Supplemental information

Table S1. Phylogenetic distribution of methionine sulfoxide reductase homologs compared to 20S proteasome, superoxide dismutase and other
oxidative stress response homologs.

Phylogenetic classification	20S	MsrA	MrsB	MsrP	fRMsr	MSR	MPT	MSR	OsmC/	AhpC	Fe/Mn	Ni	Cu/Zn
	α-type					-MPT	OR	+MPT	Ohr	-type	SOD	SOD	SOD
Bacteria	1854	29628	24688	5180	4990	+	88528	+	46232	44713	25113	1815	8763
Eukarya	12755	2542	2693	1	560	+	1886	+	511	5620	4306	34	6821
Archaea	1513	959	846	2	77	+	2441	+	1129	2442	866	124	25
<u>Asgard</u>	17	12	8	-	2	+	20	+	29	19	1	4	-
Heimdallarchaeota	4	4	2	-	2	+	7	+	6	4	-	4	-
Lokiarchaeota	5	3	2	-	-	+	7	+	7	3	-	-	-
Odinarchaeota	2	1	1	-	-	+	1	+	1	1	1	-	-
Thorarchaeota	6	4	3	-	-	+	5	+	15	11	-	-	-
DPANN	134	47	53	-	2	+	6	+	3	79	74	3	-
Aenigmarchaeota	10	-	-	-	-	-	-	-	-	6	7	-	-
Diapherotrites	7	1	1	-	-	+	1	+	-	4	2	-	-
Micrarchaeota	21	5	4	-	-	+	-	+	-	12	12	-	-
Nanohaloarchaeota	6	14	16	-	-	+	-	+	2	2	8	-	-
Pacearchaeota	44	16	21	-	1	+	-	+	-	19	27	-	-
Parvarchaeota	4	2	1	-	-	+	1	+	-	4	2	-	-
Woesearchaeota	36	9	10	-	1	+	4	+	1	25	12	3	-
Nanoarchaeota	6	-	-	-	-	-	-	-	-	7	4	-	-
<u>Euryarchaeota</u>	1016	766	656	2	54	+	1982	+	920	1816	567	113	23
Archaeoglobi	12	-	-	-	-	-	29	+	3	6	1	-	-
Hadesarchaea (70 °C)	6	-	-	-	-	-	3	+	2	2	2	-	-
Halobacteria	443	342	258	-	-	+	713	+	427	664	331	-	-
Methanobacteria	49	41	41	-	2	+	159	+	-	28	24	-	-
Methanococci	19	7	1	-	-	+	78	+	11	17	-	-	-
Methanomicrobia	142	141	119	-	1	+	494	+	72	268	94	-	22
Methanonatronarchaeia	2	2	2	-	-	+	3	+	-	2	-	-	-
Methanopyri	1	-	-	-	-	-	5	+	1	-	-	-	-

Theionarchaea	3	-	-	-	-	-	6	+	1	3	-	-	-
Thermococci	38	5	5	-	-	+	95	+	84	92	-	-	-
Palaeococcus	1	-	-	-	-	-	2	+	2	1	-	-	-
Pyrococcus	8	-	-	-	-	-	18	+	20	13	-	-	-
Thermococcus	28	4	4	-	-	+	73	+	59	75	-	-	-
unclassified	1	1	1	-	-	+	2	+	3	3	-	-	-
Thermoplasmata	53	40	33	-	17	+	29	+	56	132	26	1	-
Euryarchaeota_environment	6	9	6	-	-	+	15	+	2	15	5	1	-
Euryarchaeota_unclassified	242	179	191	2	34	+	356	+	261	587	84	111	1
<u>TACK</u>	265	91	86	-	13	+	319	+	102	439	180	3	2
Bathyarchaeota	29	5	2	-	-	+	34	+	24	10	4	-	-
Korarchaeota	4	1	-	-	1	+	1	+	4	5	1	-	-
Crenarchaeota	102	20	5	-	-	+	263	+	57	266	72	-	-
Acidilobales	9	-	-	-	-	-	15	+	1	24	8	-	-
Desulfurococcales	22	-	-	-	-	-	35	+	11	30	3	-	-
Fervidicoccales	3	-	-	-	-	-	4	+	-	4	-	-	-
Sulfolobales	28	15	-	-	-	+	114	+	37	121	29	-	-
Thermoproteales	33	-	-	-	-	-	93	+	3	70	25	-	-
Crenarchaeota_unclassified	7	5	5	-	1	+	2	+	5	17	7	-	-
Thaumarchaeota	130	65	79	-	-	+	19	+	17	158	103	3	2
Archaea_environment	19	12	12	-	3	+	90	+	4	17	8	-	-
Archaea_unclassified	62	31	31	-	3	+	24	+	71	72	36	1	-

