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Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates
hundreds of antioxidant genes, and is activated in response to oxidative stress. Given that
many neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, amyotrophic
lateral sclerosis, Huntington’s disease and multiple sclerosis are characterised by oxidative stress,
Nrf2 is commonly activated in these diseases. Evidence demonstrates that Nrf2 activity is
repressed in neurons in vitro, and only cultured astrocytes respond strongly to Nrf2 inducers,
leading to the interpretation that Nrf2 signalling is largely restricted to astrocytes. However,
Nrf2 activity can be observed in neurons in post-mortem brain tissue and animal models of disease.
Thus this interpretation may be false, and a detailed analysis of the cell type expression of Nrf2
in neurodegenerative diseases is required. This review describes the evidence for Nrf2 activation
in each cell type in prominent neurodegenerative diseases and normal aging in human brain and
animal models of neurodegeneration, the response to pharmacological and genetic modulation of
Nrf2, and clinical trials involving Nrf2-modifying drugs.
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1. Introduction

Neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, amyotrophic
lateral sclerosis, Huntington’s disease and multiple sclerosis are characterised by the failure of specific
populations of neurons, such as hippocampal neurons in Alzheimer’s disease, dopaminergic neurons
in the substantia nigra in Parkinson’s disease, motor neurons in the spinal cord and motor cortex in
amyotrophic lateral sclerosis, and striatal medium spiny neurons in Huntington’s disease. The failure
of each of these specific neuronal populations is governed by disease-dependent factors that remain
unclear. However, several consistent features are common to all of these diseases, including oxidative
stress and glial activation, in which astrocytes gain a reactive phenotype that can be either protective
or detrimental to neurons [1]. This review will discuss the evidence for activation of nuclear factor
erythroid 2-related factor 2 (Nrf2) in neurodegeneration, pharmacological and genetic targeting of Nrf2,
and in which cells Nrf2 is activated, focusing on Alzheimer’s disease, Parkinson’s disease, amyotrophic
lateral sclerosis, Huntington’s disease and multiple sclerosis. Nrf2 is also involved in stroke, which has
been recently discussed in other excellent reviews [2,3].

2. Mechanisms of Nrf2 Activation and Regulation

Nrf2 is a transcription factor regulating the transcription of a battery of antioxidant genes. Under
normal conditions, Nrf2 is bound in the cytosol by its negative regulator Kelch-like erythroid cell-derived
protein with cap ‘n’ collar (CNC) homology associated protein 1 (Keap1) (Figure 1). Keap1 is a
substrate adapter protein for the Cullin3-Rbx1 E3 ligase complex and constitutively targets Nrf2 for

Antioxidants 2017, 6, 65; doi:10.3390/antiox6030065 www.mdpi.com/journal/antioxidants

http://www.mdpi.com/journal/antioxidants
http://www.mdpi.com
https://orcid.org/0000-0002-0798-5338
http://dx.doi.org/10.3390/antiox6030065
http://www.mdpi.com/journal/antioxidants


Antioxidants 2017, 6, 65 2 of 35

proteasomal degradation. Modification of sensitive cysteine residues on Keap1 by oxidative stress
or electrophiles causes Nrf2 to dissociate from Keap1, the latter then degraded by autophagy [4].
This stabilises Nrf2, allowing it to translocate to the nucleus where it binds to antioxidant response
elements (ARE) in the promoter region of target genes. DNA binding requires heterodimerisation
with small Maf proteins, and the availability of these small Maf proteins regulates Nrf2 activity [5,6].
Broad-complex, tramtrack, and bric-a-brac (BTB) and CNC homology 1 (Bach1) negatively regulates
nuclear Nrf2 activity by competing with Nrf2 for binding to small Maf proteins [7]. In addition to Keap1,
Nrf2 can also be bound by β-transducin repeat-containing protein, which is substrate adapter protein
for the Skp1-Cullin1 E3 ligase and targets Nrf2 for proteasomal degradation in a manner dependent on
Nrf2 phosphorylation by glycogen synthase kinase 3 (GSK3) [8] (Figure 1). Classical Nrf2 target genes
encode antioxidant proteins, including NAD(P)H quinone dehydrogenase (NQO1), heme oxygenase
1 (HO1) and the two subunits of glutamate-cysteine ligase (GCL), GCLC and GCLM, which is the
rate-limiting enzyme for glutathione synthesis. Nrf2 also regulates several genes involved in autophagy
including SQSTM1, encoding the p62 protein [9], and many genes encoding antioxidant proteins such as
glutathione peroxidases, glutathione-S-transferases, peroxiredoxins, thioredoxins, thioredoxin reductases,
and NADPH regenerating enzymes [10]. Nrf2 and Keap1, the molecular mechanisms for activation and
gene targets, are highly conserved across mammals and zebrafish, while drosophila and C. elegans express
Nrf2 homologs CNC isoform C (CncC) and skinhead-1, respectively [11,12]. Nrf2 is dispensable under
normal conditions, and its deletion does not greatly alter basal expression of its target genes [13–15].
Thus, Nrf2 responds to stress to upregulate protective genes.
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1 (Keap1), and constitutively targeted for proteasomal degradation. Exposure to oxidative stress or 
electrophiles causes Nrf2 to dissociate from Keap1 (which is degraded by autophagy), allowing Nrf2 
to translocate to the nucleus, where it heterodimerises with small Maf proteins (sMaf) in order to bind 
to antioxidant response elements (ARE) in the promoter region of antioxidant target genes. The 
availability of sMaf regulates Nrf2 binding to DNA, and BTB and CNC homology 1 (Bach1) negatively 
regulates Nrf2 binding to DNA by competing with Nrf2 for heterodimerisation with sMaf. 
Phosphorylation of Nrf2 by glycogen synthase kinase 3 (GSK3) promotes its nuclear export and 
proteasomal degradation facilitated by β-transducin repeat-containing protein (βTrCP). 
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Figure 1. Mechanisms of nuclear factor erythroid 2-related factor 2 (Nrf2) regulation. Under normal
conditions, Nrf2 is bound in the cytosol by its negative regulator, kelch-like ECH-associated protein
1 (Keap1), and constitutively targeted for proteasomal degradation. Exposure to oxidative stress or
electrophiles causes Nrf2 to dissociate from Keap1 (which is degraded by autophagy), allowing Nrf2 to
translocate to the nucleus, where it heterodimerises with small Maf proteins (sMaf) in order to bind to
antioxidant response elements (ARE) in the promoter region of antioxidant target genes. The availability
of sMaf regulates Nrf2 binding to DNA, and BTB and CNC homology 1 (Bach1) negatively regulates
Nrf2 binding to DNA by competing with Nrf2 for heterodimerisation with sMaf. Phosphorylation of
Nrf2 by glycogen synthase kinase 3 (GSK3) promotes its nuclear export and proteasomal degradation
facilitated by β-transducin repeat-containing protein (βTrCP).

3. Nrf2 in Normal Aging

Nrf2 and ARE signalling are altered with age. Evidence for altered expression of Nrf2 target genes
with aging is mixed [16], whereas Nrf2 activity is clearly impaired with age in rat liver [17]. In contrast,



Antioxidants 2017, 6, 65 3 of 35

compiling data from several independent studies reveals that ARE–human placental alkaline phosphatase
(hPAP) reporter mice appear to exhibit increasing Nrf2 activity with age in the dorsal horn of the spinal
cord; while little ARE activity is present in 60 day old mice [18], strong ARE activity is evident in 110 day
old mice [19], and is very intense in 6 month old ARE–hPAP mice [20]. ARE activity also appears in
the ventral horn of the spinal cord of these mice with age, albeit less intensely [19,20]. This is consistent
with increased Nrf2 protein in spinal cord of aged mice [21], and increased Nrf2 activity in cerebellum of
aged mice [22]. In contrast to the spinal cord and cerebellum, Nrf2 and Nrf2 target gene expression are
decreased in substantia nigra, ventral tegmental area and hippocampus of aged rats [23]. Interestingly,
in young ARE–hPAP mice, ARE activity appears to be greatest in the substantia nigra, striatum and
ventral hippocampus [24,25]. Hence it appears that the Nrf2 response with age is region-dependent, and
that aging is associated with a loss of Nrf2 activity particularly from regions that have high Nrf2 activity
in young animals. There has been little analysis of Nrf2 activity in aging by cell type. Although spinal
cord ARE activity is present in multiple cell types [19,20], the elevated Nrf2 protein evident in spinal cord
of aged mice is largely restricted to astrocytes [21].

Aging alters the capacity of Nrf2 to respond to insults. The Nrf2 response to insult is impaired
in rhesus macaque vascular smooth muscle in aged compared to younger animals [26]. Similarly,
response of the drosophila Nrf2 homolog CncC to acute insult is impaired in old drosophila compared
to younger flies [27]. The influence of aging on Nrf2 function has also been assessed in brain. Exposure
to airborne pollution elicits a robust Nrf2 response in the cerebellum of young mice, while the same
treatment in aged mice has no effect on Nrf2 signalling [22]. Nrf2 response is also region-dependent,
whereby treatment of aged rats with testosterone restores Nrf2 function in the basal ganglia but not
hippocampus, and is associated with improved exploratory and motor behavior, and dopaminergic
cell numbers [23]. Unfortunately, the effect of testosterone on young rats was not investigated in this
study. These studies suggest that the capacity of Nrf2 to respond to insults is altered with age, and in a
region-dependent manner.

Deletion of Nrf2 causes widespread transcriptomic changes that mirror those of aging.
Transcriptomic analyses reveal that of the eleven functional pathways altered in Nrf2−/− mice,
seven correspond to pathways that are dysregulated in human aging [15], suggesting that Nrf2
may be impaired with age. Furthermore, deletion of Nrf2 causes the appearance of spongiform
leukoencephalopathy, myelin disruption and widespread astrogliosis in aged mice [28]. This is not
accompanied by any apparent neuronal damage or microglial activation [28], suggesting Nrf2 is
important for astrocyte and oligodendrocyte function with age. In six-month old mice, Nrf2 deletion
does not detectably alter performance on learning and memory behavioural tests, but does impair
hippocampal long-term potentiation [15]. These studies indicate that loss of Nrf2 influences both glial
and neuronal activity. However, it is not clear whether a given cell type is directly or indirectly affected.

