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Abstract: Ethanolic extracts from Mangifera indica L. have been proved to possess anti-tumor
properties in many cancer systems. However, although most effects have been demonstrated with
fruit pulp extract, the underlying molecular mechanisms of mango peel are still unclear. This study
was designed to explore the effects of mango peel extract (MPE) on colon cancer cell lines. MPE
affected cell viability and inhibited the colony formation trend of tumor cells, while no effects were
observed in human dermal fibroblasts used as a non-cancerous cell line model. These events were
a consequence of the induction of apoptosis associated to reactive oxygen species (ROS) production,
activation of players of the oxidative response such as JNK and ERK1/2, and the increase in Nrf2
and manganese superoxide dismutase (MnSOD). Significantly, mango peel-activated stress triggered
a DNA damage response evidenced by the precocious phosphorylation of histone 2AX (yYH2AX),
as well as phosphorylated Ataxia telangiectasia-mutated (ATM) kinase and p53 upregulation. Mango
peel extract was also characterized, and HPLC/MS (High Performance Liquid Chromatography/Mass
Spectrometry) analysis unveiled the presence of some phenolic compounds that could be responsible
for the anti-cancer effects. Collectively, these findings point out the importance of the genotoxic stress
signaling pathway mediated by YH2AX in targeting colon tumor cells to apoptosis.

Keywords: mango; apoptosis; reactive oxygen species; YH2AX; colon cancer cells

1. Introduction

In recent years, many different findings have highlighted the beneficial value of food in the
prevention and/or as a supportive strategy of the most common therapies for the treatment of many
chronic diseases [1]. For these reasons, the term “functional food” is being used at an ever-increasing rate
to indicate the antioxidant, anti-tumor or anti-inflammatory properties of many bioactive compounds
extracted from plants or fruits [2—4].

In this scenario, particularly relevant seems to be mango (Mangifera indica L.), a crop belonging
to the Anacardiaceae family that, according to historical records, has been cultivated in India and
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Southeast Asia for more than 4000 years [5]. Nowadays, mango orchards are spread around the
world, in both tropical and subtropical environments, finding suitable areas for cultivation also in
the Mediterranean area, where their spread first started in Spain, then, together with other tropical
plants, also colonized Sicily, at least 20 years ago [6-8]. This fruit has received increasing interest from
consumers who perceived its importance as a functional food rich in phytochemicals able to provide
a healthy contribution to their diet.

Beyond the edible part of the fruit represented by the pulp (or mesocarp), the health-endorsing
properties of mango have been also attributed to other different parts of the fruit such as the seed coat
(endocarp), seed and peel (exocarp). In fact, although the pulp is endowed with a high polyphenolic and
carotenoid content represented by mangiferin, gallic acid, gallotannins, quercetin, isoquercetin, ellagic
acid, B-glucogallin and «- and 3-carotene, many studies have supported the relevant composition
of the other parts of mango fruit. In this regard, it has been observed that the peel and seed, usually
discarded in fruit processing, are an important bio-source that can be exploited for their high content
of polyphenols (mangiferin, quercetin, rhamnentin, ellagic acid and kaempferol), carotenoids, dietary
fiber and vitamin E [9].

Several phytocompounds from different fractions of mango fruit have been shown to be powerful
free radical scavengers, anti-microbial compounds, anti-inflammatory mediators or cancer preventive
molecules [10], also exhibiting a strong cytotoxic activity towards many different human tumor models,
such as blood [11], lung [12], breast [13], colon [14] and prostate cancer cells [15]. The anti-tumor action
of mango extracts has been also demonstrated in vivo. In this regard, mango phenolic compounds
showed a chemotherapeutic potential for suppressing tumor growth in breast cancer xenografts in
mice, lowering the expression of a plethora of tumor associated proteins such as PI3K, AKT, hypoxia
inducible factor-1a (HIF1«x), and vascular endothelial growth factor (VEGF) [16].

In recent years, many findings aimed at eradicating cancer have been focused on those compounds
that are endowed with a selective action, preferentially targeting tumors cells rather than normal ones.
Some of these compounds have been shown to be involved in inducing genotoxic stress, oxidative
injury and downregulation of protective and adaptive responses of tumor cells. From a therapeutic
perspective, there are many examples of well-established cytotoxic antineoplastic agents commonly
used for cancer treatment causing high levels of DNA damage by introducing double strand breaks
(DSBs), regulating cell cycle checkpoints and leading to cell cycle arrest and/or activating cell death
pathway [17,18]. When the genome of a cell is damaged or the action of genotoxins seriously affects
the DNA stability, the cell detects these changes and attempts to repair the damage, recruiting DNA
repair responses to avoid its transmission to daughter cells.

In this scenario DNA damage response activates a specific signaling pathway marked by the
phosphorylation of histone 2AX (H2AX) on Ser139, a canonical key component able to monitor repair
systems in DNA deeply affected by DBSs [19]. The phosphorylated form of H2AX (referred to as
YH2AX) represents a histone variant considered as a ‘protagonist’ in different cellular scenarios and
a reliable DNA DSBs biomarker [19]. To the best of our knowledge, YH2AX is the first marker that is
upregulated by DNA damage response and accumulates at the site of the damage where it is visualized
as foci, thus representing a sensitive tool to monitor cancer progression and efficacy of treatment [20].

With this in mind, our main focus was to explore the possible cytotoxic action of mango peel
extract on colon cancer cells. Although it is already known in literature that other portions of this fruit,
especially the endocarp, but also the pulp, are able to exert a cytotoxic action on tumor cells [14,21,22]
a very limited number of investigations have explored the mechanisms underlying the anti-cancer
properties of mango peel so far.

In addition, no data are available on the anti-tumor effect as well as on the phytochemical
profile of mango grown in the Mediterranean area. In light of these considerations, this study was
designed to investigate the anti-carcinogenic action of mango (M. indica L.) peel extract on colon cancer
cell lines and evaluate its phytochemical composition using HPLC/MS (High Performance Liquid
Chromatography/Mass Spectrometry) analysis.
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Our study demonstrates for the first time that mango peel induces a selective mechanism
of apoptotic cell death on colon cancer cells and that this effect is related to YH2AX-mediated
genotoxic stress.

2. Materials and Methods

2.1. Preparation of Mango Peel Extract

Mango fruits were washed and the peel was removed, cut into small pieces and lyophilized.
Afterwards, the small pieces were coarsely powered using a stainless steel grinder. The powder obtained
was then solubilized in a solution of 50% ethanol in phosphate buffered saline (PBS) to a final concentration
of 75 mg/mL and incubation was protracted overnight at 37 °C. Then, after centrifugation of the extract
at 120x g for 10 min, the supernatant was recovered and subjected to a further centrifugation at 15,500 g
for 10 min.

Hydro-alcoholic extract of mango peel (MPE) was stored at —20 °C until use. To perform treatments
with a range of MPE concentrations, working dilutions were prepared in cell culture medium. For these
experiments, cells were seeded, and after 24 h, when they covered the culture dish surface reaching
a 70% confluence, MPE was added and incubation was protracted for the times reported in the results.

Final concentration of ethanol employed as vehicle had no discernible effects on colon cancer cells
in comparison with control.

