| Name      | Chemical Ingredients                                                           |  |  |  |  |  |  |
|-----------|--------------------------------------------------------------------------------|--|--|--|--|--|--|
|           | 50 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)/NaOH, pH 7.3, |  |  |  |  |  |  |
| Lysis     | 0.5 M NaCl, 2 mM dithiothreitol (DTT), 1 μg/mL leupeptine, 0.1 mg/mL 4-(2-     |  |  |  |  |  |  |
| Buffer    | aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF), 50 µg/mL DNaseI,   |  |  |  |  |  |  |
|           | and 20 mM MgCl                                                                 |  |  |  |  |  |  |
| Binding   | 50 mM HEPES/NaOH, pH 7.3, 0.5 M NaCl, 5 mM DTT                                 |  |  |  |  |  |  |
| Buffer A  |                                                                                |  |  |  |  |  |  |
| Binding   | 50 mM HEPES/NaOH, pH 7.3, 0.5 M NaCl, 30 mM imidazole, 1 mM DTT                |  |  |  |  |  |  |
| Buffer B  |                                                                                |  |  |  |  |  |  |
| SE Buffer | 50 mM HEPES/NaOH, pH 7.3, 0.5 M NaCl, 1 mM tris(2-carboxyethyl)phosphine       |  |  |  |  |  |  |
| of build  | (TCEP)                                                                         |  |  |  |  |  |  |
| Assay     | 50 mM HEPES/NaOH, pH 7.3, 500 mM NaCl                                          |  |  |  |  |  |  |
| Buffer A  |                                                                                |  |  |  |  |  |  |
| Assay     | 20 mM HEPES/NaOH, pH 7.3, 20 mM NaCl                                           |  |  |  |  |  |  |
| Buffer B  |                                                                                |  |  |  |  |  |  |
| CS Assay  | 40 mM HEPES/NaOH, pH 7.8 40 μM Acetyl-CoA (Sigma-Aldrich), oxaloacetic acid    |  |  |  |  |  |  |
| Buffer    | (Sigma-Aldrich), 20 mM KOH, 50 mM KCl and 10 mM (NH4)2SO4                      |  |  |  |  |  |  |

Table S1. Component summary of buffering solutions used.

**Table S2.** AtDJ-1B specific glyoxalase activities and corresponding observed reaction rates determined during glyoxalase assay.

| AtDJ-1B Treatment | Specific Activity (nmol·min <sup>-1</sup> ·mg protein <sup>-1</sup> ) | kobs (min-1)   |
|-------------------|-----------------------------------------------------------------------|----------------|
| 5 mM TCEP         | $596 \pm 115$                                                         | $24.9\pm4.8$   |
| 2:1 H2O2          | $385 \pm 120$                                                         | $16.1 \pm 5.0$ |
| 4:1 H2O2          | $220 \pm 134$                                                         | $9.2 \pm 5.6$  |
| 6:1 H2O2          | $182 \pm 56$                                                          | $7.6 \pm 2.3$  |
| 8:1 H2O2          | 99 ± 22                                                               | $4.1 \pm 0.9$  |
| 10:1 H2O2         | $108 \pm 108$                                                         | $4.5 \pm 4.5$  |
| 100:1 H2O2        | $14 \pm 19$                                                           | $0.6 \pm 0.8$  |
| 5 mM diamide      | $99 \pm 151$                                                          | $4.1 \pm 6.3$  |

Table S3. Arabidopsis thaliana DJ-1 specific activities [12].

|                | Specific Activity (nmol·min <sup>-1</sup> ·mg protein <sup>-1</sup> ) |                   |  |  |
|----------------|-----------------------------------------------------------------------|-------------------|--|--|
| AlDj-1 Isolofm | Methylglyoxal                                                         | Glyoxal           |  |  |
| Α              | $15 \pm 4$                                                            | $250 \pm 12$      |  |  |
| В              | $13 \pm 3$                                                            | $310 \pm 5$       |  |  |
| С              | _                                                                     | -                 |  |  |
| D              | $8600 \pm 200$                                                        | $11\ 000 \pm 600$ |  |  |
| Ε              | $6.2 \pm 1.7$                                                         | -                 |  |  |
| F              | $5.5 \pm 1.1$                                                         | -                 |  |  |

*AtDJ-1B* open reading frame sequence without N-terminal chloroplastic targeting sequence and start codon, optimized for *E. coli*.