¹Phylogenetic distribution of archaeal homologs of: 20S proteasome α-type subunits (IPR023332), MsrA (IPR036509) (excludes type III ribulose bisphosphate carboxylase homologs of IPR017712 originally misannotated as MsrA [1]), MsrB (IPR0025790), MsrP/Q (IPR022867/IPR022837), fRMsr, free MetO reductase conserved site (IPR000614) with archaeal homologs based on at least 30 % amino acid sequence identity by BlastP UniProt to *Thermoplasma acidophilum* fRMsr (Ta0848), MPT OR, molybdopterin oxidoreductases such as BisC (IPR006656); peroxiredoxins of the OsmC/Ohr (IPR003718) and AhpC (IPR024706) families; superoxide dismutase of the Fe/Mn SOD (IPR001189), Ni SOD (IPR014123) and Cu/Zn SOD (IPR036423) types. -, not detected by <u>http://www.ebi.ac.uk/interpro/</u> on August 6, 2018. (Hyper)thermophiles are indicated by red lettering with unclassified and environmental samples excluded from this latter analysis. Presence (green) or absence (pink) of a representative MSR homolog (MsrA, MsrB, fRMsr) excluding (MSR - MPT) or including (MSR + MPT) BisC-like MPT oxidoreductases is also indicated. Within the GAF-like domain superfamily, the conserved active site CysA motif of fRMsr was used to distinguish fRMsr homologs from signaling proteins such as cGMP-specific phosphodiesterases, adenylyl cyclases and guanylyl cyclases [2].

(Super)phyla	MsrA (single domain)	MsrB (single domain)	MsrA- MsrB	MsrB- MsrA	MsrA-Trx- MsrB	AANH- MsrB	ThyX- MsrB	MsrA-Grx
TACK	89	71	-	-	-	-	2	-
Asgard	10	7	-	2	-	-	-	-
Euryarchaeota	668	536	78	10	2	61	-	1
DPANN_Woesearchaeota	6	6	6	-	-	1	-	-
DPANN_Pacearchaeota	13	17	4	2	-	-	-	-
DPANN_Parvarchaeum	2	1	-	-	-	-	-	-
DPANN_Nanoarchaeota	-	-	-	-	-	-	-	-
DPANN_Nanohaloarchaeota	10	15	-	-	-	-	-	-
DPANN_Micrarchaeota	5	4	-	-	-	-	-	-
DPANN_Diapherotrites	1	1	-	-	-	-	-	-
Archaea_Unclassified	36	37	8	-	-	-	-	-
Total:	840	695	96	14	2	62	2	1
(SignalP, TAT or TM) ²	15	10	22	2	2	1	-	-

Table S2. Domain architecture of MsrA- and MsrB-type methionine sulfoxide reductase homologs among Archaea¹.