2.2. Reversed Phase HPLC/MS Experiments

Water, acetonitrile and formic acid HPLC/MS grade were used. HPLC samples were prepared
by dissolving the obtained powder extract in MeOH (1 mg/1 mL). The employed HPLC system was
an Agilent 1260 Infinity (Agilent Technologies Inc., Santa Clara, California, USA). A reversed-phase
column [Phenomenex Luna C18(2) (150 mm X 4.6 mm, particle size 3 um, Phenomenex Inc., Bologna,
Italy) with a Phenomenex C18 security guard (4 mm x 3 mm), Phenomenex Inc., Bologna, Italy] was
used. A 0.5 mL/min flowrate was set and column temperature was 30 °C. Injection volume was
set at 25 pL. The used eluents were: phase A, 0.1% formic acid in water; phase B, 0.1% formic acid
in acetonitrile. Employed gradient: 0-5 min, 5% B (isocratic); 5-15 min, from 5% to 15% B (linear
gradient); 15-20 min, 15% B (isocratic); 2025 min, from 15% to 30% B (linear gradient); 25-35 min, 30%
B (isocratic); 3545 min, 5% B (washing and reconditioning). MS total ion counts (TIC) was employed
to monitor the eluate. Agilent 6540 UHD accurate-mass Q-TOF spectrometer (Agilent Technologies
Inc., Santa Clara, California, USA) with a Dual AJS ESI source (Agilent Technologies Inc., Santa Clara,
California, USA) was used to register mass spectra. All experiments were performed in negative
mode. Desolvation gas was N (300 °C, 8 L/min); nebulizer (45 psig), sheat gas (400 °C, 12 L/min).
The capillary potential was 2.6 kV and the fragmentor was 75 V. MS spectra range was 100-1000 m/z.
Gallic acid and Mangiferin standards were supplied by Sigma-Aldrich (St. Louis, MO, USA).

2.3. Cell Cultures and Compounds

HT?29, Caco-2 and HCT116 colon cancer cells (Interlab Cell Line Collection, ICLC, Genoa, Italy)
and HDFa human fibroblasts (Gibco, Thermo Fisher Scientific, Monza, Italy) were cultivated in RPMI
1640 medium containing streptomycin (100 U/mL), penicillin (100 U/mL) and fetal bovine serum (10%)
(Life Technologies, Milan, Italy), which was added after heat inactivation. Cultures were maintained at
37 °Cin a 5% CO, humidified incubator as previously reported [23]. All reagents and compounds,
except where differently reported, were purchased from Sigma-Aldrich (Milan, Italy).

2.4. Cell Viability Assessment

Cell viability of different colon cancer cell lines (HT29 and Caco-2 adenocarcinoma cells and
carcinoma HCT116 cells) and human dermal fibroblasts (HDFa) was determined by a colorimetric
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assay based on the metabolic use of 3-(4,5-dimethylthiazol-2-y1)-2,5-diphenyltetrazolium bromide
(MTT) by viable cells. The analysis was performed as previously reported [8].

Morphologic changes of cells were observed using a Leica DMR inverted microscope (Leica
Microsystems, Wetzlar, Germany) at 200X magnification. Pictures were acquired using a CCD camera
and processed using IM50 Leica software (Leica Microsystems, Wetzlar, Germany).

2.5. Clonogenic Assay

For the clonogenic assay, HT29, Caco-2 and HCT116 colon cancer cells (200 cells/well) were seeded
in 6-well plates and each condition was performed in triplicate. After 10 days, the cells were fixed
in methanol, stained with 0.01% crystal violet for 40 min at room temperature. Finally, the plates
were washed with water, air-dried and colonies containing more than 50 cells were counted manually.
As reported by Wang et al. [24], the survival fraction (SF) was evaluated using the formula SF = number
of counted colonies/number of plated cells x plating efficiency of the control group.

2.6. Analysis of DNA Damage and Cell Cycle Distribution

In order to determine changes in nuclear morphology the cells were stained with the bis-benzimide
derivative Hoechst 33342, as suggested by Kelly [25]. For these studies, 8 x 10° cells/well were seeded
in a 96-well plate and before treatment were stained with Hoechst 33342 (2.5 pg/mL medium) for
30 min. Then, cells were washed with PBS, resuspended in culture medium and incubated with MPE.

Morphological changes induced by MPE treatment were examined using an inverted Leica
fluorescent microscope (Leica Microsystems, Wetzlar, Germany) endowed with a 4’,6-diamidino-2-
phenylindole dihydrochloride (DAPI) filter. Leica Q Fluoro software was used for image acquisition.

Cell cycle analysis by DNA content quantification was performed using flow cytometry on
a Beckman Coulter Epics XL flow cytometer (Brea, CA, USA). For these analyses, cells were harvested,
pelleted using centrifugation at 120x g for 10 min. Cells were washed once in cold PBS and centrifuged
at 120x g for 10 min. Finally, 1 mL of propidium iodide hypotonic solution (50 pug/mL propidium
iodide, 0.1% sodium citrate, 0.1% Nonidet P40 and 100 pg/mL RNase A) was added to cell pellets
and incubation was protracted for 4 h in the dark at 4 °C prior to flow cytometry analysis. A total of
10,000 cells (events) for each sample were analyzed using FL3 channel (620 nm BP filter) to measure
propidium iodide fluorescence. Analysis of data was performed using the Expo32 software.

2.7. Acridine Orange and Ethidium Bromide Double Staining for the Detection of Apoptosis

Apoptosis was detected using a dual staining with acridine orange and ethidium bromide (AO/EB)
as reported by Ribble et al. [26]. Pictures were acquired using a fluorescent Leica microscope equipped
with Rhodamine and fluorescein isothiocyanate (FITC) filters. Merge images were obtained combining
pictures of both channels using Leica Q Fluoro software (Leica Microsystems, Wetzlar, Germany).

2.8. Assessment of Intracellular Generation of Reactive Oxygen Species

ROS generation was estimated using the fluorescent dye 5-(and-6)-carboxy-2’,7’-
dichlorodihydrofluorescein diacetate (H2DCFDA). This compound passively enters into the cells
where, after modification by intracellular esterases, it can be oxidized from intracellular ROS. Colon
cancer cells (8 x 10%/well) were incubated with MPE at various times. Lastly, the medium was replaced
and cells were incubated with 20 uM H2DCFDA at 37 °C for 30 min. Then, the medium was replaced
with PBS supplemented with 5 mM glucose, and after 20 min, the fluorescence was directly visualized
by means of a Leica fluorescence microscope (Leica Microsystems). Images were acquired using the
Leica Q Fluoro software using a FITC filter. The fluorescence was measured using a Varian CARY
Eclipse Fluorescence Spectrophotometer (Varian Medical Systems Italia SpA, Milan, Italy). Values
were given in terms of mean fluorescence intensity.
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2.9. Western Blotting Analysis

The analysis of proteins was carried out using western blotting. Briefly, after incubation with MPE,
cells were lysed and protein extracts were prepared as previously reported [27]. 30 ug proteins/lane
were resolved using SDS-PAGE and then electroblotted on a nitrocellulose membrane filter (Bio-Rad
Laboratories Srl). The identification of proteins was determined using specific antibodies (1:200).
Except for antibodies directed against caspase 9, PARP1 and ERK1/2 that were from Cell Signaling
Technology (Cell Signaling Technology Inc., Beverly, MA, USA), all other analyses of proteins were
carried out using primary antibodies distributed by Santa Cruz Biotechnology (Santa Cruz, CA, USA)
and secondary antibodies from Amersham, GE Healthcare Life Science (Milan, Italy). All detections
were performed using a ChemiDoc XRS System (Bio-Rad, Hercules, CA, USA) using Westar Ultra 2.0
enhanced chemiluminescence (ECL) reagent distributed by Cyanagen (Bologna, Italy). The intensity
of the protein bands was quantified using Quantity One software (Bio-Rad) and normalized against
a loading control protein that was not modified by the treatment and represented by y-tubulin or
-actin (diluted 1:1000; Sigma-Aldrich, Milan, Italy).

