidative damage in cells, impairing the antioxidant defense in type 2 diabetes patients. Lima et al. [12]
showed reduced zinc concentrations in the plasma of type 2 diabetes patients. This is probably due to
an elevated loss of this mineral in urine, resulting from hyperglycemia and polyuria. In addition, the
authors also demonstrated an enhanced response to oxidative stress related to the appropriate zinc
status and high superoxide dismutase activity in type 2 diabetic patients, the activity of which was
influenced by the serum concentrations of insulin.

Zinc deficiency also can be found in chronic kidney disease, which has been attributed to reduced
food intake and intestinal absorption of the mineral, interaction with calcium and iron and increased
loss of minerals during dialysis. In this disease, zinc binds to proteins modified by uremia, such
as albumin, thus aggravating its deficiency [51,52]. A study conducted by Magalhães et al. [52]
showed reduced concentrations of zinc in patients with chronic kidney disease, which was correlated
with the reduction in the activity of the enzyme superoxide dismutase and impairment of the
antioxidant defense.

In the study by Guo and Wang [53], supplementation with 11 mg of zinc per day was able to
increase the plasma concentration of this mineral and reduce the concentration of copper in patients
undergoing hemodialysis for chronic renal failure. Zinc supplementation also reduced the plasma
concentration of the oxidative product, malondialdehyde, and increased the activity of superoxide
dismutase compared to the control patients.
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The regulation of extracellular zinc concentrations is also extremely important for maintaining
homeostasis of the neural network, because this mineral plays a role in both the physiology and
pathophysiology of the brain [54]. In synapses, the main pool of zinc occurs in the presynaptic vesicles,
where the free zinc is co-released with glutamate during neural activity and acts to suppress NMDA
receptors in the synaptic cleft [55]. The inhibition of NMDA receptors reduces the release of substance
P by neuronal cells, protecting organisms against oxidative stress [56].

Moreover, antioxidants and anti-carcinogenic mechanisms associated with zinc homeostasis
appear to play an inhibitory role in the growth of neoplastic cells. Zinc acts in the protection
against genomic instability and genetic mutations. In this sense, the superoxide dismutase is an
anticarcinogenic enzyme. It inhibits the initiation, promotion, and progression phases in mammary
carcinogenesis [57].

Furthermore, dietary zinc deficiency has also been linked to an increased risk for breast
cancer [10,58]. Oxidative stress due to a lack of zinc leads to changes in the tissue of mammary
glands and increased macrophage infiltration in this region, resulting in a toxic microenvironment.
These mechanisms lead to a hyperaccumulation of the mineral, which is associated with increased
expression of the alpha estrogen receptor (ERα), ductal changes in organization, and increased fibrosis
in the mammary gland [58].

It is noteworthy that the expression of metallothionein is deregulated in breast cancer, which
is correlated with resistance to chemotherapy and poor prognosis. Metallothionein participates in
carcinogenesis via mechanisms that promote the development of tumor cells resistant to chemotherapy
and radiation. High levels of metallothionein in cancer cells protect against damage by inhibiting
free radicals, apoptosis and promoting cell proliferation. Thus, these functions support uncontrolled
growth of these cancer cells. Moreover, the interaction of metallothionein with zinc ions is involved in
the regulation of several transcription factors that contribute to carcinogenesis [59].

In diseases, such as epilepsy, schizophrenia, and Alzheimer’s and Parkinson’s diseases, the
deleterious effects of zinc can also be observed. In these conditions, zinc is released in excess by
presynaptic neurons and astrocytes, resulting in neuronal death via the activation of microglia, NADPH
oxidase and the production of ROS in neurons [60–62]. Moreover, zinc is also involved in the apoptosis
of brain cells induced by hypoxia or ischemia [63]. This study observed that treatment of cells in vitro
and in animals with a zinc chelator, named N,N,N′,N′-Tetrakis(2-pyridylmethyl)ethylenediamine
(TPEN), attenuated neurological deficit, reduced the rate of neuronal apoptosis and the cerebral infarct
area, increased superoxide dismutase activity and reduced plasma concentrations of malondialdehyde
and interleukin-6 (IL-6). Thus, zinc appears to play a role in preventing apoptosis in this situation,
mainly via oxidative stress and inflammation pathways.

4. Conclusions

Research has still not fully elucidated the role of zinc in the molecular mechanisms involved in
the pathophysiology of chronic diseases, such as obesity, diabetes and cancer. However, data in the
literature show that a deficiency in zinc favors the manifestation of oxidative stress, promoting the
development of these diseases. It is necessary to clarify the biochemical and molecular basis involved
in this process. Therefore, further studies on the subject may elucidate the role of this nutrient in
protecting against oxidative stress present in these diseases.
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