¹Methioinine sulfoxide reductase MsrA-type (IPR036509) and MsrB-type (IPR002579) homologs are found as single domain proteins or fused in tandem or with alternative domains including: ThyX (thymidylate synthase, IPR003669), AANH (adenylation) domain of the QueC-type (queosine biosynthesis protein QueC, IPR018317), Grx (glutaredoxin, IPR002109) or Trx (thioredoxin-like, IPR036249) domains. ²A subset of MsrA-and MsrB-type homologs have predicted TM (transmembrane spanning helix based on <u>http://www.cbs.dtu.dk/services/TMHMM/</u>), TAT (twin arginine translocation (TAT) motifs based on <u>http://signalfind.org/tatfind.html</u>) and/or SignalP (signal sequence) motifs for general (Sec) translocation based on <u>http://www.cbs.dtu.dk/services/SignalP/</u>).

Organism	MSR-type (locus tag)	Substrate	Reductant	Active site	Ubl site	PDB	Ref.
	MsrAB (TK0819)	MetO	DTT	C17 (A)	-	-	[3]
	MsrA' (TK0819)	Met-S-O, dabsyl-Met-S-O	DTT	C20 (R)?			
kodakarancie				C278 (R)?			
κυαικατεπείε	'MsrB (TK0819)	Met-R-O, dabsyl-Met-R-O	DTT, cysteine	C283 (R)?			
				C311 (A)			
				C64 (Zn)			
Mathanothermohacter		Met-R-O, Lys-Ile-Phe-MetO-		C67 (Zn)	-	2K8D	[4, 5]
thermoautotrophicus	MsrB (MTH711)	Lys, H2O2-oxidized	DTT, cysteine	C113 (Zn)			
		calmodulin		C116 (Zn)			
				C139 (A)			
Thermoplasma	$f P M_{cr} (T_2) (848)$	Mot R O	NADPH > E. coli Trx >	C84 (A)		4MMN 4MN7	[6]
acidophilum	IKWISI (1a0040)	Met-K-O	human Trx reductase	C60 (C)	-		[0]
				C13 (A)	K108, K169, K172, K180,	-	
	$M_{\text{or}} \wedge (HVO \wedge 0220)$	dehard Mat (B/S) O	DTT	C16 (R)?			
	$MSIA(1100_A0250)$	dabsyl-wiet-(N/3)-O	DII	C48 (R)?			
				C162 (R)?	K102		
Haloferax volcanii				C49 (Zn)			[7, 8]
				C52 (Zn)	K117	-	
	MsrB (HVO_2234)	dabsyl-Met-(R/S)-O	DTT	C97 (Zn)			
				C100 (Zn)			
				C120 (A)			

Table S3. Archaeal methionine sulfoxide reductases biochemically and/or structurally characterized.

-, not determined. PDB, Protein Data Bank accession number. Cysteine nucleophile (A), resolving (R), Zn²⁺ binding (Zn) or critical (C) residues are indicated with predicted in italics. Ubl, ubiquitin-like modification site. MsrA' and 'MsrB, are domains isolated from MsrAB. Trx, thioredoxin.

Organism	MSR-type (locus tag)	Condition	Effect	Ref.
		Low temperature	Protein level – up	[3]
Thermococcus	$M_{or} \Lambda P (TV 0 810)$	High salt	Protein level – up	[9]
kodakarensis	$\operatorname{MSIAD}(\operatorname{IK0019})$	Oxidative stress	Protein level – up	[9]
		(saturating oxygen)		
Sulfolobus solfataricus	MsrA (SSO1503)	UV irradiation	Transcript level – up	[10]
Sulfolobus acidocaldarius	MsrA (Saci_1170)	UV irradiation	Transcript level – up	[10]
Halobacterium salinarum	MsrB (VNG1404G)	Oxidative stress	Transcript level – up	[11]
		(paraquat, H2O2)	(member of RosR regulon core)	
Halobacterium salinarum	MsrA (VNG1180G)	Oxidative stress	Transcript level – up	[12]
		(paraquat, H2O2)		
Haloferax volcanii	MsrA (HVO_A0230)	Mild oxidant	Protein level:	[8]
		(DMSO)	Ubiquitin-like modified form –	
			up Unmodified form – down	

Table S4. Archaeal methionine sulfoxide reductases regulated at the protein and/or transcript level.