2.10. Statistical Analysis

GraphPad Prism 5.0 software package (San Diego, CA, USA) was used to perform statistical
analysis of data, which were shown as mean + SD. The evaluation of significant differences between
untreated and treated samples was performed using a Student’s t test. Differently, for the analysis of
multiple groups, a one-way ANOVA test was applied. A p value < 0.05 was considered the threshold
for statistical significance.

3. Results

3.1. HPLC-ESI-QTOF-MS Analysis Reveals the Composition of Mango Peel Extract (MPE)

HPLC-ESI-QTOF-MS analysis evidenced the presence of 16 polar compounds in MPE (see Table 1
and representative trace in Figure 1). The identified compounds can be grouped in organic acids,
gallates and gallotannins, xanthones and benzophenone derivatives.

Three organic acids were identified: quinic acid (peak 2, at 6.70 min and m/z 191.0562), citric acid
(peak 6, at 8.39 min and m/z 191.0198) and gallic acid (peak 7 at 8.63 min and m/z 169.0141) (Figure 1).

The presence of these compounds was in agreement with literature for mango peel [9]. Different
compounds belonging to the family of gallates and gallotannins were also found: glucosyl gallate,
(peak 3 at 7.00 min and 331.0673 m/z), digallic acid (peak 11 at 25.46 min and 321.0255 m/z), tetragalloyl
glucose, (peak 13 at 26.31 min and 787.0998 m/z), methylgallate, (peak 14 at 26.36 min and 183.0301 m/z),
pentagalloyl glucose, (peak 15 at 26.73 min 939.1100 m/z) and methyl-digallate ester, (peak 16 at 29.68 min
and 335.0411 m/z). Peak 8, 11 and 12 were identified as three O-glucoside derivatives of benzophenone
maclurin. Concerning xanthones, at 25.01 min and 421.0776 m/z (peak 9) mangiferin was found.

According to data previously reported in literature [9], the identification of galloylated benzophenone
derivatives in mango peel provides evidence that galloylation of mangiferin and isomangiferin occurs
before cyclization of benzophenones in the biosynthetic pathway. From a phytochemical point of
view, the detection of galloylated maclurin could help to clarify the biogenesis of xanthone derivatives
in mango.

In addition, lepidimoic acid was identified as peak 5 at 7.70 min with 965.2625 [3M — H]~ m/z.
Lepidimoic acid was recently reported as a novel allelopathic substance, which has potent stimulating
activity for the growth of other plant species [28]. To our knowledge, this is the first time that lepidimoic
acid has been identified in mango fruits.

Table 1 also reports the quantification of free polar compounds in MPE, expressed as mg/100 g dry
matter. Quantification of mangiferin and gallic acid was performed with the calibration curves of their
own standards. According to previous studies, the gallates, gallotannins and maclurin derivatives
were quantified using the calibration curve of gallic acid [29].
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Table 1. Composition of mango peel extract (MPE).

ESI- Molecul
Compound RT (min) [M — HI- (m/2) oecuar mg/100 g
Formula
Teor. Exp.
3411089 [M - HI~  341.1090 [M - H]-
1 Disaccaride 6.22 377.0856 [M + Cl]~  377.0857 [M+CI]~  CipHpnOp ND?
387.1144 [M + FA]~  387.1145 [M + FA]~
2 Quinic acid 6.70 191.0561 [M - H]-  191.0562 [M — H]~ C;Hp,04 ND?
3 Glucosyl gallate 7.00 331.0671 [M - H-  331.0673[M - H]~  Ci3HO10 108.14
4 Gluconolactone 7.53 223.0459 [M + FA]~  223.0460 [M + FA]~ CeH19O¢ ND?
5 Lepidimoic Acid 7.70 965.2627 [3BM — H]~  965.2614 [3M — H]~ C36Hs403¢ ND?
6 Citric acid 8.39 191.0197 [M - H]-  191.0198 [M — H]~ CgHsO; ND?
7 Gallic acid 8.63 169.0142 [M — H]~ 169.0141 [M — H]~ CyHgOs5 118.57
Maclurin _ _
8 mono-O-galloyl-glucoside 24.74 575.1042 [M — H] 575.1041 [M - H] CogHuO15 72.03
9 Mangiferin 25.01 421.0776 [M - H-  421.0776 [M—H]~  CyoH;501; 2.81
Maclurin di-O-galloyl . _
10 elucoside 25.34 727.1152 [M - H] 727.1145 [M - H] Cs3Hps019 2021
11 Digallic acid 25.46 321.0252 [M — H]~ 321.0255 [M — H]~ C14H1909 Trace
Maclurin _ _
2O galloylghucoside 26.21 879.1262 [M - H] 879.1253 [M — H] CiyoHz053 6.05
13 Tetragalloyl glucose 26.31 787.0999 [M - HI=  787.0998 [M - H-  Cs4HysO0 488
14 Methylgallate 26.36 183.0299 [M — H]~ 183.0301 [M - H]~ CgHgOs 225.87
15 Pentagalloyl glucose 26.73 939.1109 [M — H]~ 939.1100 [M — H]~ Cy1H3,09¢ 17.89
16 Methyl-digallate ester 29.68 335.0409 [M — H]~ 335.0411 [M — H]~ Ci15H1209 487.15
a Not determined.
x10€ |-ESI EIC(169,01410; 183,03420; 191,02400; 191,06030 ...) Scan Frag=75,0v ESO M.d
34
2,754
254
2,25
24
1,754
154
1.254
14
0.754
0,54
0,25
] _ AN
12 3 4 5 6 7 & 810111213 14 15 16 17 13 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Counts vs. Acquisition Time (min)

Figure 1. Representative high performance liquid chromatography-electrospray-ionization-quadrupole-time
of flight (HPLC/ESI/Q-TOF) trace of mango peel extract.

MPE presented free polar compounds of all the families. As usually observed for tropical fruits,
phenolic acid derivatives, in particular the gallic acid derivatives, are abundant. Methyl esters of gallic and
di-gallic acids were the major compounds with concentrations of 487.15 mg/100 g and 225.87 mg/100 g,
respectively. Gallic acid derivatives have shown high antioxidant activity and health benefits ranging from
neuroprotective action [30] to anti-cancer activity in many tumor systems [31].

3.2. MPE Induces Cytotoxic Effects and Morphological Changes in Colon Cancer Cells

To estimate the effects of MPE on different colon cancer cells, we performed cell viability tests using
MTT colorimetric assay. For these studies, HT29, Caco-2 and HCT116, three different colon cancer cell
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lines, were screened at 24 h and 48 h after administration of different concentrations (15-600 pg/mL) of
MPE. The analysis was performed in comparison to HDFa, primary human dermal fibroblasts isolated
from adult skin, which was used as a non-tumor control, as previously reported [32]. As shown in
Figure 2A, already after 24 h MPE treatment reduced cell viability of all the analyzed colon cancer cells
in a dose-dependent manner. The effect started at 180 ug/mL MPE, and at 600 pug/mL concentration the
evaluated residual viability amounted to 46%, 35% and 44% in HT29, Caco-2 and in HCT116 cells,
respectively. This effect further increased by prolonging the incubation time of cells in the presence of
MPE, reaching the maximum at 48 h of treatment with 360 ug/mL dose. In comparison, no significant
cytotoxicity was observed when MPE was assayed on normal HDFa (-=12%).

A
24 h 48 h
=+ HDFa
150+ -- HT29
* -=- HCT116
E? o * EE 1004 ok -e- Caco-2
25 - 25
2% ‘ 23
8 :a’ *% 8 é 50- *_:A' *_k*
FX i
e
200 400 600 800 200 400 600 800
Concentration (ug/ml) Concentration (ug/ml)
B
HDFa HT29 Caco-2 HCT116
Ctr
360 ug/ml
MPE
C
1.5+ O Ctr
HDFa HT29 Caco-2 HCT116 = 360 pg/ml MPE

360 pg/ml N.S.