4. Parkinson’s Disease

Parkinson’s disease is the second most common neurodegenerative disease after Alzheimer’s
disease. Clinical symptoms include progressive motor disturbances such as bradykinesia, muscular
rigidity and resting tremor, and non-motor features such as olfactory, cognitive, psychiatric and
autonomic disruptions. Neuropathologically, Parkinson’s disease primarily involves the loss of
dopaminergic neurons from the substantia nigra, and appearance of Lewy bodies containing
aggregated α-synuclein.

A consistent feature of post-mortem Parkinson’s disease brain is a substantial loss of glutathione
from the substantia nigra [29–34], and the presence of oxidative stress [35]. Both are well known
to induce Nrf2 activity [13]. Accordingly, analysis of substantia nigra neurons of post-mortem
Parkinson’s disease brain reveals robust accumulation of nuclear Nrf2 as compared to normal brain [36],
and aberrant localisation of Keap1 to Lewy bodies [37].

Expression of Nrf2 target proteins are also altered in Parkinson’s disease. NQO1 and HO1 are
strongly elevated in Parkinson’s disease brain, an effect restricted to the substantia nigra pars compacta
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compared to adjacent tissue [38,39]. Peroxiredoxin 6 expression is also greatly increased in Parkinson’s
disease substantia nigra [40], as is glutathione peroxidase 1 in cingulate gyrus and middle frontal gyrus
(substantia nigra was not investigated) [41]. Another Nrf2-regulated protein, γ-glutamyl transferase,
is also increased in the substantia nigra of Parkinson’s disease brains [30]. This enzyme is involved
in the extracellular degradation of glutathione exported by astrocytes and important for supplying
glutathione precursors to neurons [42].

However, further findings are not consistent with Nrf2 activation. The activities of glutathione-
S-transferase, glutathione peroxidase and GCL are unchanged in post-mortem Parkinson’s disease
brain [30]. Ferritin, while primarily regulated by iron regulatory protein signalling, is also upregulated
by Nrf2 activity. However, there is no clear change in ferritin levels in Parkinson’s disease substantia
nigra, with levels variously reported as increased [43], decreased [44,45] or unchanged [46]. Proteomic
studies find conflicting results for many Nrf2 targets [47,48]. A potential contributing factor for these
inconsistent results is that some of these proteins can be regulated by additional mechanisms other
than Nrf2. Additionally, the obvious caveats of post-mortem studies should be kept in mind. Overall,
findings from human post-mortem analyses are generally consistent with upregulation of Nrf2 activity in
Parkinson’s disease brain, particularly the substantia nigra, the primary site of dopaminergic neuron loss.

Dopaminergic neurons derived from familial Parkinson’s disease patient induced pluripotent
stem cells (iPSC) harbour disease-causing mutations. These cells exhibit elevated basal oxidative
stress, mitochondrial abnormalities, decreased glutathione levels and elevated Nrf2 activation [49,50].
Furthermore, these cells are more susceptible to oxidative stress [50]. Similarly, Parkinson’s disease
patient olfactory neurosphere-derived cells display oxidative stress, decreased glutathione and decreased
NQO1 expression, even though Nrf2 levels are maintained, and exhibit an altered response to stimulation
by sulforaphane compared to controls [51].

In mice, Nrf2 activity is strongly increased in the substantia nigra in response to Parkinson’s
disease-related toxins including 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) [24,52–54],
6-hydroxydopamine [55] or mutated α-synuclein [20], although rotenone decreases Nrf2 activity in
rats [56]. Furthermore, exposing Nrf2−/− mice to MPTP, 6-hydroxydopamine or α-synuclein causes
more severe loss of dopaminergic neurons from substantia nigra and striatum compared to wild-type
mice [24,54,57–59], clearly indicating the role of Nrf2 in dopaminergic neuronal survival. Together
these results indicate that Nrf2 is activated in animal models of, and in human Parkinson’s disease,
but this activation is clearly insufficient to completely prevent neuronal failure.

Although endogenous expression of Nrf2 is unable to prevent cell death, pharmacological
activation of Nrf2 prevents neuronal loss in animal models of Parkinson’s disease (Table 1).
Sulforaphane is a small-molecule activator of Nrf2 able to cross the blood–brain barrier [60].
Administration of sulforaphane to mice prevents the toxicity of MPTP [60], 6-hydroxydopamine [61]
and rotenone [62], and prevents α-synuclein toxicity in drosophila [63]. Dimethyl fumarate,
which is clinically approved for the treatment of multiple sclerosis [64,65], is also effective in
MPTP, 6-hydroxydopamine and α-synuclein models of Parkinson’s disease [13,66–68]. Many other
Nrf2-inducing drugs are protective in animal models of Parkinson’s disease including triterpenoids
(2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO) derivatives) [69,70], curcumin [56,71],
3H-1,2-dithiole-3-thione [72], carnosic acid [73] and resveratrol [74–77] (see [2] for further compounds).
CuII(atsm) provides protection in multiple mouse models of Parkinson’s disease [78], and has
recently be shown to activate Nrf2 in mice [79]. CuII(atsm) is currently under investigation
in a phase 1 clinical trial in Parkinson’s disease patients, including efficacy secondary outcome
measures (NCT03204929; Table 2). The requirement for Nrf2 in the protective effect of these
Nrf2-inducing compounds has been demonstrated for sulforaphane, dimethyl fumarate, triterpenoids
and 3H-1,2-dithiole-3-thione [13,60,67,69,72], whereby their protective capacity is diminished in
Nrf2−/− mice (Table 1). Furthermore, some Parkinson’s disease drugs are able to activate Nrf2,
including deprenyl and apomorphine [80–82]. Lastly, knockdown of Keap1, which increases Nrf2,
provides partial protection against MPTP toxicity in mice [83].
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Table 1. Preclinical studies on Nrf2 activation in animal models of Parkinson’s disease.

Treatment Model Species Nrf2−/− Assessed? References

Dimethyl fumarate MPTP Mouse Yes [13]
MPTP Mouse No [66]

6OHDA Mouse No [68]
α-synuclein Mouse Yes [67]

CDDO–MA MPTP Mouse No [70]
CDDO–EA MPTP Mouse Yes [69]

CDDO–TFEA MPTP Mouse Yes [69]
3H-1,2-dithiole-3-thione MPTP Mouse Yes [72]

Sulforaphane MPTP Mouse Yes [60]
6OHDA Mouse No [61]

Rotenone Mouse No [62]
α-synuclein Drosophila No [63]

Curcumin Rotenone Rat Nrf2-kd [56]
Rotenone Mouse No [71] *

Resveratrol Rotenone Rat No [74]
MPTP Mouse No [75] *
MPTP Mouse No [76] *

6OHDA Rat No [77] *
Carnosic acid 6OHDA Rat No [73]

MIND4 MPTP Mouse No [84]
2′,3′-dihydroxy-4′,6′-dimethoxychalcone 6OHDA Mouse No [85]

CuII(atsm) MPTP Mouse No [78] *
6OHDA Mouse No [78] *

α-synuclein Mouse No [78] *
α-synuclein +

MPTP Mouse No [78] *

Keap1-kd MPTP Mouse No [83]
Transplanted Nrf2-overexpressing astrocytes 6OHDA Mouse n.a. [57]

Nrf2 overexpression in astrocytes MPTP Mouse n.a. [24]
Nrf2 overexpression in astrocytes in Nrf2−/− mice MPTP Mouse n.a. [24]

Nrf2 overexpression in astrocytes α-synuclein Mouse n.a. [20]

* Not assessed in the context of Nrf2; n.a.: Not applicable.

Table 2. Clinical trials involving Nrf2 inducers for neurodegenerative diseases.

Drug NCT # Study Name Phase # of Patients Efficacy? References

Parkinson’s disease

CuII(atsm) * 03204929 n.p. 1 38 c Ongoing

Alzheimer’s disease

Curcumin 00099710 n.p. 2 36 No [86]
n.p. n.p. 2 34 No [87]

DL-3-n-butylphthalide 02711683 n.p. Obs 120 c Ongoing
Resveratrol 01504854 n.p. 2 119 Yes # [88,89]

Amyotrophic lateral sclerosis

Edaravone a,* 01492686 MCI186-19 3 137 Yes [90]
00330681 MCI186-16 3 206 No [91]
00415519 MCI186-18 3 25 No [92]

CuII(atsm) * 02870634 n.p. 1 50 c Ongoing
03136809 n.p. 1/2 50 c Ongoing

Huntington’s disease

Resveratrol 02336633 REVHD 3 102 c Ongoing

Multiple sclerosis

Dimethyl fumarate b 00420212 DEFINE 3 1234 Yes [93]
00451451 CONFIRM 3 1417 Yes [94]
00835770 ENDORSE 3 229 Yes [95]

Natalizumab b,* 00027300 AFFIRM 3 942 Yes [96]
00030966 SENTINEL 3 1171 Yes [97]
01416181 ASCEND 3 887 No [98]

Nanocurcumin 03150966 n.p. 2 50 c Ongoing
Curcumin + IFNbeta 1a 01514370 CONTAIN 2 80 Ongoing

a Clinically approved for treatment of amyotrophic lateral sclerosis; b Clinically approved for treatment of
relapsing-remitting multiple sclerosis; c Estimated enrolment; # Efficacy detected in a subsequent analysis of
a subset of patients [89]; * Nrf2 activation has been reported (see text) but not recognised as a primary action; Obs:
Observational study; n.p.: None provided.
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Cell Type-Specific Activation of Nrf2 in Parkinson’s Disease