(Gene ID At1g53280)

GCGACGATGTCGAGCAGTACGAAAAAGGTACTTATTCCCGTTGCCCATGGAACAGAGCCGTTTGA AGCAGTCGTTATGATCGATGTATTGCGCCGTGGAGGTGCCGACGTAACAGTAGCGTCCGTTGAAA ATCAAGTGGGCGTTGATGCATGCCACGGTATCAAAATGGTAGCCGACACGCTTCTGAGCGATATC ACCGATAGCGTGTTCGACTTGATCATGTTACCCGGCGGGCTGCCTGGAGGGTGAGACGCTGAAAAA TTGCAAGCCGCTTGAAAAAATGGTTAAGAAACAAGACACTGACGGGCGCTTGAACGCAGCAATCT GCTGTGCTCCGGCCTTAGCATTTGGCACTTGGGGTTTACTGGAAGGGAAGAAAGCAACGTGCTAT CCTGTGTTCATGGAGAAGTTAGCCGCCTGTGCTACAGCTGTAGAATCTCGTGTCGAGATCGACGG AAAAATTGTTACGAGTCGCGGACCCGGGACCACGATGGAATTCTCGGTGACACTTGTAGAGCAGT TATTGGGTAAAGAGAAGGCGGTGGAAGTTTCAGGGCCCCTGGTTATGCGCCCCGAACCCAGGAGAC GAGTACAAATCACGGAGCTTAATCAAGTATCCTGGTCTTTCGAGGGGACACCTCAAATCCTTGT AAGCTAACGTTGTCGTGGCCGCGTTGGGCAATTCTCTTGAGGTCGTTGCATCTCGTAAAGTGAAA CTTGTCGCTGACGTATTATTAGATGAAGCGGAGAAAAACAGCTATGATTTAATCGTTTTGCCGGG AGGTCTGGGCGGGGCTGAAGCATTCGCATCCTCAGAAAAATTGGTTAATATGCTTAAGAAACAAG  ${\tt CAGAATCTAATAAGCCTTATGGTGCTATTTGTGCTTCCCCCGCTCTTGTGTTTGAGCCTCATGGA$ CTTCTTAAGGGCAAAAAGGCTACTGCCTTCCCAGCTATGTGTTCGAAATTAACAGATCAGTCTCA CATCGAACATCGTGTCTTGGTTGACGGGAACCTTATTACCTCCCGTGGACCGGGTACTTCATTGG AATTTGCTTTGGCTATCGTCGAAAAATTTTACGGGCGTGAAAAGGGGTTGCAGTTATCGAAGGCA ACTCTGGTG

AtDJ-1B protein sequence (after cleavage of GST fusion tag), catalytic cysteines are underlined

| (UniProt Accession | Q9MAH3) |
|--------------------|---------|
|--------------------|---------|

| GATMSSSTKK         | VLIPVAHGTE          | PFEAVVMIDV | LRRGGADVTV | ASVENQVGVD |
|--------------------|---------------------|------------|------------|------------|
| ACHGIKMVAD         | TLLSDITDSV          | FDLIMLPGGL | PGGETLKNCK | PLEKMVKKQD |
| TDGRLNAAI <u>C</u> | CAPALAFGTW          | GLLEGKKATC | YPVFMEKLAA | CATAVESRVE |
| IDGKIVTSRG         | PGTTMEFSVT          | LVEQLLGKEK | AVEVSGPLVM | RPNPGDEYTI |
| TELNQVSWSF         | EGTPQILVPI          | ADGSEEMEAV | AIIDVLKRAK | ANVVVAALGN |
| SLEVVASRKV         | KLVADVLLDE          | AEKNSYDLIV | LPGGLGGAEA | FASSEKLVNM |
| LKKQAESNKP         | YGAI <u>C</u> ASPAL | VFEPHGLLKG | KKATAFPAMC | SKLTDQSHIE |
| HRVLVDGNLI         | TSRGPGTSLE          | FALAIVEKFY | GREKGLQLSK | ATLV       |