- -t oo T ot Twee . 2
PCNA o - VO - V) ' . | B
(29 kDa) - — e — — — '
[
! 0.0~ T T T T T T

HDFa HT29  Caco-2 HCT116

N
(=]
1

PCNA/y-tubulin
o
b

Figure 2. MPE effects on cell viability and the level of proliferation marker proliferating cell nuclear
antigen (PCNA) in human dermal fibroblasts and colon cancer cell lines. (A) Human dermal fibroblasts
(HDFa) and colon cancer cells (HT29, Caco-2 and HCT116) were incubated in the presence of different
concentrations of MPE for 24 and 48 h as reported in the Materials and Methods section. Then, the
percentage of viable cells was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay. The values reported in the line chart are the means of three independent
experiments + SD. Statistical significance was assessed using the Student’s t-test: (*) p < 0.05, (**) p < 0.01
and (***) p < 0.001 compared to the untreated sample. (B) Morphological changes induced by 360 pug/mL
MPE were acquired after 48 h of treatment by an inverted Leica microscope. A picture taken at a 200x
magnification by IM50 Leica software is reported in the figure. (C) Western blotting analysis of PCNA
protein expression in HDFa and colon cancer cells. The correct protein loading was ascertained by
immunoblotting for y-tubulin. Densitometry values are averaged from three independent experiments
normalized to y-tubulin. (*) p < 0.05 compared to the untreated sample. N.S., not significant.
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Having demonstrated that a consistent growth inhibitory effect occurs using 360 pug/mL MPE and
that higher doses (600 pg/mL) induce unspecific cytotoxicity, all succeeding experiments were carried
out using a 360 pg/mL dose.

As shown in Figure 2B reporting light microscope images, a large portion of colon cancer cells
exposed to MPE treatment detached themselves from the substrate and exhibited clear morphological
changes, such as cell shrinkage, roundness, and a vivid cell density reduction in comparison to the
untreated cells. In contrast, these alterations were not visible in the normal control cell line HDFa,
which appeared as a uniform array of cells abutting each other in both untreated and MPE treated
conditions (Figure 2B).

The ability of MPE to inhibit cell growth was also confirmed using western blotting analysis of
the proliferating cell nuclear antigen (PCNA, Figure 2C), a well-known marker of cell proliferation
whose level was decreased by MPE treatment in all colon cancer cells.

3.3. MPE Treatment Inhibits Clonogenic Ability of Colon Cancer Cells

The inhibition of colon cancer cell proliferation was also confirmed by clonogenic assay (Figure 3),
which measures the ability of single cells to proliferate, forming colonies containing at least 50 cells.
The clonogenic potential is an important aspect of cancer behavior since it is strictly related to recurrence
and metastatic ability.

HT29
15 pug/ml - 30ug/ml 45 ug/ml 90ug/ml
4 [
m Ctr = 30 ug/ml MPE
Caco-2 = 15 ug/m MPE & 45 ug/ml MPE
Ctr 30ug/mi Syglml
Y / - - 1.004 .
=] =
8 075
E L
[ 0.50
HCT116 ; A o -
30/ml Iml leml v:, 0.25- »
/ 0.004 * *K e
HT29 Caco-2 HCT116

Figure 3. Cytotoxic effect of MPE evaluated using clonogenic assay in colon cancer cells. Culture dishes
with crystal violet stained colonies treated with MPE. The ability of cells to produce colonies, as reported
in Materials and Methods, was evaluated after 10 days. Pictures of a representative experiment are
reported. In the right panel statistical results of colony-forming assays were reported as survival fraction
(SF) of colonies number with respect to untreated condition used as control. Statistical significance was
assessed by the Student’s t-test: (*) p < 0.05, (**) p < 0.01 and (***) p < 0.001 compared to the untreated
sample. The data in the bar chart are expressed as mean number + SD of three different experiments.

Using different MPE doses (15-90 pug/mL), we observed that a concentration of 15 ug/mL MPE
significantly reduced the clonogenic efficiency in Caco-2 (—36.4%) and HCT116 (-33.1%) cells, while
modestly affected that of HT29 cells (—17.2%) (Figure 3) with respect to the clonogenic rate of untreated
cells. The colony forming trend almost disappeared in both Caco-2 and HCT116 cells with 30 ug/mL,
while such an effect occurred at a higher dose (90 ug/mL) in HT29 cells.

Taken together, these results highlight the ability of MPE to counteract the proliferative trend of
colon cancer cells, reducing their viability and clonogenic potential.
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3.4. MPE Triggers DNA Fragmentation and Apoptotic Cell Death in Colon Cancer Cells

Next, to investigate the nature of the cytotoxic effect of MPE we explored whether its action was
accompanied with changes in the DNA integrity and activation of apoptotic cell death. As is evident
from the cellular DNA content histograms reported in Figure 4A, MPE stimulation affected the cell
cycle distribution of cells, promoting the accumulation of a remarkable percentage of cell population
in the SubG0-G1 phase of the cell cycle with fragmented DNA, a hallmark of apoptotic cell death.
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Figure 4. MPE effects on cell cycle phase distribution, caspases activation and PARP1 fragmentation. (A)

Flow cytometry analysis of cell cycle phase distribution of HT29, Caco-2 and HCT116 cells exposed to MPE

treatment for 48 h. (B) Western blotting analyses of pro-caspases-9 and -3 and PARP1 were performed as

reported in Materials and Methods. The correct protein loading was ascertained by immunoblotting for

y-tubulin. Representative blots of three independent experiments and densitometry analysis histogram

are reported. (*) p < 0.05, (**) p < 0.01 and (***) p < 0.001 compared to the untreated sample.
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Such data was also corroborated by acridine orange/ethidium bromide double staining, which
identifies morphological apoptosis-associated changes of cells [33]. Indeed, data provided evidence
that MPE-treated cells are characterized by the presence of granular yellow-green nuclear staining
(early apoptotic cells) or condensed orange nuclear staining (late-apoptotic cells), whereas a prevalence
of diffuse green fluorescence was observed in untreated cells, indicating live cells (Supplementary
Data, Figure S1).

The induction of apoptosis was also confirmed by the decrease in the level of both pro-caspase-9
and -3 as well as PARP1 breakdown, a known caspase-3 substrate (Figure 4B).

3.5. Assessment of Oxidative Stress Mediated Signaling in MPE-Treated Cells

It is well known that the DNA fragmentation can be a consequence of oxidative stress
generation [34]. Thus, we estimated the ROS level by assessing cell ability to oxidize the fluorochrome
H2DCFDA, a dye employed as a general indicator of cellular ROS. A time course analysis (Figure 5A)
showed that the ROS level rapidly raised in MPE-treated cells, reaching the maximum at 30 min-1 h
in all three colon cancer cells, when almost 90% of cells exhibited a pronounced green fluorescence
detectable using either fluorescence microscopy or a fluorescence spectrophotometer. Thereafter, the
effect was reduced, dropping to 35-40% of green fluorescent cells at 24 h of MPE exposure.

The addition of apocynin, a NADPH oxidase inhibitor, markedly reduced the ROS level at 1 h
of treatment, thus suggesting the involvement of this multi-complex system in ROS generation. It is
also interesting to note that the addition of N-acetylcysteine (NAC), a quencher of ROS, although
it efficaciously rescued the early ROS production (30 min-2 h, Figure 5A), did not counteract MPE
cytotoxicity observed after longer times of treatment (2448 h, Figure 5B). These data strongly support
the participation of ROS in MPE-mediated cytotoxic mechanism in the first phase of treatment.