The increase in nuclear Nrf2 evident in the substantia nigra of human post-mortem Parkinson’s
disease brain (as compared to normal brain) appears to be restricted to neurons [36]. In contrast,
NQO1 [38] and peroxiredoxin 6 [40] are strongly expressed in astrocytes in substantia nigra of
Parkinson’s disease brain, with more infrequent expression in neurons. Similarly, while HO1 is
mildly expressed in normal and Parkinson’s disease neurons, HO1 expression is greatly increased
in Parkinson’s disease astrocytes, specific to the substantia nigra compared to other regions [39].
Increased γ-glutamyl transferase [30] is likely to be limited to astrocytes as this enzyme is involved
in the extracellular degradation of glutathione exported by astrocytes and important for supplying
glutathione precursors to neurons [42]. A histochemical study showed a profound loss of glutathione
from surviving dopaminergic neurons in Parkinson’s disease substantia nigra, while glutathione
was maintained in glia [33]. While Nrf2 activation in vivo and in vitro can have profound effects on
microglia [58,67], and Nrf2 activation can be observed in cultured microglia [58,59,99], direct evidence
for Nrf2 activation specifically in microglia in vivo is limited to elevated GPx1 in the cingulate
gyrus [41] and HO1 in the substantia nigra of post-mortem human Parkinson’s disease brains [59].
Nrf2 activation in oligodendrocytes in the context of Parkinson’s disease has not been reported.
Together these findings indicate that the upregulation of Nrf2 target genes is largely restricted to
astrocytes in Parkinson’s disease brain.

In normal mice, increased expression of HO1 concomitant with Nrf2 induction is restricted to
astrocytes, sometimes microglia, and not expressed in neurons [60,85], consistent with HO1 expression
in human brain [39,59], suggesting HO1 is upregulated exclusively in glia. Furthermore, in the basal
ganglia of MPTP-treated mice, astrocytes are the main cell type to upregulate Nrf2 in response to
sulforaphane treatment [60]. In contrast, the increased Nrf2 expression evident in response to dimethyl
fumarate in MPTP-treated mice is at least partially localised to midbrain neurons [66]. Hence it appears
that Nrf2 inducers may differentially target certain cell populations. Cell-specific Nrf2 activation for
other Nrf2 inducers has not been assessed.

Further evidence for the importance of astrocytic Nrf2 expression comes from overexpression
experiments (Table 1). Nrf2 overexpressed on the GFAP promoter thus restricting overexpression
to astrocytes renders mice resistant to MPTP toxicity, with not as much loss of striatal tyrosine
hydroxylase and less gliosis [24]. Overexpression of Nrf2 in astrocytes also protects mice from mutant
α-synuclein [20], and transplanting Nrf2-overexpressing astrocytes into mouse striatum protects
against 6-hydroxydopamine toxicity [57]. Furthermore, crossing mice overexpressing Nrf2 in astrocytes
with Nrf2−/− mice, such that astrocytes are the only cells expressing Nrf2 is also protective against
MPTP toxicity [24]. This indicates that neuronal Nrf2 is not explicitly required to prevent neuronal
death. Furthermore, these results indicate astrocytes are key mediators of Nrf2 signalling. It remains to
be determined whether activation of Nrf2 specifically in neurons is similarly protective in Parkinson’s
disease models.

5. Alzheimer’s Disease

Alzheimer’s disease is the most common form of dementia and most prevalent neurodegenerative
disease. It involves the progressive age-related accumulation of extracellular plaques containing
amyloid-β and intracellular neurofibrillary tangles containing tau, and synaptic dysfunction and
neuron loss. Neuropathology begins in the hippocampus and temporal cortex and progresses to other
brain regions, leading to cognitive and memory deficits.

Analysis of human post-mortem brain tissue reveals that Nrf2 appears to be abundant in the
nuclei and weakly expressed in cytosol of neurons from normal brain [36]. However, in Alzheimer’s
disease brain, Nrf2 is highly excluded from nuclei of neurons and strongly cytosolic [36] (Table 3).
This is apparent in immunohistochemical staining of hippocampal neurons and western blot of
nuclear fractions from frontal cortex homogenates [36], suggesting Nrf2 activity is decreased in
Alzheimer’s disease. However, more recent studies investigating post-mortem Alzheimer’s disease
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brain tissue found an increase in Nrf2 and p62 in cells expressing high levels of amyloid precursor
protein or neurofibrillary tangles, and other Nrf2 targets are also elevated [9,100], as are Nrf2 target
gene transcripts [37]. Keap1 is also dysregulated, found in neurofibrillary tangles associated with
p62 [37]. In contrast to the earlier findings [36], these studies suggest Nrf2 signalling is elevated in
Alzheimer’s disease.

Table 3. Alterations in Nrf2 and Nrf2 targets in post-mortem Alzheimer’s disease brain regions.

Nrf2 Target Alteration in Alzheimer’s Disease Method of Detection References

Hippocampus
Nrf2 Increased IHC, WB [9]

Increased WB [100]
Decreased IHC [36]

HO1 Increased WB [9]
Increased IHC [101]
Increased IHC, WB [102]
Increased IHC [103]
Increased IHC, WB [100]

NQO1 Increased IHC [104]
Increased IHC, WB, activity [105]

p62 Increased WB [9]
Glutathione reductase Increased mRNA [106]

Glutathione peroxidase Increased mRNA [106]
Glutathione-S-transferase Unchanged mRNA [106]

Decreased WB, activity [107]
Thioredoxin Decreased DB [108]

Thioredoxin reductase Unchanged Activity [108]

Temporal cortex
Keap1 Unchanged IHC [37]

Mislocalised WB [37]
HO1 Increased mRNA [37]

Increased IHC [101]
Increased IHC, WB [102]

NQO1 Increased (ns) mRNA [37]
GCLM Increased mRNA [37]

p62 Increased mRNA [37]
Glutathione-S-transferase Decreased WB, activity [107]

Thioredoxin Decreased DB [108]
Thioredoxin reductase Unchanged Activity [108]

Frontal cortex
Nrf2 Decreased WB [36]

NQO1 Increased IHC, activity [109]
GCLC Decreased WB [110]

Glutathione synthetase Decreased WB [110]
Glutathione reductase Increased WB [110]

Glutathione-S-transferase Unchanged 2D-E [111]
Peroxiredoxin 1 Unchanged 2D-E [111]
Peroxiredoxin 2 Increased 2D-E [111]
Peroxiredoxin 3 Unchanged 2D-E [111]
Peroxiredoxin 6 Unchanged 2D-E [111]

2D-E, two-dimensional electrophoresis followed by mass spectrometry; DB, dot blot; IHC, immunohistochemistry;
ns, not significant; WB, western blot.

Supporting increased Nrf2 activity in Alzheimer’s disease, further analysis of Nrf2 targets in
post-mortem Alzheimer’s disease brain shows increased NQO1 expression in hippocampus [104,105]
and frontal cortex (although less strongly than in hippocampus) [109], while HO1 is increased in
temporal cortex and hippocampus of Alzheimer’s disease brains [9,100–103]. Expression of other
genes regulated by Nrf2 is less consistent (Table 3). Overall, the evidence indicates that Nrf2 activity
is more often elevated in hippocampus and temporal cortex in Alzheimer’s disease, whereas Nrf2
activity in frontal cortex is more variable. Hence it appears that there are regional variations in Nrf2
activation in Alzheimer’s disease, with greater activity in the regions where pathology is most severe.
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In mice, Nrf2 expression is decreased in hippocampal neurons and frontal cortex homogenates
of 16-month-old amyloid precursor protein/presenilin-1 (APP/PS1) mice compared to wild-type
controls [112]. Decreased mRNA expression of Nrf2 targets is apparent in six-month old APP/PS1
frontal cortex homogenates, coinciding with the appearance of amyloid-β pathology [112]. However,
a more recent report found that Nrf2 and its targets are either unchanged or increased in the
hippocampus of the same Alzheimer’s disease model mice at a similar age [14]. Furthermore,
in an amyloid-β rat model of Alzheimer’s disease, Nrf2 signalling is decreased in cortex but
not hippocampus [113], while another study utilising the same model found elevated Nrf2 in
hippocampus [114]. Finally, hippocampal expression of mutated tau elevates HO1 and GCLC
transcripts in wild-type but not Nrf2−/− mice [100]. These results somewhat mirror those in the
human Alzheimer’s disease brain, with a tendency for greater Nrf2 activity in hippocampus and less
activity in frontal cortex.

In addition to regional variations, age-dependent changes in Nrf2 activity could contribute to
inconsistent results. Three studies have examined aspects of Nrf2 signalling in the 3xTg Alzheimer’s
disease mouse model and together these studies indicate biphasic age-dependent changes in Nrf2
activity. In early adulthood (2–3 months of age), Nrf2 activity is elevated in these mice compared to
controls, with increased Nrf2 and NQO1 expression [115,116] (although GCLC is unchanged and HO1
and peroxiredoxin 1 expression are decreased [116]). But then Nrf2 and NQO1 expression quickly
decline with age, with similar NQO1 expression as controls from 4–6 months of age [115] and lower
Nrf2 expression in Alzheimer’s disease mice from 11–21 months of age [116,117].

Although Nrf2 activity varies in region and age-dependent manners, it is clear that Nrf2
activity is insufficient to prevent oxidative stress and neuronal cell dysfunction in Alzheimer’s
disease. Supporting this, transcriptomic analyses reveal that Nrf2 deletion in mice causes alterations
in functional pathways recapitulating those altered in Alzheimer’s disease [15]. That a lack of
Nrf2 mirrors Alzheimer’s disease suggests that Nrf2 activity is impaired or insufficient in the
disease. However, results from direct modulation of Nrf2 in mouse models clearly demonstrate
the protective influence of Nrf2 in Alzheimer’s disease. Nrf2−/− mice crossed with APP/PS1 or
mutant HsAPPV717I/HsMAPTP301L mice exhibit exacerbated astrocyte and microglia activation, and
worsened amyloid-β pathology [9,14], as well as tau pathology and impaired learning and memory [15],
whereas overexpression of Nrf2 in hippocampal neurons via lentiviral transduction lessens astrocyte
activation and improves cognition without diminishing amyloid-β pathology [118].