## Table S4. Primers used for the study.

| ID              | Sequence                          | Use                        |
|-----------------|-----------------------------------|----------------------------|
|                 | DJ-1 overexpression in E. coli    |                            |
|                 | GGGGACAAGTTTGTACAAAAAAGCAGGC      |                            |
| DJ1B-attB1-TEV- | TTCATGGAAAACCTGTATTTTCAGGGAGC     | PCR for gene amplification |
| Fw              | GACGATGTCGAGCAGTACGAAAAAGGTA      | and adding TEV site        |
|                 | CTTATT                            |                            |
| DI1R attR2 Row  | GGGGACCACTTTGTACAAGAAAGCTGGG      | PCR for gene amplification |
| DjiD-allD2-Kev  | TCTTACACCAGAGTTGCCTTCGATA         | and adding TEV site        |
| Soal A          | <u>ΟΤΟΤΟΟΟΟΤΤΑ ΑΟΟΟΤΑΟΟΑΤΟΟΑΤ</u> | Sequencing of the          |
| JeqLA           | CICICOCOTTAACOCIAOCATOOAT         | construct in pDONR221      |
| Soal B          |                                   | Sequencing of the          |
| JeqLD           | GIAACAICAGAGAIIIIGAGACAC          | construct in pDONR221      |
| SogEw?          |                                   | Sequencing of the          |
| Seyrw2          | GGIGGAAGIIICAGGGCCCCIGGI          | construct in pDONR221      |

| SeqRev2                | ACCAGGGGCCCTGAAACTTCCACC          | Sequencing of the                                               |  |  |
|------------------------|-----------------------------------|-----------------------------------------------------------------|--|--|
| -                      | Analusis of T-DNA insertion lines | construct in pDONR221                                           |  |  |
| SALK_049637_DJ1<br>A_F | CCTCCCTTTTCCCAATCATATC            | Genotyping the <i>dj1a</i><br>(SALK_049637) T-DNA<br>line       |  |  |
| SALK_049637_DJ1<br>A_R | TTTTTCGACCGGTTAACACTC             | Genotyping the <i>dj1a</i><br>(SALK_049637) T-DNA<br>line       |  |  |
| SALK_093414_DJ1<br>B_F | AGGCACAAATTGCTCCATATG             | Genotyping the <i>dj1b-9</i><br>(SALK_093414) T-DNA<br>line     |  |  |
| SALK_093414_DJ1<br>B_R | ACCATGGAATTCTCTGTCACG             | Genotyping the <i>dj1b-9</i><br>(SALK_093414) T-DNA<br>line     |  |  |
| SALK_046449_DJ1<br>B_F | GACGCATGAGCTCAGTAAAGC             | Genotyping the <i>dj1b-4</i><br>(SALK_046449) T-DNA<br>line     |  |  |
| SALK_046449_DJ1<br>B_R | AGCAAGACACTGATGGACGAC             | Genotyping the <i>dj1b-4</i><br>(SALK_046449) T-DNA<br>line     |  |  |
| LB_SALK                | ATTTTGCCGATTTCGGAAC               | Genotyping the <i>dj1b-4</i> and <i>dj1b-9</i> SALK T-DNA lines |  |  |
| DJ1A_qPCR_F1           | GGCGGGCAAAAGCAAATGTA              | rt-qPCR analysis of DJ-1A expression                            |  |  |
| DJ1A_qPCR_R1           | AAGACCGCCAGGTAACACAA              | rt-qPCR analysis of DJ-1A<br>expression                         |  |  |
| DJ1A_qPCR_F2           | TGATTGTGTTACCTGGCGGT              | rt-qPCR analysis of DJ-1A<br>expression                         |  |  |
| DJ1A_qPCR_R2           | AGGCTCGAAGACGTAAGCAG              | rt-qPCR analysis of DJ-1A<br>expression                         |  |  |
| DJ1B_qPCR_F1           | GAAGCAGGCGGAATCAAACA              | rt-qPCR analysis of DJ-1B<br>expression                         |  |  |
| DJ1B_qPCR_R1           | GTTGCCTTCTTACCCTTGAGT             | rt-qPCR analysis of DJ-1B<br>expression                         |  |  |
| DJ1B_qPCR_F2           | GGTTTACTCAAGGGTAAGAAGGC           | rt-qPCR analysis of DJ-1B<br>expression                         |  |  |
| DJ1B_qPCR_R2           | GAGATTGCCGTCCACCAAGA              | rt-qPCR analysis of DJ-1B<br>expression                         |  |  |
| DJ1B_qPCR_F3           | CTCATGGTACGGAGCCGTTT              | rt-qPCR analysis of DJ-1B<br>expression                         |  |  |
| DJ1B_qPCR_R3           | GGAAGTCCTCCAGGGAGCATA             | rt-qPCR analysis of DJ-1B<br>expression                         |  |  |