The successive analysis evidenced that the observed events were accompanied by changes in
cellular protein levels that are the main players of the cell response to stress. Firstly, we analyzed the
phosphorylated extracellular signal-regulated protein kinases 1 and 2 (pERK1/2), mitogen-activated
protein kinase family members that can be involved in cell proliferation, apoptosis and stress [35].
In accordance with the precocious ROS generation, pERK1/2 increase occurred in an early phase of
incubation with MPE (1-8 h, Supplementary Data, Figure S2) and remained high up to 48 h (Figure 6),
albeit it was counteracted by NAC addition only in the early phase of treatment (Supplementary Data,
Figure S2). As reported in Figure 6, a remarkable increase in the level of pERK1/2 was observed after
MPE exposure in all colon cancer cells analyzed.

The same treatment condition also promoted the upregulation of other MAP kinases involved in
stress, such as phosphorylated JNK (pJNK), although its increase was less pronounced compared to
that observed for pERK1/2.

In the next phase of our experiments, studies were carried out to ascertain whether cytoprotective
events were activated in MPE-induced mechanism as a result of cell stress response. In this regard, the
analyses were focused on two enzymes with antioxidant properties such as manganese superoxide
dismutase (MnSOD), an oxidoreductase that removes the highly toxic radical species superoxide
anion (Oe7), and catalase, an enzyme that detoxifies cells from hydrogen peroxide (H,O;). These
two enzymatic activities represent important defensive systems that cells usually employ to detoxify
themselves as a result of ROS overload [36]. As highlighted in Figure 7, in HT29 cells a considerable
increase in the levels of MnSOD was determined compared to the untreated control cells after 48 h of
treatment, while the levels of catalase remained substantially unchanged.

We also wondered whether the increase in MnSOD was associated with an increase in nuclear
factor erythroid 2-related factor 2 (Nrf2), a transcription factor that, when phosphorylated and active,
promotes the expression of antioxidant target enzymes such as MnSOD and catalase [37]. Western
blotting analysis revealed the upregulation of Nrf2 upon MPE treatment for 48 h, an effect that was
accompanied by the appearance of a band at a slower electrophoretic mobility corresponding to the
phosphorylated form of the factor (Figure 7).
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Taken together, these results seem to indicate that the early ROS generation, promoting both
a widespread oxidative injury as well as pERK1/2 and pJNK upregulation, plays a role in the cytotoxic
behavior of MPE.
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Figure 5. MPE treatment stimulates the intracellular reactive oxygen species (ROS) generation. (A)
Micrographs of fluorescence microscopy showing ROS generation after treatment of colon cancer cells
with MPE in the presence or a fluorescein isothiocyanate (FITC) filter (upper panel). The fluorescence was
measured by a Varian fluorescence spectrophotometer and values were reported as mean fluorescence
intensity (lower panel). (B) Cytotoxic effect of MPE on colon cancer cells treated with or without 5 mM
NAC. Cell viability was assessed by MTT assay, as reported in Materials and Methods. The data are
expressed as mean value + SD. (*) p < 0.05, (**) p < 0.01 and (***) p < 0.001 compared to the untreated
sample. (#) p < 0.05, (##) p < 0.01, (###) p < 0.001, compared to MPE-treated sample.
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Figure 6. MPE treatment upregulates the main stress protein players pERK1/2 and pJNK. Colon
cancer cells were treated with MPE for the indicated times, then Western blotting analyses of ERK1/2,
PERK1/2, JNK and pJNK were performed, as reported in Materials and Methods section. Proteins were
detected using specific antibodies. The correct protein loading was ascertained by immunoblotting
for y-tubulin. Representative blots of three independent experiments and densitometry analysis
histograms are depicted. (*) p < 0.05, (**) p < 0.01 and (***) p < 0.001 compared to the untreated sample.

N.S., not significant.
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Figure 7. MPE treatment upregulates antioxidant responses. Colon carcinoma HT29 cells were exposed
to MPE treatment for 48 h. Then, cells were lysated and proteins were analyzed using western blotting
by using specific antibodies directed against MnSOD, catalase and Nr1f2, as reported in Materials
and Method section. The correct protein loading was ascertained by immunoblotting for -actin.
Representative blots of three independent experiments and densitometry analysis histograms are
depicted. (*) p < 0.05 and (**) p < 0.01 compared to the untreated sample. N.S., not significant.

3.6. DNA Fragmentation and Apoptotic Cell Death Induced by MPE is Related to yH2AX-Mediated Genotoxic
Stress

To demonstrate that the effect of MPE is related to the induction of DNA damage, cells were stained
with vital Hoechst 33342, a specific dye that allows the identification of DNA damage associated with
chromatin condensation and fragmentation, as indicated by Kelly [25]. As can be seen in Figure 8A,
untreated cells show a weak diffuse blue color given by the dye. On the contrary, when all three
colon cancer cells were incubated with MPE the presence of an intense brilliant blue hue, an index of
chromatin condensation and fragmented DNA, was observed.

In relation to the experimental evidence obtained, we turned our attention to the molecular events
responsible for DNA damage, blockage of cell proliferation and oxidative stress injury. Firstly, we
analyzed the phosphorylated form on serine 139 of H2AX histone, referred to as YH2AX. This protein,
indeed, when activated by phosphorylation by the serine/threonine kinase ATM [38], represents an
efficient system of recognition and repair of DNA double helix breaks [19]. Figure 8B shows that MPE
treatment induced a consistent increase in YH2AX level as well as in the phosphorylated ATM protein
(pATM) in all colon cancer cells, suggesting the recruitment of this repair system at DNA breaks.
On the other hand, the involvement of the above-mentioned stress proteins as players correlated to
YH2AX increase cannot be excluded. In fact, beyond pATM, H2AX phosphorylation could also be
ascribed to other kinases such as pJNK [39], which in our experimental conditions was upregulated by
MPE treatment (Figure 6), or the phosphorylated form of the kinase p38 [40].

Importantly, the DNA damage effect in treated Caco-2 and HCT116 cells was also accompanied
by an increase in p53 level, the genome guardian protein capable of orchestrating a variety of DNA
damage responses (DDR) and inducing apoptotic cell death [41]. In contrast, such an effect was not
observed in HT29 cells, which are known to express a mutated form of this protein [42—44].

To explore a possible relationship between oxidative stress and DNA damage in MPE-treated cells,
we further characterized the molecular mechanisms underlying MPE-mediated apoptosis in HT29.
As depicted in Figure 9, the increase in YH2AX occurred precociously in stimulated cells appearing
after 1 h and 8 h of incubation, thus suggesting the recruitment of this protein had already taken place
in the first phase of treatment in concomitance with ROS generation. Indeed, the MPE-induced extent
of YH2AX was conditioned by the addition of NAC, the quencher of ROS that, when co-administrated
with MPE, completely suppressed the phosphorylation of H2AX in the first hour of exposure, an effect
that disappeared for longer times of incubation (8 h).
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Figure 8. MPE effects on DNA damage markers. (A) The effect of MPE on DNA was evaluated using
Hoechst 33342 staining in colon cancer cells incubated with MPE for 48 h. The pictures (original
magnification 400x) were acquired using a 4’,6-diamidino-2-phenylindole dihydrochloride (DAPI)
filter with a Leica fluorescent inverted microscope using Leica Q Fluoro software. Yellow arrows
indicate condensed or fragmented chromatin. (B) MPE provoked the phosphorylation of both H2AX
(YH2AX) and ATM (pATM) and p53 upregulation. All colon cancer cells (HT29, Caco-2 and HCT116)
were treated for 48 h in the presence of 360 pg/mL MPE. Then, cell lysates were analyzed using western
blotting with specific antibodies directed against the proteins of interest, as reported in Materials and
Methods. The correct protein loading was ascertained by immunoblotting for y-tubulin. Representative
blots of three independent experiments and densitometry analysis histogram normalized to y-tubulin
are reported in the bottom panel. (*) p < 0.05, (**) p < 0.01 and (***) p < 0.001 compared to the untreated

sample. N.S., not significant.
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Figure 9. MPE promotes early activation of YH2AX via oxidative stress. HT29 cells were treated with
MPE for the indicated times in the presence or absence of NAC. Lastly, western blotting analyses were
performed in order to study the effects of the treatments on the total level of YH2AX. The correct
protein loading was ascertained by immunoblotting for $-actin. The results are representative of three
independent experiments and densitometry analysis histograms are reported normalized to 3-actin. (*)
p < 0.05 and (***) p < 0.001 compared to the untreated sample. (##) p < 0.01 compared to MPE-treated
sample. N.S., not significant compared to MPE-treated cells.