Pharmacological activation of Nrf2 is protective in various animal models of Alzheimer’s disease
(Table 4). For example, the highly potent triterpenoid CDDO-methylamide improves cognition
and abrogates amyloid-β pathology in Tg19959 mice [119], while DL-3-n-butylphthalide is similarly
protective in APP/PS1 mice [120]. Methysticin improves cognition and ameliorates gliosis in APP/PS1
mice [121], and carnosic acid is protective in multiple Alzheimer’s disease mouse models [122].
Nrf2 activation by arsenite or sulforaphane prevents toxicity associated with amyloid-β administration
to rats and mice [114,123]. More recently, alternative treatments are being investigated, such as direct
inhibition of Keap1, which induces Nrf2 activity and prevents amyloid-β toxicity in drosophila [124].
Importantly, none of these studies determined the requirement of Nrf2 for the protective effects of the
compounds investigated. Curcumin and resveratrol have been extensively studied in preclinical animal
models of Alzheimer’s disease (Table 4). While Nrf2 activation was not considered as a mechanism of
action in these studies, Nrf2 activation by curcumin and resveratrol has been extensively demonstrated
elsewhere [125,126].
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Table 4. Preclinical studies on Nrf2 activation in animal models of Alzheimer’s disease.

Treatment Model Species Improved Cognition? References

CDDO–MA Tg19959 Mouse Yes [119]
DL-3-n-butylphthalide APP/PS1 Mouse Yes [120]

Sulforaphane Amyloid-β Mouse Yes [123]
D-galactose and

aluminium Mouse Yes [127] *

Curcumin a Tg2576 Mouse n.d. [128] *
Amyloid-β Rat Yes [129] *

Tg2576 Mouse n.d. [130] *
APP/PS1 Mouse n.d. [131] *

Amyloid-β Rat Yes [132] *
APP/PS1 Mouse Yes [133] *

5xFAD Mouse Yes [134] *
5xFAD Mouse Yes [135] *

Resveratrol Tg19959 Mouse n.d. [136] *
p25 Mouse Yes [137] *

Amyloid-β Rat Yes [138]
SAMP8 Mouse Yes [139] *

APP/PS1 Mouse Yes [140] *
Amyloid-β Mouse Yes [141] *

Methysticin APP/PS1 Mouse Yes [121]
Sodium arsenite Amyloid-β Rat Yes [114]

Carnosic acid hAPP-J20 Mouse Yes [122]
3xTg Mouse n.d. [122]

Pyrrolidine dithiocarbamate APP/PS1 Mice Yes [142] *

Keap1 deletion Amyloid-β
expression Drosophila Increased lifespan and

motor function [124]

Lentiviral transduction of
Nrf2 in hippocampal neurons APP/PS1 Mouse Yes [118]

a Selected studies, see [143] for further examples; * Not assessed in the context of Nrf2; FAD: familial Alzheimer’s
disease; n.d.: Not determined; SAMP8: senescence accelerated mouse prone 8.

Considerable evidence indicates GSK3 is involved in the pathogenesis of Alzheimer’s disease [144].
GSK3 is a negative regulator of Nrf2 [8], and inhibition of GSK3 promotes Nrf2 activity [145,146].
Pyrrolidine dithiocarbamate, which induces Nrf2 [147] and inhibits GSK3 [142,147], is protective in
APP/PS1 mice [142]. Other studies show that although inhibition of GSK3 is protective in models
of Alzheimer’s disease [146,148], this effect can occur independently of Nrf2 activation [124,149].
New approaches such as GSK3 inhibitor/Nrf2 inducer dual function drugs are being developed [149].

Clinical trials with Nrf2 inducing agents such as resveratrol and curcumin in Alzheimer’s disease
patients have produced limited results [86,88], presumably due to poor bioavailability and brain
penetrance of the compounds [125], although a retrospective subset analysis found positive results for
resveratrol on Alzheimer’s Disease Cooperative Study—Activities of Daily Living (ADCS-ADL) clinical
scores [89] (Table 2). DL-3-n-butylphthalide has generated positive outcomes in a phase 2 clinical trial
in Chinese patients with vascular cognitive impairment without dementia [150], a population at high
risk of developing dementia [151], and is currently under investigation in Alzheimer’s disease patients
(NCT02711683; Table 2).

Cell Type-Specific Activation of Nrf2 in Alzheimer’s Disease

As opposed to Parkinson’s disease, evidence for Nrf2 activation in specific cell types in
Alzheimer’s disease is limited. In post-mortem Alzheimer’s disease brain, while Nrf2 has been
shown to be both elevated and decreased hippocampal neurons [9,36], Nrf2 is also observed in the
nucleus of some hippocampal astrocytes [36]. Although increased NQO1 is evident in hippocampal
and frontal cortex neurons in Alzheimer’s disease brain [104,105,109], NQO1 is strongly increased in
astrocytes near plaques in both regions [105,109]. HO1 is increased in both neurons and astrocytes
in the temporal cortex and hippocampus [101–103], and in microglia in the hippocampus [100] of
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Alzheimer’s disease brains. HO1 is also evident in astrocytes and microglia in response to mutated tau
expression in the hippocampus of mice [100].

Overexpression studies do not directly indicate which cell types are responsible for the
endogenous Nrf2 response, but they do provide evidence for which cells may be involved.
Overexpression of Nrf2 specifically in hippocampal neurons alleviates cognitive dysfunction in
APP/PS1 mice [118] suggesting that Nrf2 activation in neurons is sufficient to prevent neuronal
dysfunction in Alzheimer’s disease. Overexpression of Nrf2 in astrocytes has not been investigated
in Alzheimer’s disease models, and therefore it is unclear whether activation of Nrf2 specifically in
astrocytes is equally effective in alleviating Alzheimer’s disease symptoms.

Overall, the available data indicate Nrf2 activity is increased in neurons, astrocytes and possibly
microglia in Alzheimer’s disease, while oligodendrocytes have not been studied. However, the cell
type-specific requirement of Nrf2 expression in Alzheimer’s disease is unknown. Furthermore,
the cell type/s targeted by pharmacological inducers of Nrf2 have not been assessed in the context of
Alzheimer’s disease.

6. Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis is the most common motor neuron disease. It involves the
progressive failure of motor neurons in the spinal cord and motor cortex, causing progressive
paralysis inexorably leading to death usually within 3–5 years of diagnosis. Familial amyotrophic
lateral sclerosis can be caused by mutations in superoxide dismutase 1 (SOD1), transactive response
DNA-binding protein 43 (TDP-43) and several other genes. Sporadic disease is most often accompanied
by pathological inclusions containing TDP-43 [152].

Nrf2 mRNA and protein is decreased in post-mortem amyotrophic lateral sclerosis motor cortex
and spinal cord compared to normal brain [153]. As in Alzheimer’s disease, although expression of
Keap1 is unchanged [153], Keap1 is found associated with intracellular inclusions in spinal cord motor
neurons [37], and Keap1 mRNA is elevated in the motor cortex of post-mortem amyotrophic lateral
sclerosis brain [153]. Motor neurons cultured from SOD1-G93A amyotrophic lateral sclerosis model
mice or neuroblastoma spinal cord (NSC)34 motor neuron-like cells expressing mutated SOD1 have
diminished Nrf2 activity [154,155], and transcriptomic analysis of NSC34 cells expressing mutated
SOD1 show down-regulated Nrf2 and Nrf2 target genes [156]. Hence, Nrf2 appears to be diminished
in amyotrophic lateral sclerosis, particularly in motor neurons.

In contrast to human tissue and cultured cells, Nrf2 activity is consistently elevated in the
spinal cord of SOD1-G93A rodent models of amyotrophic lateral sclerosis [19,157–159]. Regional
analysis of SOD1-G93A mice crossed with ARE–hPAP reporter mice reveals Nrf2 activity is minimal
in motor cortex, present in spinal cord, and intense in skeletal muscle [19]. Nrf2 signalling in
skeletal muscle is evident from before motor symptom onset [19]. That Nrf2 signalling is greater
in skeletal muscle compared to spinal cord is consistent with the dying back hypothesis of motor
neuron degeneration [160], which posits motor neuron dysfunction is initiated at neuromuscular
junctions where their presynaptic terminals contact muscle fibers.

Interestingly, deletion of Nrf2 does not greatly alter disease progression in mice modeling
amyotrophic lateral sclerosis. Nrf2−/− mice crossed with SOD1-G93A, SOD1-G85R or SOD1-H46R
mice have either unchanged or only mildly altered symptom onset and survival [159,161,162].
Surprisingly, Guo et al. report that crossing Nrf2−/− mice with SOD-G93A mice does not alter the
elevated expression of Nrf2 targets HO1, GCLM and GCLC, although NQO1 elevation is blocked [159].
These results suggest that some classical Nrf2 target genes can be regulated independently of Nrf2 in
amyotrophic lateral sclerosis mice.