References (for supplemental information)

- Tabita F.R.; Hanson T.E.; Li H.; Satagopan S.; Singh J.; Chan S. Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. *Microbiol Mol Biol Rev.* 2007;71(4):576-99.
- 2. Lin Z.; Johnson L.C.; Weissbach H.; Brot N.; Lively M.O.; Lowther W.T. Free methionine-(R)sulfoxide reductase from *Escherichia coli* reveals a new GAF domain function. *Proc Natl Acad Sci U S A*. **2007**;104(23):9597-602.
- 3. Fukushima E.; Shinka Y.; Fukui T.; Atomi H.; Imanaka T. Methionine sulfoxide reductase from the hyperthermophilic archaeon *Thermococcus kodakaraensis*, an enzyme designed to function at suboptimal growth temperatures. *J Bacteriol*. **2007**;*189*(19):7134-44.
- 4. Carella M.; Becher J.; Ohlenschläger O.; Ramachandran R.; Gührs K.H.; Wellenreuther G.; Meyer-Klaucke W.; Heinemann S.H.; Görlach M. Structure-function relationship in an archaebacterial methionine sulphoxide reductase B. *Mol Microbiol.* **2011**;79(2):342-58.
- 5. Carella M.; Ohlenschläger O.; Ramachandran R.; Görlach M. ¹H, ¹³C and ¹⁵N resonance assignment of a zinc-binding methionine sulfoxide reductase type-B from the thermophilic archeabacterium *Methanothermobacter thermoautotrophicus*. *Biomol NMR Assign*. **2010**;4(1):93-5.
- 6. Kim H.S.; Kwak G.H.; Lee K.; Jo C.H.; Hwang K.Y.; Kim H.Y. Structural and biochemical analysis of a type II free methionine-R-sulfoxide reductase from *Thermoplasma acidophilum*. *Arch Biochem Biophys.* **2014**;560:10-9.
- 7. Dantuluri S.; Wu Y.; Hepowit N.L.; Chen H.; Chen S.; Maupin-Furlow J.A. Proteome targets of ubiquitin-like samp1ylation are associated with sulfur metabolism and oxidative stress in *Haloferax volcanii*. *Proteomics*. **2016**;*1*6(7):1100-10.
- Fu X.; Adams Z.; Liu R.; Hepowit N.L.; Wu Y.; Bowmann C.F.; Moskovitz J.; Maupin-Furlow J.A. Methionine sulfoxide reductase A (MsrA) and its function in ubiquitin-like protein modification in Archaea. *MBio.* 2017;8(5):e01169-17.
- 9. Jia B.; Liu J.; Van Duyet L.; Sun Y.; Xuan Y.H.; Cheong G.W. Proteome profiling of heat, oxidative, and salt stress responses in *Thermococcus kodakarensis* KOD1. *Front Microbiol.* **2015**;6:605.
- 10. Gotz D.; Paytubi S.; Munro S.; Lundgren M.; Bernander R.; White M.F. Responses of hyperthermophilic crenarchaea to UV irradiation. *Genome Biol.* **2007**;*8*(10):R220.
- 11. Sharma K.; Gillum N.; Boyd J.L.; Schmid A. The RosR transcription factor is required for gene expression dynamics in response to extreme oxidative stress in a hypersaline-adapted archaeon. *BMC Genomics.* **2012**;13:351.
- Kaur A.; Van P.T.; Busch C.R.; Robinson C.K.; Pan M.; Pang W.L.; Reiss D.J.; DiRuggiero J.; Baliga N.S. Coordination of frontline defense mechanisms under severe oxidative stress. *Mol Syst Biol.* 2010;6:393.