4. Discussion

This paper aimed at analyzing mango peel extract for its ability to tackle the tumor behavior of
different human colon cancer cells and explore its mode of action.

The choice of this analysis was sustained by the observation that many studies report the health
endorsing properties of mango from tropical areas, while no data are currently available on peel from
mango cultivated in Sicily (Balestrate, Italy), especially on its anti-cancer activity. Sicily is characterized
by a particular pedoclimatic environment that seems to be favorable for mango cultivation conferring
particular properties to the orchards. For this purpose, we were interested in characterizing the
chemical composition of MPE obtained from mango grown in the rural Sicilian areas as well as to test
its effects on tumor cell systems.

Significantly, our results provided evidence that MPE exhibits a selective anti-carcinogenic action
against colon carcinoma cells inducing a YH2AX-mediated genotoxic and apoptotic effect, while
it turned out to be ineffective on human dermal fibroblasts. MPE effect is accompanied by early
ROS generation causing both the activation of phosphorylated stress proteins (as pJNK) as well as
an extended DNA damage that committed colon cancer cells to YH2AX-mediated apoptotic demise.
Overall, these data are in accordance with results demonstrating that the increase of pJNK could be
also ascribed to the activation of an apoptotic cell death program, as recently shown in cells of chronic
myeloid leukemia treated with resveratrol [45], one of the main polyphenols present in plants.

We also demonstrated that MPE promotes the upregulation of pERK1/2, members of the
mitogen-activated protein kinase family capable of mediating cell proliferation, apoptosis [35] and
inducing ROS-mediated NADPH oxidase [46]. Beyond the activation of the stress kinase pJNK and
PERK1/2, the oxidative injury sparked by MPE treatment was also accompanied by the recruitment of
Nrf2, a well-known repair system active in the defense and protection of cells from toxic and oxidizing
events. Nrf2 is a transcription factor that, when phosphorylated [47,48], translocates into the nuclear
environment where it transactivates the expression of a battery of genes with antioxidant action such as
superoxide dismutase (MnSOD), catalase, NAD(P)H quinone reductase, glutathione S-transferase and
HO-1 [37,49]. Our experiments have highlighted that the activation of protective responses such as
Nrf2 and its target MnSOD probably attempt to counteract MPE-mediated oxidative injury.

Taken together, these data, supporting the participation of oxidative stress in the MPE effect,
lead us not to exclude a possible involvement of NO and nitrosative stress in our systems, which we
aim to investigate in future. Indeed, NO exhibited a dual action on many cancer models, enhancing
cell permeability and retention of chemotherapeutics as well as killing tumor cells [50]. On the other
hand, our chemical characterization of MPE using HPLC/MS indicated the presence of mangiferin,
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a well-known bioactive xanthone that has been proved to increase both NO production and eNOS
expression in some cell systems [51]. Such an aspect could be of particular interest since some NO
inducers or NO-donating compounds have been recently identified as new, promising anticancer
therapeutics against blood and solid tumors [52-55].

In addition to the extended DNA damage promoted by MPE, as well as an increase in YH2AX
level, an increase in that of pATM and p53 was also observed. As reported in the literature, yYH2AX
represents the first step for the recruitment of DNA repair proteins at the damaged sites. H2AX is
one of the main five histones belonging to the H2A histone protein family, whose relevance has been
highlighted for its phosphorylated form at ser139, referred to as YH2AX, and that represents a sensitive
indicator of damaged DNA by environmental and exogenous insults [56]. These observations are in
accordance with our data showing YH2AX increase related to the apoptotic cell death induced by
mango peel. The level of YH2AX rapidly increased in the early phase of treatment and remained
high along all the process that committed colon cancer cells to apoptotic demise. These data were in
accordance with Rogakou [57] who, studying the kinetic of YH2AX formation in Jurkat cells exposed
to the effective apoptotic inducer staurosporine, provided a detailed examination of YH2AX timing
and DNA fragmentation of dying cells. Similar effects were also described in other apoptotic systems
such as staurosporine-treated HL60 cells [58] and etoposide-treated Jurkat cells [57]. Solier et al. [59]
also analyzed the presence of YH2AX and phosphorylated H2B in a novel cell entity named apoptotic
ring, where the histone variants are recruited and activated by DNA damage response kinases. In line
with this observation, more recently a novel apoptotic signaling pathway dependent on the activation
of the H2AX-CARP1 (cell cycle and apoptosis regulatory protein) axis has been demonstrated as a key
event in the transduction of apoptosis following DNA damage [60].

On the whole, the data reported here provide evidence that MPE stimulation triggered an apoptotic
cell demise orchestrated by ROS-mediated genotoxic stress and a remarkable increase in YH2AX level.
However, since these effects had already appeared in the first hours of incubation, when cells are still
alive, it is conceivable that along the pathway that commits cells to death, tumor colon cells try to
activate cytoprotective systems such as Nrf-2 and its transcriptional target MnSOD, which hopelessly
fail in sustaining tumor survival. Thus, cells become disarmed in their defense systems and collapse
by apoptosis. A schematic representation of MPE anticancer activity on colon cancer cells is reported
in Figure 10.

Interestingly, the characterization of the polyphenolic profile of MPE using HPLC/MS provided
evidence that different families such as organic acids, gallates and gallotannins, xanthones and
benzophenone derivatives enrich this fruit and could be the main players in the analyzed mechanism.
In addition, differently from other previous studies, we demonstrate for the first time the presence of
lepidimoic acid, a pectic disaccharide, in mango peel. To our knowledge, this is the first evidence of
this compound in mango.
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Figure 10. Schematic representation of the mechanism of action of MPE on colon cancer cells.
MPE treatment promotes oxidative stress injury evidenced by ROS generation and activation of
stress-mediated responses (pERK1/2 and pJNK) as well as DNA fragmentation. The activation of
YH2AX in response to DNA damage causes the commitment to apoptotic demise.

5. Conclusions

Overall, our results correlate with data present in the literature on the anti-tumor action of
mango peel extract. However, here we provide a new insight into the mechanism of action of MPE
preferentially targeting colon cancer cells rather than normal ones. The chemical characterization
of MPE sheds light on the composition of possible phytochemicals responsible for these selective
properties. Moving forward, our future studies will aim to better understand the role of molecules
contained in MPE. To this purpose, the different phytochemicals found in MPE will be tested alone or in
combination in future investigations to explore possible synergistic interactions. In addition, a putative
action of MPE in combination with the most common chemotherapeutics will be also considered with
the aim to provide a new insight into the anti-tumor potential benefits of mango peel as a supportive
strategy for antineoplastic therapies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3921/8/10/422/s1.
Figure S1: MPE treatment induces apoptotic cell death in colon cancer cells. Figure S2: MPE treatment upregulates
the main stress protein player pERK1/2.
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Abbreviations

MPE

Mango peel extract

HPLC/MS High performance liquid chromatography/mass spectrometry

ROS Reactive oxygen species

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

HDFa human dermal fibroblasts

H2DCFDA 5-(and-6)-carboxy-2’,7’-dichlorodihydrofluorescein diacetate

YH2AX phosphorylated histone 2AX

pERK1/2 phosphorylated extracellular signal-regulated protein kinases 1 and 2

References

1. Battino, M.; Forbes-Herndndez, T.Y.; Gasparrini, M.; Afrin, S.; Cianciosi, D.; Zhang, J.; Manna, PP;

10.