| Gene                                  | AtDJ-1A   | AtDJ-1B   | AtDJ-1C   | AtDJ-1D   | AtDJ-1E   | AtDJ-1F   |
|---------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|
|                                       | At3g14990 | At1g53280 | At4g34020 | At3g02720 | At2g38860 | At3g54600 |
| Pseudomonas syringae infection (Stael | 1 276     | _0.001    | -2 672    | _1 516    | 2 601     | _4 146    |
| et al., personal communication)       | 1.370     | -0.901    | -2.075    | -1.510    | 2.001     | -4.140    |
| 3h high light, cat2-2 [27]            | 2.859     | -0.357    | -1.201    | -0.456    | 1.86      | -2.137    |
| Methyl viologen, 24 h (He et al.,     | 0.872     | 0 117     | 0.04      | 0.046     | 0.262     | 0.262     |
| submitted)                            | 0.875     | 0.117     | -0.04     | 0.040     | 0.265     | 0.363     |
| <i>cat2-2</i> vs. Col-0 [30]          | 1.688     | 0.105     | -0.033    | 0.155     | 1.214     | 0.277     |
| cat2-2 24h RGCL [30]                  | 2.945     | -0.204    | -0.112    | -0.56     | 1.877     | -3.988    |
| Col-0 25h RGCL [30]                   | 3.115     | 0.615     | 0.473     | -0.209    | 0.888     | -2.354    |
| 50 µM Antimycin A [28]                | 0.958     | -0.155    | -0.275    | -0.353    | 0.282     | -1.357    |

Table S5. Log2 fold change values of DJ-1 mRNA expression levels, as visualised on Figure 9.



**Figure S1.** *AtDJ-1A* and *AtDJ-1B* gene models. For *AtDJ-1A* and *AtDJ-1B* two pairs of primers complementary to C-terminal fragment of the transcript were used (plasmids with suffix: qPCR\_F1/R1/F2/R2), their positions marked in black (Fw, Rev). For *AtDJ-1B* an additional primer pair complementary to the N-terminal fragment was used: qPCR\_F3/R3, marked in blue.



**Figure. S2.** *AtDJ-1B* and *DJ-1A* transcript levels (left and right, respectively) in WT and KO T-DNA lines. DJ1B\_N represents the transcript detected with primers complementary to N-terminal fragment of DJ-1B mRNA (blue arrows, Figure S1), DJ1B\_C represents the transcript detected with primers complementary to C-terminal fragment of *AtDJ-1B* mRNA (black arrows, Figure S1). RNA was extracted from pooled 11-day-old plants grown *in vitro* and used to quantify gene expression levels by RT-qPCR. Values are means ± SD.