That Nrf2 deletion has little impact on disease phenotype while Nrf2 is elevated in animal
models suggests that Nrf2 signalling is impaired in amyotrophic lateral sclerosis. Recent evidence
suggests a mechanism involving disrupted TDP-43 function. Fibroblasts from amyotrophic lateral
sclerosis patients harbouring mutated TDP-43 have disrupted Nrf2 signalling, where basal Nrf2
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activity is elevated but their response to the Nrf2 inducer arsenite [114] is impaired [163]. Interestingly,
Nrf2 protein and Nrf2 target gene transcripts are increased in these cells, but the transcripts do not
appear to be effectively translated into protein [163]. Heterogenous ribonucleoproteins (hnRNPs)
such as TDP-43 and hnRNP K are RNA binding proteins, and are involved in trafficking mRNA [164].
Mutant TDP-43-dependent mislocalised hnRNP K co-precipitates with Nrf2 and glutathione peroxidase
1 mRNA, suggesting hnRNPs are aberrantly binding mRNA of antioxidant genes, preventing their
translation [163]. Consistent with these findings, NSC34 cells expressing mutated TDP-43 have elevated
Nrf2 but decreased NQO1 protein [165], and decreased HO1 protein [166], again suggesting translation
of Nrf2 activity into antioxidant proteins is impaired. However, as opposed to robust accumulation
of Nrf2 following arsenite [163], sulforaphane does not cause Nrf2 accumulation or signalling in
NSC34 cells expressing mutant TDP-43 [166]. As TDP-43 pathology is highly prevalent in amyotrophic
lateral sclerosis [167], these results suggest that Nrf2 signalling may be disrupted in this manner in the
majority of amyotrophic lateral sclerosis cases.

Although endogenous Nrf2 signalling appears to be impaired in amyotrophic lateral sclerosis,
the role of Nrf2 in preventing motor neuron death is clearly demonstrated by experiments
pharmacologically targeting Nrf2. Various agents activating Nrf2 have been assessed in animal
models of amyotrophic lateral sclerosis (Table 5). Highly potent synthetic triterpenoids exhibit
efficacy in SOD1-G93A mice, extending survival and activating Nrf2 genes in spinal cord [168].
DL-3-n-butylphthalide similarly extends survival of SOD1-G93A mice and activates Nrf2 target
genes and ameliorates gliosis in spinal cord [169]. Although initially determined to have no
positive effect [170], multiple subsequent studies have shown efficacy of resveratrol in SOD1-G93A
mice [171–173]. In silico screening of over 3 million compounds for antioxidative capacity identified
N-(4-(2-pyridyl)(1,3-thiazol-2-yl))-2-(2,4,6-trimethylphenoxy) acetamide (CPN-9), which activates
Nrf2 and extends the survival of SOD1-H46R mice even when treated post-symptom onset [174].
A subsequent study utilising in silico drug design based on CPN-9 generated the novel compound
WN1316, which also activates Nrf2 and extends survival of SOD1-H46R and SOD1-G93A mice
and decreases gliosis in the spinal cord [175]. The receptor-inactive S[+] enantiomer of the
Parkinson’s disease drug apomorphine was identified from a screen of compounds for Nrf2
activation and brain penetrance [176]. Treatment with S[+]-apomorphine slightly improves the motor
function of SOD1-G93A mice but did not extend survival [176]. The Nrf2 inducing compound
pyrrolidine dithiocarbamate [147], while protective in Alzheimer’s disease [142], worsens phenotype
in SOD1-G93A mice [177]. One possible explanation for this surprising result is that pyrrolidine
dithiocarbamate inhibits the immunoproteasome [177], which is elevated in these mice [177,178].
Immunoproteasome function may be beneficial in these mice, and its inhibition by pyrrolidine
dithiocarbamate may outweigh any protective gains made by Nrf2 induction. Finally, lentiviral
delivery of Nrf2 in combination with excitatory amino acid transporter 2 (EAAT2) and glutamate
dehydrogenase 2 (GDH2) to SOD1-G93A mice is protective, but not Nrf2 in isolation [179].

Table 5. Preclinical studies on Nrf2 activation in animal models of amyotrophic lateral sclerosis.

Treatment Model Species Improved Motor
Function?

Extends
Survival? References

CDDO–EA SOD1-G93A Mouse Yes Yes [168]
CDDO–TFEA SOD1-G93A Mouse Yes Yes [168]

DL-3-n-butylphthalide SOD1-G93A Mouse Yes Yes [169]
Resveratrol SOD1-G93A Mouse No No [170] *

SOD1-G93A Mouse Yes Yes [171] *
SOD1-G93A Mouse Yes Yes [172] *
SOD1-G93A Mouse Yes Yes [173] *

CPN-9 SOD1-H46R Mouse Yes Yes [174]
WN1316 SOD1-G93A Mouse Yes Yes [175]

SOD1-H46R Mouse Yes Yes [175]
S[+]-apomorphine SOD1-G93A Mouse Yes No [176]
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Table 5. Cont.

Treatment Model Species Improved Motor
Function?

Extends
Survival? References

CuII(atsm) SOD1-G93A Mouse Yes Yes [180] *
SOD1-G37R Mouse Yes Yes [181] *
SOD1-G37R Mouse Yes n.d. [182] *
SOD1-G93A Mouse Yes Yes [183] *

SOD1-G93AxCCS Mouse n.d. Yes [183] *
SOD1-G93A Mouse Yes Yes [184] *
SOD1-G93A Mouse Yes Yes # [185] *

Pyrrolidine dithiocarbamate SOD1-G93A Rat No No [177] *
Lentiviral delivery of
Nrf2/EAAT2/GDH2 SOD1-G93A Mouse Yes Yes [179]

Nrf2 overexpression in astrocytes SOD1-G93A Mouse Yes Yes [18]
SOD1-H46R/H48Q Mouse n.d. Yes [18]

AAV6 intramuscular delivery of Nrf2 SOD1-G93A Mouse No No [186]
Nrf2 overexpression in skeletal muscle SOD1-G93A Mouse n.d. No [161]

Nrf2 overexpression in neurons SOD1-G93A Mouse n.d. No [161]
# 5% increase in survival, not significant; * Not assessed in the context of Nrf2; n.d.: Not determined.

Edaravone, a free radical scavenger, is the first new drug to be approved for the treatment of
amyotrophic lateral sclerosis since Riluzole in 1995 [187]. Although two phase 3 clinical trials found
no efficacy [91,92], a third phase 3 trial showed efficacy in a specific population of amyotrophic lateral
sclerosis patients with short disease duration and mild symptoms [90] (Table 2). Although the primary
action of the drug is a free radical scavenger, edaravone has been shown to activate Nrf2 in PC12 cells [188]
and in rats co-treated with kainate [189]; hence, Nrf2 activation may contribute to its mechanism of action.

CuII(atsm) improves motor function and extends survival in multiple mouse models of
amyotrophic lateral sclerosis, including when administered post-symptom onset [180–185], and has
recently been shown to activate Nrf2 in mice [79]. CuII(atsm) is currently being investigated in a phase
1 clinical trial (NCT02870634), and a linked phase 1/2 extension trial (NCT03136809) in amyotrophic
lateral sclerosis patients, both with efficacy secondary outcome measures (Table 2).

Cell Type-Specific Activation of Nrf2 in Amyotrophic Lateral Sclerosis

Although Nrf2 expression in post-mortem normal human motor cortex and spinal cord is mainly
neuronal, and is diminished in amyotrophic lateral sclerosis, Nrf2 is evident in astrocytes of human
amyotrophic lateral sclerosis motor cortex [153]. This result is analogous to the appearance of
Nrf2 in activated astrocytes in Alzheimer’s disease brain [36]. This effect is more pronounced in
mouse models of amyotrophic lateral sclerosis. Although elevated Nrf2 is apparent in disease-model
neurons, Nrf2 activation is stronger in spinal cord astrocytes with Nrf2 targets upregulated specifically
in activated astrocytes [19,157,158]. Hence, elevated Nrf2 coincides with astrocyte activation in
human and mouse spinal cord in amyotrophic lateral sclerosis. Nrf2 expression in microglia and
oligodendrocytes has not been assessed in amyotrophic lateral sclerosis.

The cell types targeted by pharmacological Nrf2 inducers have not been assessed in the context of
amyotrophic lateral sclerosis. However, overexpression studies provide strong evidence for the key role of
astrocyte Nrf2 activation in amyotrophic lateral sclerosis (Table 5). Viral delivery of Nrf2 via intramuscular
injections does not alter the phenotype of SOD1-G93A mice [186]. Similarly, Nrf2 overexpression targeted
to skeletal muscle delays onset but does not alter survival of SOD1-G93A mice [161]. Overexpression
of Nrf2 specifically in motor neurons also moderately delays symptom onset, but has no effect on
survival [161]. In contrast, overexpression of Nrf2 specifically in astrocytes significantly delays symptom
onset and extends the survival of SOD1-G93A mice [18]. Hence, as opposed to Alzheimer’s disease, where
neuronal overexpression of Nrf2 is protective [118], overexpression of Nrf2 is only strongly protective in
amyotrophic lateral sclerosis when targeted to astrocytes.

Lack of protection by neuronal Nrf2 overexpression in amyotrophic lateral sclerosis is consistent
with evidence that, for this disease in particular, the activity of astrocytes is especially important
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for neuronal survival. In co-culture experiments, spinal cord astrocytes from amyotrophic lateral
sclerosis patients or mice kill co-cultured motor neurons [190,191]. Nrf2 overexpression in neurons [18]
does not appear to be sufficient to overcome the negative influence of astrocytes. In contrast,
Nrf2 activation prevents astrocyte killing of co-cultured motor neurons in a glutathione dependent
mechanism [18,157,192]. These results demonstrate that astrocytic Nrf2 is required to prevent
astrocyte-dependent damage to neurons, and highlights the importance of astrocyte-dependent Nrf2
expression for preventing neurodegeneration.

7. Huntington’s Disease

Huntington’s disease is a relatively rare (5–10 per 100,000) autosomal-dominant
neurodegenerative disease. It is caused by poly-glutamine expansion in the huntingtin gene,
giving rise to aggregation-prone huntingtin protein. Neuropathology involves failure of medium-sized
spiny neurons in the striatum, and clinical symptoms include chorea and rigidity, as well as dementia
and other cognitive and neuropsychiatric symptoms. Mitochondrial complex II inhibitors such as
3-nitropropionic acid and malonate effectively recapitulate several features of Huntington’s disease,
including striatal degeneration and disruption of motor function.