11.

Reboredo-Rodriguez, P.; Varela Lopez, A.; Quiles, J.L.; et al. Relevance of functional foods in the
Mediterranean diet: The role of olive oil, berries and honey in the prevention of cancer and cardiovascular
diseases. Crit. Rev. Food Sci. Nutr. 2018, 1-28. [CrossRef]

Ullah, R.; Khan, M.; Shah, S.A.; Saeed, K.; Kim, M.O. Natural Antioxidant Anthocyanins—A Hidden
Therapeutic Candidate in Metabolic Disorders with Major Focus in Neurodegeneration. Nutrients 2019, 11,
1195. [CrossRef] [PubMed]

Grabowska, M.; Wawrzyniak, D.; Rolle, K.; Chomczyniski, P.; Oziewicz, S.; Jurga, S.; Barciszewski, J. Let food
be your medicine: Nutraceutical properties of lycopene. Food Funct. 2019, 10, 3090-3102. [CrossRef]
Emanuele, S.; Lauricella, M.; Calvaruso, G.; D’Anneo, A.; Giuliano, M. Litchi chinensis as a Functional Food
and a Source of Antitumor Compounds: An Overview and a Description of Biochemical Pathways. Nutrients
2017, 9, 992. [CrossRef] [PubMed]

Jahurul, M.H.A.; Zaidul, I.5.M.; Ghafoor, K.; Al-Juhaimi, FY.; Nyam, K.-L.; Norulaini, N.A.N.; Sahena, F.;
Mohd Omar, A K. Mango (Mangifera indica L.) by-products and their valuable components: A review. Food
Chem. 2015, 183, 173-180. [CrossRef] [PubMed]

Lauricella, M.; Emanuele, S.; Calvaruso, G.; Giuliano, M.; D’Anneo, A. Multifaceted Health Benefits of
Mangifera indica L. (Mango): The Inestimable Value of Orchards Recently Planted in Sicilian Rural Areas.
Nutrients 2017, 9, 525. [CrossRef] [PubMed]

Testa, R.; Tudisca, S.; Schifani, G.; Di Trapani, A.; Migliore, G. Tropical Fruits as an Opportunity for Sustainable
Development in Rural Areas: The Case of Mango in Small-Sized Sicilian Farms. Sustainability 2018, 10, 1436.
[CrossRef]

Emanuele, S.; Notaro, A.; Palumbo Piccionello, A.; Maggio, A.; Lauricella, M.; D’Anneo, A.; Cernigliaro, C.;
Calvaruso, G.; Giuliano, M. Sicilian Litchi Fruit Extracts Induce Autophagy versus Apoptosis Switch in
Human Colon Cancer Cells. Nutrients 2018, 10, 1490. [CrossRef]

Berardini, N.; Carle, R.; Schieber, A. Characterization of gallotannins and benzophenone derivatives from
mango (Mangifera indica L. cv. “Tommy Atkins”) peels, pulp and kernels by high-performance liquid
chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2004, 18,
2208-2216. [CrossRef]

Gold-Smith, F; Fernandez, A.; Bishop, K. Mangiferin and Cancer: Mechanisms of Action. Nutrients 2016, 8,
396. [CrossRef]

Zhao, J.; Zhang, B.; Li, S.; Zeng, L.; Chen, Y.; Fang, ]. Mangiferin increases Nrf2 protein stability by inhibiting
its ubiquitination and degradation in human HL60 myeloid leukemia cells. Int. ]. Mol. Med. 2014, 33,
1348-1354. [CrossRef] [PubMed]


http://dx.doi.org/10.1080/10408398.2018.1526165
http://dx.doi.org/10.3390/nu11061195
http://www.ncbi.nlm.nih.gov/pubmed/31141884
http://dx.doi.org/10.1039/C9FO00580C
http://dx.doi.org/10.3390/nu9090992
http://www.ncbi.nlm.nih.gov/pubmed/28885570
http://dx.doi.org/10.1016/j.foodchem.2015.03.046
http://www.ncbi.nlm.nih.gov/pubmed/25863626
http://dx.doi.org/10.3390/nu9050525
http://www.ncbi.nlm.nih.gov/pubmed/28531110
http://dx.doi.org/10.3390/su10051436
http://dx.doi.org/10.3390/nu10101490
http://dx.doi.org/10.1002/rcm.1611
http://dx.doi.org/10.3390/nu8070396
http://dx.doi.org/10.3892/ijmm.2014.1696
http://www.ncbi.nlm.nih.gov/pubmed/24626801

Antioxidants 2019, 8, 422 19 of 21

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Rajeshkumar, S.; Kumar, S.V.; Ramaiah, A.; Agarwal, H.; Lakshmi, T.; Roopan, S.M. Biosynthesis of zinc
oxide nanoparticles using Mangifera indica leaves and evaluation of their antioxidant and cytotoxic properties
in lung cancer (A549) cells. Enzyme Microb. Technol. 2018, 117, 91-95. [CrossRef] [PubMed]

Noratto, G.D.; Bertoldi, M.C.; Krenek, K.; Talcott, S.T.; Stringheta, P.C.; Mertens-Talcott, S.U. Anticarcinogenic
Effects of Polyphenolics from Mango (Mangifera indica) Varieties. J. Agric. Food Chem. 2010, 58, 4104-4112.
[CrossRef] [PubMed]

Corrales-Bernal, A.; Amparo Urango, L.; Rojano, B.; Maldonado, M.E. In vitro and in vivo effects of mango
pulp (Mangifera indica cv. Azucar) in colon carcinogenesis. Arch. Latinoam. Nutr. 2014, 64, 16-23. [PubMed]
Prasad, S.; Kalra, N.; Shukla, Y. Induction of Apoptosis by Lupeol and Mango Extract in Mouse Prostate and
LNCaP Cells. Nutr. Cancer 2007, 60, 120-130. [CrossRef]

Banerjee, N.; Kim, H.; Krenek, K.; Talcott, S.T.; Mertens-Talcott, S.U. Mango polyphenolics suppressed tumor
growth in breast cancer xenografts in mice: Role of the PI3K/AKT pathway and associated microRNAs. Nutr.
Res. 2015, 35, 744-751. [CrossRef] [PubMed]

Helleday, T.; Petermann, E.; Lundin, C.; Hodgson, B.; Sharma, R.A. DNA repair pathways as targets for
cancer therapy. Nat. Rev. Cancer 2008, 8, 193-204. [CrossRef]

Raffa, D.; Plescia, F.; Maggio, B.; Raimondi, M.V.; D’ Anneo, A.; Lauricella, M.; Daidone, G. Anthranilamide-based
2-phenylcyclopropane-1-carboxamides, 1,1’-biphenyl-4-carboxamides and 1,1’-biphenyl-2-carboxamides:
Synthesis biological evaluation and mechanism of action. Eur. J. Med. Chem. 2017, 132, 262-273. [CrossRef]
Nikolova, T.; Dvorak, M.; Jung, E.; Adam, I.; Kramer, E.; Gerhold-Ay, A.; Kaina, B. The YH2AX Assay for
Genotoxic and Nongenotoxic Agents: Comparison of H2AX Phosphorylation with Cell Death Response.
Toxicol. Sci. 2014, 140, 103-117. [CrossRef]

