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Superoxide dismutase (SOD) is the only known enzyme to directly scavenge a free radical.
Specifically, SOD dismutes superoxide to oxygen and hydrogen peroxide with high specificity and
efficiency. Since its discovery in 1969 by Dr. Irwin Fridovich, SOD has been shown to be present in
every living organism on Earth and, thus, essential for life. Mammalian cells have three forms of
SOD: Cu/ZnSOD, mainly found in the cytosol; MnSOD, located in the mitochondria and ECSOD,
detected in the extracellular space. SOD enzymes regulate the levels of superoxide and hydrogen
peroxide produced by cells, which in turn regulates cell signaling. Depending on the location of the
SOD enzyme, these proteins protect extra- and intracellular structures from oxidation and damage.

In the past 50 years, it has become increasingly evident that SOD plays a major role in maintaining
cellular health, and a variety of diseases occur if SOD becomes dysregulated. SOD enzymes are
highly regulated through modifications at the transcriptional, translational, and post-translational
level. Genetic mutations in SOD proteins have also been associated with a variety of diseases. Recent
studies also indicate that SOD activity is altered in disease states even while changes in SOD protein
levels are not evident.

This special issue highlights current research concerning SOD and the role that SOD mimetics
play in boosting superoxide scavenging in both normal and diseased states. In work directed at
normal cellular processes, Dr. Case reviews the origin of superoxide dismutases and how evolution
has shaped superoxide-mediated redox signaling [1]. In another review by Azadmanesh et al. [2],
the active site of MnSOD is characterized via crystallography and the catalytic mechanism of
action of MnSOD is described in detail. Yarana et al. [3] review the effects of extracellular vesicles
communicating damage to other cell types. Some recent findings indicate that SOD proteins can be
transferred between cells through these extracellular vesicles, which could provide another way in
which SOD proteins are regulated. In a primary research article, Kalen et al. [4] demonstrate the
coordination between MnSOD and Cyclin B1 during cell cycle response to oxidative stress in normal
fibroblasts. Specifically, they demonstrate cross-talk between the mitochondria and the nucleus to
cause mitochondrial-checkpoint cell arrest when cells encounter oxidative stress. Finally, in another
primary research study, Leong et al. [5] demonstrate that the addition on a SOD-like drug protects
normal cells from oxidant-induced injury.

This issue also highlights the role of SOD in a variety of diseases, such as cancer, diabetes,
pulmonary hypertension, bronchopulmonary dysplasia, radiation-induced fibrosis, and arthritis.
There are several articles dedicated to SOD and cancer and the use of SOD mimetics as therapeutics
against cancer progression. Wilkes et al. [6] review the role of SOD-induced inhibition of tumor
growth and propagation and its potential as a target in pancreatic cancer. Kim et al. [7] review the
dichotomous regulation of MnSOD in cancer and describe the mechanism of regulation of MnSOD in
cancer, with an emphasis on post-translational modifications. This review is focused on understanding
the spatiotemporal nature of MnSOD regulation in the context of a changing tumor microenvironment,
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which is necessary to improve the design of oxidant- or antioxidant-based therapeutic strategies for
the treatment of cancer. In primary research articles by Chatterjee et al. [8] and Heer et al. [9], these
investigators use SOD mimetics to enhance anti-cancer treatment. Chatterjee et al. [8] demonstrate that
SOD mimetics, in combination with radiation, inhibit prostate cancer growth while simultaneously
protecting the normal prostate tissue from radiation damage. Heer et al. [9] enhance the anti-tumor
effect of pharmacological ascorbate with the addition of SOD mimetics by enhancing hydrogen
peroxide levels in the tumor.

Radiation-induced fibrosis is caused in large part from free radical production, which results in
damage to normal tissues. SOD overexpression has been shown to mitigate radiation-induced damage.
Studies conducted by Cline et al. [10] and Shrishrimal et al. [11] demonstrate that SOD mimetics
protect from radiation-induced fibrosis. In a lung fibrosis model, Cline et al. [10] demonstrate that
the addition of a SOD mimic after whole thorax radiation exposure protects from lung fibrosis. In a
pelvic irradiation model, Shrishrimal et al. [11] show that a SOD mimic prevented acute and chronic
irradiation damage in pelvic tissues and demonstrated that SOD treatment prevents myofibroblast
differentiation that is induced by radiation exposure.

MnSOD plays a critical role in maintaining redox balance in the mitochondria and thereby also
helps to regulate cellular metabolism. In metabolic diseases, such as diabetes, there are high amounts
of systemic oxidative stress along with dysfunctional mitochondria. Coudriet et al. [12] show that
a SOD mimetic protects from liver damage, improves insulin sensitivity, and reduces inflammation
associated with obesity-induced type 2 diabetes. In a chemical induced model of mitochondrial
oxidative stress and altered metabolism, Alam et al. [13] demonstrate that exogenous MnSOD can
overcome mitochondrial changes in SIRT3−/− cells.

ECSOD is highly expressed in the lung, cardiovascular system, and cartilage. Alteration in
ECSOD expression is associated with disease in these tissues, and polymorphisms of ECSOD have been
identified to contribute to lung and cardiovascular disease. In the primary article by Sherlock et al. [14],
the authors show that a polymorphism of ECSOD, R213G, results in more ECSOD in the serum and
less ECSOD bound to the vasculature. The R213G ECSOD mice have abnormal pulmonary vascular
development but are better protected from lung injury. ECSOD is highly expressed in cartilage and
is thought to protect this tissue from protein oxidation and breakdown. Using impact and overload
injury scenarios to bovine osteochondral explants, Coleman et al. [15] demonstrate that the superoxide
is produced after high impact to cartilage tissues and the addition of a SOD mimetic protected from
cartilage damage.

This special issue demonstrates the diverse functions that SOD enzymes play in normal and
diseased states and highlights exciting new SOD mimetics that may provide some therapeutic strategies
to prevent or lessen the severity of diseases.
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