Nrf2 has not been well studied in human Huntington’s disease tissue. While there has been
no assessment of Nrf2 expression, some Nrf2 targets have been assessed in human post-mortem
Huntington’s disease brain. HO1 is elevated [193] and glutathione synthetase is strongly decreased in
striatum [194], while striatal NQO1 and cortical glutathione synthetase and NQO1 are unchanged [194].
No alterations in glutathione content have been detected in cortex, striatum or substantia nigra in
human post-mortem Huntington’s disease brain [31].

In blood from Huntington’s disease patients, glutathione peroxidase activity has been reported
as both increased and decreased in erythrocytes [195,196], while glutathione reductase activity is
decreased [195]. Plasma glutathione levels have been reported as decreased or unchanged [195,197].

Evidence for Nrf2 activity in genetic models of Huntington’s disease is mixed. In the R6/2
model, Nrf2 targets are elevated in striatum [198], whereas striatal Nrf2 mRNA is decreased [199],
and thioredoxin reductase 3 mRNA and plasma glutathione are increased in N171-82Q mice [200].
Brain glutathione is unchanged in YAC128 mice [201], and glutathione peroxidase activity is unchanged
in R6/1 mice [202].

Together, these studies show that Nrf2 is not greatly altered in Huntington’s disease, in human
brain or most genetic animal models. That Nrf2 is not induced despite obvious oxidative
stress [203] suggests that Nrf2 signalling is impaired in Huntington’s disease. Indeed, in cultured
cells, Huntington’s disease patient iPSC-derived neural stem cells exhibit impaired capacity for
pharmacological Nrf2 induction [84]. Similarly, in striatal mouse cells expressing mutant huntingtin,
Nrf2 signalling is impaired, with decreased basal ARE reporter activity and impaired response to Nrf2
inducers [194,204], even though Nrf2 expression is unchanged [204]. This impaired Nrf2 signalling is
analogous to similar impairments in amyotrophic lateral sclerosis.

In contrast to human tissue and genetic models of Huntington’s disease, Nrf2 signalling is
generally increased in toxin models of the disease. Nrf2 signalling is induced in the penumbra
surrounding malonate-induced striatal lesion, [205,206] and is accompanied by increased Nrf2 and
HO1 expression but not NQO1 or GCLM [206]. In response to 3-nitropropionic acid, Nrf2 signalling is
either increased or unchanged in the striatum of rats or mice, respectively [207–209]. In mouse and rat
striatal slice cultures, quinolinic acid induces Nrf2 [210], while Nrf2 is increased by 3-nitropropionic
acid in cultured brain cells [205,211]. The protective role of Nrf2 in toxin models of Huntington’s disease
is further evidenced by studies utilising Nrf2−/− mice, whereby deletion of Nrf2 renders mice more
susceptible to 3-nitropropionic acid and malonate, with more severe motor impairment and increased
striatal lesion size [205,211]. Nrf2-deficient primary neuronal cultures are also more susceptible
to 3-nitropropionic acid toxicity [205]. These studies show that the Nrf2 pathway is functional and
protective in toxin models of Huntington’s disease, in comparison to genetic models. This suggests that
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the impaired Nrf2 activity evident in human Huntington’s disease and genetic models is dependent
on the presence of mutated huntingtin. The mechanism/s by which mutated huntingtin impairs
Nrf2 signalling are unclear, but may involve the tumor suppressor protein homologous to the E6-AP
carboxyl terminus domain and ankyrin repeat containing E3 ubiquitin-protein ligase 1 (HACE1),
which has been found to facilitate Nrf2 signalling, and is decreased in the striatum of Huntington’s
disease post-mortem brain and cultured mouse striatal cells expressing mutated huntingtin [194].

Although Nrf2 signalling is impaired in the presence of mutated huntingtin, pharmacological
activators of Nrf2 are protective in animal models of Huntington’s disease (Table 6). Triterpenoids and
dimethyl fumarate are protective in genetic models of Huntington’s disease, improving survival and
motor function and increasing striatal neuron survival [212,213], and curcumin is effective in multiple
models of Huntington’s disease [214–216]. Dimethyl fumarate, CDDO-methylamide, sulforaphane,
curcumin nanoparticles, tert-butylhydroquinone, the citrus flavonone naringin, the ginseng extract
protopanaxtriol, the organic disulphide cystamine and AI-3 are all protective against 3-nitropropionic
acid and decrease striatal lesion size in rats and mice [25,70,207–209,211,217,218]. Deletion of Nrf2
abolishes the protective effects of cystamine and tert-butylhydroquinone, confirming the role of
Nrf2 in these effects [25,211]. Thiazole-containing derivatives of 5-nitro-8-R-quinoline (e.g., MIND4)
protect ex vivo rat brain slices transiently transfected with mutant huntingtin and a drosophila
model of Huntington’s disease, and activate Nrf2 [219] in a mechanism involving Keap1 Cys-151
modification [84]. Finally, resveratrol is protective 3-nitropropionic acid [220], and is currently under
investigation in a phase 3 clinical trial in Huntington’s disease patients (NCT02336633; Table 2).

Table 6. Preclinical studies on Nrf2 activation in animal models of Huntington’s disease.

Treatment Model Species Nrf2−/−

Assessed?
References

Dimethyl fumarate R6/2 Mouse No [213]
YAC128 Mouse No [213]

3-NP Mouse No [209]
CDDO–MA 3-NP Rat No [70]
CDDO–EA N171-82Q Mouse No [212]

CDDO–TFEA N171-82Q Mouse No [212]
Sulforaphane 3-NP Mouse No [209]

Curcumin CAG140 Mouse No [214] *
mHTT exon1 Drosophila No [215] *

Quinolinic acid Rat No [216] *
Curcumin nanoparticles 3-NP Rat No [217]

Resveratrol 3-NP Mouse No [220] *
tert-Butylhydroquinone 3-NP Mouse Yes [211]

3-NP Rat No [218]
Naringin 3-NP Rat No [207]

Protopanaxtriol 3-NP Rat No [208]
AI-3 3-NP Mouse No [209]

Cystamine R6/2 Mouse No [198] *
3-NP Mouse Yes [25]

MIND4 mHTT exon1 Rat brain slice No [219]
mHTT exon1 Drosophila No [219]

Adenoviral delivery of Nrf2 to astrocytes 3-NP Mouse n.a. [211]
Transplanted Nrf2-overexpressing astrocytes Malonate Mouse n.a. [205]

Transplanted Nrf2-overexpressing neural
progenitor cells Malonate Mouse n.a. [206]

Overexpression of Nrf2 in astrocytes Malonate Mouse n.a. [206]

3-NP: 3-Nitropropionic acid; * Not assessed in the context of Nrf2; n.a.: Not applicable.

Cell Type-Specific Activation of Nrf2 in Huntington’s Disease

Nrf2 activation is not greatly altered in human Huntington’s disease and most genetic animal
models of the disease. Therefore, it is not surprising that no evidence for the expression of Nrf2
in specific cell types has been reported for Huntington’s disease post-mortem tissue. While Nrf2
activation in oligodendrocytes or microglia from Huntington’s disease animal models has not been
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reported, Nrf2 signalling in mouse brain is induced in the penumbra surrounding malonate-induced
striatal lesion, and this region colocalises with activated astrocytes [205,206]. In contrast, neurons but
not astrocytes in the striatum of R6/2 mice are positive for Nrf2, and treatment dimethyl fumarate
increases this neuronal Nrf2 [213].

Evidence for the protective role of Nrf2 activation in astrocytes is provided by overexpression
studies. Astrocyte-specific overexpression of Nrf2 provides protection against malonate toxicity
in mice, with decreased lesion size and greater Nrf2 activation [206], and adenoviral infection of
astrocytes to overexpress Nrf2 in striatum reduces 3-nitropropionic acid lesion size [211]. Furthermore,
transplantation of Nrf2-overexpressing astrocytes protects against malonate-induced damage in the
striatum of mice, whereas wild-type astrocytes have no effect [205]. Similarly, Nrf2-overexpressing
neural progenitor cells transplanted into striatum of wild-type mice differentiate into astrocytes and
protect against malonate-induced damage [206]. Clearly, astrocytes are a valid therapeutic target for
protective Nrf2 activation in the context of Huntington’s disease.

8. Multiple Sclerosis

Multiple sclerosis is a chronic inflammatory and demyelinating disease of the central nervous
system characterised by focal lesions, demyelination of axons and inflammation involving infiltrating
peripheral macrophages. As the lesions can occur at any location throughout the central nervous
system, clinical symptoms are wide-ranging, commonly including autonomic, visual, motor and
sensory disturbances. Multiple sclerosis has four clinical categories: relapsing-remitting, secondary
progressive, primary progressive and progressive-relapsing. The former accounts for approximately
85% of cases, although patients can change between categories as symptoms change over time.

Nrf2 is consistently expressed in and around active lesions in post-mortem multiple sclerosis
brain and spinal cord [221,222]. Elevated Keap1 is also evident at the edge of lesions [222]. The mRNA
of Nrf2 target genes are upregulated in regions correlating with elevated Nrf2 protein, as is HO1
protein expression [222–224]. NQO1 and peroxiredoxin 2 are also strongly upregulated in lesions
of post-mortem multiple sclerosis brain [225,226]. Clearly, Nrf2 activity is elevated in the vicinity of
lesions in multiple sclerosis brain and spinal cord.

In contrast to human post-mortem analysis, reports of Nrf2 activity in animal models of multiple
sclerosis are varied. In the cuprizone model of multiple sclerosis, Nrf2 and target proteins are decreased
in the corpus callosum of mice treated for six weeks [227]. In contrast, Nrf2 and its targets are increased
after 1–3 weeks of cuprizone treatment [228]. This likely reflects the progression of pathology and
suggests that Nrf2 activation is an early event that can be overwhelmed or impaired as pathology
progresses. In the experimental autoimmune encephalomyelitis model, Nrf2 and its targets are
increased in the brains of mice and rats [229,230], whereas in the spinal cord, Nrf2 is most often
decreased [231–233], but has also been reported as unchanged [234] or increased [235]. Deletion of
Nrf2 worsens outcomes in the experimental autoimmune encephalomyelitis mouse model, with a
more rapid and severe phenotype and greater microglial activation [236,237]. However, more recent
reports detect robust worsening only in female mice [238], or no difference at all, at least at a single
time-point [239]. Deletion of Nrf2 also exacerbates visual dysfunction in experimental autoimmune
encephalomyelitis mice [238]. These discrepancies could represent regional differences in Nrf2 response
to disease, but also likely reflect the inherent variability in multiple sclerosis models, in which clinical
progression is impacted by species, strain and model conditions [240].

The best evidence for Nrf2 as a therapeutic target for the treatment of neurodegeneration
comes from dimethyl fumarate. Dimethyl fumarate is clinically approved for the treatment of
relapsing-remitting multiple sclerosis, following three successful phase 3 clinical trials [65], and is the
only (widely accepted) Nrf2 inducer clinically approved for treatment of neurodegeneration (Table 2).
Dimethyl fumarate activates Nrf2 and is protective in the experimental autoimmune encephalomyelitis
model, diminishing symptom severity and preserving myelin and axon density and decreasing
astrocyte activation, although macrophage infiltration is unaltered [237] (Table 7). These effects are
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abolished in Nrf2−/− mice at a late stage (around 40d after initiation of the model) [237]. However,
the presence of Nrf2 was recently found to have no impact on the protective effects of dimethyl
fumarate in the acute phase (<21 d) of this model [239]. Furthermore, the anti-inflammatory effects
of dimethyl fumarate in the acute phase are independent of the presence of Nrf2 [239]. Nevertheless,
examination of blood from patients in the phase 3 clinical trials demonstrates results consistent with
Nrf2 induction by dimethyl fumarate in the clinical population [241].

Natalizumab is an antibody against cell adhesion molecule α4-integrin that is clinically approved
for the treatment of multiple sclerosis [98], and has been shown to activate Nrf2 and decrease markers
of oxidative stress in peripheral blood mononuclear cells of multiple sclerosis patients [242], suggesting
Nrf2 activation may be involved in its therapeutic action (Table 2).

Other pharmacological inducers of Nrf2 have shown protective effects in the experimental
autoimmune encephalomyelitis model of multiple sclerosis, including the triterpenoid
CDDO-trifluoroethylamide (also effective in the lysophosphatidyl choline model) [234],
3H-1,2-dithiole-3-thione [243], sulforaphane [230], the natural alkaloid matrine [244] and TFM-735,
which was identified from a chemical library screen [245] (Table 7). Resveratrol [246–252] and
curcumin [253,254] are effective in several models of multiple sclerosis, although the role of Nrf2
was not considered in these studies. Nevertheless, these compounds are known to activate Nrf2,
among other actions [142,143]. Polymerized nanocurcumin, designed to increase the bioavailability of
curcumin, is effective in the rat experimental autoimmune encephalomyelitis model [235]. Curcumin
plus interferonβ-1a, and polymerized nanocurcumin are currently being investigated in phase 2
clinical trials for the treatment of multiple sclerosis (NCT01514370, NCT03150966; Table 2).

Table 7. Preclinical studies on Nrf2 activation in animal models of multiple sclerosis.

Treatment Model Species Nrf2−/−

Assessed?
References

Dimethyl fumarate a EAE Mouse Yes [237]
EAE Mouse Yes [239]

CDDO–TFEA EAE Mouse No [234]
LPC Rat No [234]

3H-1,2-dithiole-3-thione EAE Mouse No [243]
Sulforaphane EAE Mouse No [230]

Curcumin EAE Mouse No [253] *
EAE Mouse No [254] *

Nanocurcumin EAE Rat No [235]
Resveratrol EAE Mouse No [246] *

EAE Mouse No [247] *
EAE Mouse No [248] *
EAE Mouse No [249] *

EAE # Mouse No [250] *
TMEV-IDD # Mouse No [250] *

Cuprizone Mouse No [251] *
EAE Mouse No [252] *

Matrine EAE Rat No [244]
TFM-735 EAE Mouse No [245]
Myricetin Cuprizone Mouse No [227]

Physical exercise EAE Mouse No [232]
Mesenchymal stem cells EAE Mouse No [231]

Astrocyte-specific Keap1-ko Cuprizone Mouse No [228]
a Clinically approved for the treatment of relasping-remitting multiple sclerosis; # Worsened clinical outcome; * Not
assessed in the context of Nrf2; EAE: experimental autoimmune encephalomyelitis; LPC: lysophosphatidyl choline;
TMEV-IDD: Theiler’s murine encephalomyelitis virus-induced demyelinating disease.

Other treatments that are effective in the experimental autoimmune encephalomyelitis model
have been shown to activate or restore Nrf2 activity, including physical exercise [232] and peripheral
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administration of human mesenchymal stem cells [231]. The natural flavonoid myricetin activates
Nrf2 and alleviates cuprizone-induced motor and behavioural impairments in mice [227].

Cell Type-Specific Activation of Nrf2 in Multiple Sclerosis

In contrast to other diseases, cell-specific activation of Nrf2 has been well-studied in post-mortem
multiple sclerosis tissue. Elevated expression of Nrf2 is found in astrocytes and infiltrating
macrophages in active lesions [221], and in oligodendrocytes at lesion edges [222]. Elevated Nrf2 is
only occasionally expressed in neurons, even when surrounded by Nrf2-positive glia [222], and is
found in some spinal cord neurons [237]. Keap1 expression is elevated in astrocytes, microglia and
oligodendrocytes at lesion edges [222].

Upregulation of Nrf2 targets tends to mirror Nrf2 activation as expected. NQO1 is strongly
upregulated in lesions of post-mortem multiple sclerosis brain, predominantly in astrocytes and some
macrophages and oligodendrocytes, whereas elevated NQO1 in neurons is rare [225,226]. HO1 protein
is elevated in astrocytes, oligodendrocytes and microglia at lesions [222,223,229], and peroxiredoxin 2
is strongly upregulated in lesions predominantly in astrocytes, although also upregulated in neurons
in grey matter lesions [226].

Evidence for cell-specific Nrf2 activation in animal models of multiple sclerosis is more scarce than
in post-mortem human tissue, perhaps reflecting the variability of Nrf2 activity in these studies. In the
experimental autoimmune encephalomyelitis model, Nrf2 is present in spinal cord motor neurons,
but not glia [237]. However, HO1 protein is elevated in astrocytes and microglia/macrophages
in lesions in this model [229]. In the cuprizone model, most Nrf2-positive cells are identified as
oligodendrocytes, and occasionally astrocytes [228].

Overall, the evidence for cell-specific activation of Nrf2 in multiple sclerosis indicates a clear
tendency for glial activation. Of note, this is the only disease discussed in this review in which robust
Nrf2 activation is observed in oligodendrocytes or microglia. This may reflect the demyelinating and
strongly inflammatory nature, respectively, of multiple sclerosis. However, it clearly demonstrates that
these cells are capable of increasing Nrf2 activity in response to disease.

Astrocyte-specific activation of Nrf2 via targeted ablation of Keap1 protects against the
cuprizone model of multiple sclerosis [228] (Table 7). This treatment prevents oligodendrocyte loss
and axonal damage, and decreases microgliosis [228], demonstrating that astrocyte-specific Nrf2
activation is sufficient to prevent pathology in the cuprizone model. Cell type-specific activation
of Nrf2 has not been assessed for pharmacological inducers of Nrf2 in multiple sclerosis models,
with the exception of dimethyl fumarate. In experimental autoimmune encephalomyelitis model
mice, dimethyl fumarate appears to elevate Nrf2 in neurons, astrocytes and oligodendrocytes,
but not microglia/macrophages [237]. Hence it is not clear which cells are targeted by most
pharmacological Nrf2 inducers in models of multiple sclerosis, but may include astrocytes, neurons
and oligodendrocytes.

9. Reconciling In Vitro and In Vivo Evidence for Neuronal Nrf2 Expression

Robust Nrf2 activation in response to inducers is often observed in primary neuronal
cultures [205,255–257]. However, the cultures in these studies always contain at least a minor
population of astrocytes. When specific markers are used, it is clear that strong Nrf2 activation
is restricted to the astrocytes in these cultures [25,147,205,256,258]. Detailed analysis of pure neuronal,
astrocyte and mixed cultures clearly demonstrates that Nrf2 activation is not observed in pure primary
neuron cultures that lack astrocytes, and the extent of Nrf2 activation is dependent on the abundance
of astrocytes [259]. Pharmacological activation of Nrf2 protects mixed cultures from oxidative stress;
however, inhibition of Nrf2 specifically in astrocytes in these cultures abolishes the protective effect
of the Nrf2 inducer, indicating that Nrf2 activation solely in astrocytes is sufficient and necessary
to protect neurons from oxidative stress [258]. Interestingly, while treatment of mixed cultures with
an Nrf2 inducer upregulates Nrf2 target genes predominantly in astrocytes, some Nrf2 target genes
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are also upregulated in neurons. These neuronal gene changes are abolished when Nrf2 is inhibited
specifically in the co-cultured astrocytes, indicating that the neuronal changes are dependent on altered
astrocytic Nrf2 activity and not a direct action of the Nrf2 inducer in neurons [258]. This indicates that
Nrf2 activation in astrocytes can influence neuronal antioxidant gene expression.

In contrast to primary neurons, Nrf2 activation is often observed in neuronal cell lines (e.g., [13,69]).
However, cell lines differ from bona fide neurons in many respects, not least their ability to proliferate
as compared to neurons which are post mitotic. Indeed, Nrf2 expression appears to be specifically
repressed in neurons in a mechanism facilitating neuronal development [259]. This is evident in
cultured mouse and human neurons, and in neurons isolated from young adult mouse brain [259].
Hence, Nrf2 activity in neuronal cell lines may not accurately reflect the Nrf2 activity of neurons
in vivo.

Although Nrf2 is more often expressed in astrocytes, neuronal Nrf2 activation is apparent in
humans and mice, in neurodegeneration and normal aging. This appears to contradict the findings
that Nrf2 expression is repressed in cultured neurons. This can be partially explained by findings that
synaptic activity can upregulate Nrf2 target genes in neurons cultured in the absence of astrocytes
and when Nrf2 is deleted [260], and specific astrocytic Nrf2 activation can upregulate Nrf2 target
genes in neurons [258], indicating that at least in culture, some Nrf2 target genes can be regulated
in neurons independently of direct neuronal Nrf2 activation. While this can potentially explain
the in vivo alterations in Nrf2 target genes in neurons, it cannot explain the accumulation of Nrf2
protein. A possible explanation for this is that many of the results indicating lack of neuronal Nrf2
activation are generated in cells cultured from embryonic or neonatal mice, or at best young adult
mouse brain [259]. However, Nrf2 expression is observed in neurons of aged human and mouse brain.
Perhaps neurons only express Nrf2 in later adulthood. Nevertheless, even though Nrf2 protein can be
detected in neurons in aged human and mouse brain, this is rarely accompanied by increased Nrf2
target expression, with the exception of Alzheimer’s disease. Hence, it appears that the elevated Nrf2
protein rarely results in functional Nrf2 signalling and most evidence suggests that Nrf2 signalling is
only robustly activated in glia, and astrocytes in particular.

That Nrf2 inducers only activate Nrf2 in astrocytes and not neurons in vitro suggests that
the protective effects of Nrf2 inducers in animal models of neurodegeneration are due to Nrf2
activation specifically in astrocytes. Although rarely specifically investigated, the available
evidence is mixed. The increased expression of HO1 in mice treated with sulforaphane or
2′,3′-dihydroxy-4′,6′-dimethoxychalcone in Parkinson’s disease models is restricted to astrocytes
and microglia, and not expressed in neurons [60,85]. The Nrf2 inducer pyrrolidine dithiocarbamate,
protective in an Alzheimer’s disease animal model [142], activates Nrf2 in astrocytes but not neurons
in vitro and in vivo [147]. In contrast, dimethyl fumarate activates Nrf2 in neurons in mouse models of
Parkinson’s disease and Huntington’s disease [66,213], and neurons, astrocytes and oligodendrocytes
but not microglia in models of multiple sclerosis [237]. Together, this limited evidence suggests that
Nrf2 inducers differentially target cell populations, and that the cell types targeted are dependent on
disease conditions. Therefore, it remains unclear which cell type is the predominant target of small
molecule Nrf2 inducers.

Overexpression studies do not provide insight into which cells endogenously express Nrf2,
but they do provide proof-of-concept data for which cells are capable of preventing neuronal
dysfunction. Overexpression of Nrf2 in neurons is protective in mice modelling Alzheimer’s
disease [118], but not amyotrophic lateral sclerosis [161]. This suggests that there are regional
and disease-specific differences in the response of neurons to neuronal Nrf2 activation. In contrast,
overexpression of Nrf2 in astrocytes is protective in models of Parkinson’s disease [20,24], amyotrophic
lateral sclerosis [18], Huntington’s disease [206,211], and multiple sclerosis [228], indicating that
activation of Nrf2 in astrocytes is a viable therapeutic target for these diseases.
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10. Cautionary Note on Nrf2 Activation

This review describes Nrf2 activity in the context of neurodegeneration, and the therapeutic
potential of targeting its activation. However, over-activation or prolonged activation of Nrf2 can
be detrimental. Prolonged activation of Nrf2 in drosophila shortens lifespan [261] and promotes the
malignant transformation of human cells [262]. Similarly, mutations in Nrf2 that disrupt its recognition
by Keap1 render it constitutively active and promote cancer survival in humans [263]. Indeed, Nrf2 is
highly expressed by many cancers, which contributes to their resistance to anti-cancer treatments [264].
In addition, many Nrf2 inducers are electrophiles and activate Nrf2 by modifying Keap1 cysteine
residues to permit Nrf2 dissociation and stabilisation. However, these inducers can also react with
other molecules. Highly potent Nrf2 activation by triterpenoid-based compounds are very effective in
preclinical models of neurodegeneration [69,119,168], but the clinical derivative bardoxolone methyl
has toxicity issues in humans due to off-target effects [265]. Targeting other aspects of Nrf2 regulation
such as Bach1 [13] may be more effective. Hence, therapeutic agents targeting Nrf2 must have high
specificity for Nrf2 activation, and their use for the treatment of neurodegeneration must be considered
against the potential negative consequences of Nrf2 activation such as cancer promotion.

11. Conclusions

Each neurodegenerative disease discussed in this review has a particular Nrf2 phenotype.
It appears that Nrf2 is activated in astrocytes in Parkinson’s disease, in astrocytes, neurons and
possibly microglia in Alzheimer’s disease, and in all glial cells but not neurons in multiple sclerosis.
Amyotrophic lateral sclerosis and Huntington’s disease appear to exhibit impaired Nrf2 signalling,
while the evidence for Nrf2 activation in aging is minimal and unclear. Overall, while Nrf2 expression
is evident in neurons in aging and neurodegeneration, it is often more strongly activated in astrocytes.
Neurodegeneration is most often accompanied by elevated Nrf2 activity in regions of most severe
pathology. Generally, deletion of Nrf2 usually worsens disease phenotype, whereas overexpression
or pharmacological activation of Nrf2 is protective in animal models of neurodegeneration, although
there are important exceptions. These results clearly indicate that the endogenous Nrf2 response
to disease is insufficient to prevent oxidative stress and neuronal damage, and that Nrf2 is a valid
therapeutic target for the treatment of neurodegeneration.

It is unclear why endogenous Nrf2 activation is insufficient in neurodegeneration, but at least for
amyotrophic lateral sclerosis and Huntington’s disease, the available evidence suggests endogenous
Nrf2 signalling is impaired in these diseases at the molecular level, involving aberrant TDP-43 or
huntingtin, respectively. Whether analogous impairments exist for other neurodegenerative diseases is
yet to be established, although transcriptomic changes in Nrf2−/− mice closely mirror those in human
Alzheimer’s disease [15], suggesting that Nrf2 signalling is also impaired in Alzheimer’s disease.
Nevertheless, pharmacological activation of Nrf2 is almost unfailingly protective in every model of
neurodegeneration assessed, as is overexpression of Nrf2 specifically in astrocytes, clearly indicating
the therapeutic potential of Nrf2 activation for the treatment of neurodegeneration. Furthermore,
several drugs that can activate Nrf2 are clinically approved and several more are currently undergoing
clinical trials.

Nevertheless, many questions remain regarding Nrf2 in neurodegeneration. The requirement of
Nrf2 for the protective effect of pharmacological Nrf2 inducers is only rarely assessed, and has only
been assessed in acute models of Parkinson’s disease, Huntington’s disease and multiple sclerosis.
This requirement of Nrf2 is yet to be assessed in any models of Alzheimer’s disease or amyotrophic
lateral sclerosis. The latter likely reflects the inconvenience of breeding transgenic disease-model mice
lacking Nrf2, but such mice have been reported for both Alzheimer’s disease [15] and amyotrophic
lateral sclerosis [159,161,162] models. Nrf2 activation is currently only poorly characterised in
Huntington’s disease, and its activity remains to be determined in human Huntington’s disease
brain tissue. There is also only minimal evidence suggesting Nrf2 is impaired. Assessing the influence
of Nrf2 deletion in genetic models of Huntington’s disease would provide further insight into a
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potential mutant huntingtin-dependent mechanism of Nrf2 impairment, reminiscent of amyotrophic
lateral sclerosis, in which Nrf2 deletion has little impact on the survival of disease model mice. As for
amyotrophic lateral sclerosis, Nrf2 induction should be assessed in non-SOD1 models. That this has
not been reported yet is likely due to the poor performance of alternate models to date [266], although
better models are being developed [267,268], which should be amenable to preclinical drug trials.
In terms of elucidating which cells are most important for Nrf2 activation, it would be pertinent to
examine Nrf2 overexpression in neurons in diseases other than Alzheimer’s disease, and to assess
Nrf2 overexpression in microglia or oligodendrocytes. Lastly, the response of Nrf2 to normal aging
requires further analysis. Longitudinal studies investigating Nrf2 activation in various regions would
address this.

Although Nrf2 expression is repressed in cultured neurons, the evidence indicates that
endogenous Nrf2 is activated in neurons in neurodegeneration and aging. In contrast, Nrf2 is
readily inducible in cultured astrocytes, and tends to be more strongly activated in neurodegeneration
in vivo. That Nrf2 is more readily activated in cultured astrocytes suggests that most pharmacological
Nrf2 inducers may be specifically targeting astrocytes in vivo, although there is very limited direct
evidence for this. Furthermore, with the exception of multiple sclerosis, there is little data on Nrf2
activation in microglia and particularly oligodendrocytes in human tissue or animal models of
neurodegeneration. Given that microglia clearly exhibit functional Nrf2 signalling [269], and the
universal presence of glial activation in these diseases [270], microglia may be an important target
for Nrf2 induction in neurodegeneration. Similarly, endogenous Nrf2 activation is clearly evident
in oligodendrocytes in multiple sclerosis [222], yet Nrf2 signalling in oligodendrocytes has not been
assessed in any other disease. This may be pertinent for amyotrophic lateral sclerosis, which also
involves demyelination [271]. Further evidence is required to determine in which cells Nrf2 activation
occurs in response to treatments targeting Nrf2. This will provide insight into the molecular
mechanisms driving disease and opportunities for the treatment of neurodegeneration.
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