Bonner, W.M.; Redon, C.E,; Dickey, ].S.; Nakamura, A.J.; Sedelnikova, O.A.; Solier, S.; Pommier, Y. YH2AX
and cancer. Nat. Rev. Cancer 2008, 8, 957-967. [CrossRef]

Abdullah, A.-S.H.; Mohammed, A.S.; Abdullah, R.; Mirghani, M.E.S.; Al-Qubaisi, M. Cytotoxic effects of
Mangifera indica L. kernel extract on human breast cancer (MCF-7 and MDA-MB-231 cell lines) and bioactive
constituents in the crude extract. BMC Complement. Altern. Med. 2014, 14, 199. [CrossRef] [PubMed]
Nguyen, H.X,; Do, TN.V,; Le, TH.; Nguyen, M.T.T.; Nguyen, N.T.; Esumi, H.; Awale, S. Chemical Constituents
of Mangifera indica and Their Antiausterity Activity against the PANC-1 Human Pancreatic Cancer Cell Line.
J. Nat. Prod. 2016, 79, 2053-2059. [CrossRef] [PubMed]

Cernigliaro, C.; D’Anneo, A.; Carlisi, D.; Giuliano, M.; Marino Gammazza, A.; Barone, R.; Longhitano, L.;
Cappello, E; Emanuele, S.; Distefano, A.; et al. Ethanol-Mediated Stress Promotes Autophagic Survival and
Aggressiveness of Colon Cancer Cells via Activation of Nrf2/HO-1 Pathway. Cancers 2019, 11, 505. [CrossRef]
[PubMed]

Wang, M.-C,; Liang, X,; Liu, Z.-Y,; Cui, J.; Liu, Y;; Jing, L.; Jiang, L.-L.; Ma, ].-Q.; Han, L.-L.; Guo, Q.-Q.; et al.
In vitro synergistic antitumor efficacy of sequentially combined chemotherapy/icotinib in non-small cell
lung cancer cell lines. Oncol. Rep. 2015, 33, 239-249. [CrossRef] [PubMed]

Kelly, K.J.; Sandoval, R M.; Dunn, K.W.; Molitoris, B.A.; Dagher, P.C. A novel method to determine specificity
and sensitivity of the TUNEL reaction in the quantitation of apoptosis. Am. ]. Physiol.-Cell Physiol. 2003, 284,
C1309-C1318. [CrossRef] [PubMed]

Ribble, D.; Goldstein, N.B.; Norris, D.A.; Shellman, Y.G. A simple technique for quantifying apoptosis in
96-well plates. BMC Biotechnol. 2005, 5, 12. [CrossRef]

Carlisi, D.; D’Anneo, A.; Martinez, R.; Emanuele, S.; Buttitta, G.; Di Fiore, R.; Vento, R.; Tesoriere, G.;
Lauricella, M. The oxygen radicals involved in the toxicity induced by parthenolide in MDA-MB-231 cells.
Oncol. Rep. 2014, 32, 167-172. [CrossRef]

Yamada, K.; Anai, T.; Kosemura, S.; Yamamura, S.; Hasegawa, K. Structure-activity relationship of lepidimoide
and its analogues. Phytochemistry 1996, 41, 671-673. [CrossRef]

Goémez-Caravaca, A.M.; Lopez-Cobo, A.; Verardo, V.; Segura-Carretero, A.; Fernandez-Gutiérrez, A.
HPLC-DAD-q-TOE-MS as a powerful platform for the determination of phenolic and other polar compounds
in the edible part of mango and its by-products (peel, seed, and seed husk): Liquid phase separations.
ELECTROPHORESIS 2016, 37, 1072-1084. [CrossRef]

Lu, Z,; Nie, G; Belton, PS.; Tang, H.; Zhao, B. Structure-activity relationship analysis of antioxidant ability
and neuroprotective effect of gallic acid derivatives. Neurochem. Int. 2006, 48, 263—274. [CrossRef]


http://dx.doi.org/10.1016/j.enzmictec.2018.06.009
http://www.ncbi.nlm.nih.gov/pubmed/30037558
http://dx.doi.org/10.1021/jf903161g
http://www.ncbi.nlm.nih.gov/pubmed/20205391
http://www.ncbi.nlm.nih.gov/pubmed/25796713
http://dx.doi.org/10.1080/01635580701613772
http://dx.doi.org/10.1016/j.nutres.2015.06.002
http://www.ncbi.nlm.nih.gov/pubmed/26194618
http://dx.doi.org/10.1038/nrc2342
http://dx.doi.org/10.1016/j.ejmech.2017.03.051
http://dx.doi.org/10.1093/toxsci/kfu066
http://dx.doi.org/10.1038/nrc2523
http://dx.doi.org/10.1186/1472-6882-14-199
http://www.ncbi.nlm.nih.gov/pubmed/24962691
http://dx.doi.org/10.1021/acs.jnatprod.6b00381
http://www.ncbi.nlm.nih.gov/pubmed/27466882
http://dx.doi.org/10.3390/cancers11040505
http://www.ncbi.nlm.nih.gov/pubmed/30974805
http://dx.doi.org/10.3892/or.2014.3583
http://www.ncbi.nlm.nih.gov/pubmed/25370413
http://dx.doi.org/10.1152/ajpcell.00353.2002
http://www.ncbi.nlm.nih.gov/pubmed/12676658
http://dx.doi.org/10.1186/1472-6750-5-12
http://dx.doi.org/10.3892/or.2014.3212
http://dx.doi.org/10.1016/0031-9422(95)00712-1
http://dx.doi.org/10.1002/elps.201500439
http://dx.doi.org/10.1016/j.neuint.2005.10.010

Antioxidants 2019, 8, 422 20 of 21

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

Da Silva, S.L.; Chaar, J. da S.; Yano, T. Chemotherapeutic potential of two gallic acid derivative compounds
from leaves of Casearia sylvestris Sw (Flacourtiaceae). Eur. |. Pharmacol. 2009, 608, 76-83. [CrossRef] [PubMed]
De Almeida, L.C.; Bauermeister, A.; Rezende-Teixeira, P, dos Santos, E.A.; de Moraes, L.A.B,;
Machado-Neto, J.A.; Costa-Lotufo, L.V. Pradimicin-IRD exhibits antineoplastic effects by inducing DNA
damage in colon cancer cells. Biochem. Pharmacol. 2019, 168, 38—47. [CrossRef] [PubMed]

Liu, K;; Liu, P; Liu, R.; Wu, X. Dual AO/EB Staining to Detect Apoptosis in Osteosarcoma Cells Compared
with Flow Cytometry. Med. Sci. Monit. Basic Res. 2015, 21, 15-20. [CrossRef] [PubMed]

Maluf, S.W.; Marroni, N.P.; Heuser, V.D.; Pra, D. DNA Damage and Oxidative Stress in Human Disease.
BioMed Res. Int. 2013, 2013, 1-2. [CrossRef] [PubMed]

Xing, S.-G.; Zhang, K.-].; Qu, J.-H.; Ren, Y.-D.; Luan, Q. Propofol induces apoptosis of non-small cell lung
cancer cells via ERK1/2-dependent upregulation of PUMA. Eur. Rev. Med. Pharmacol. Sci. 2018, 4341-4349.
[CrossRef]

Emanuele, S.; D’Anneo, A.; Calvaruso, G.; Cernigliaro, C.; Giuliano, M.; Lauricella, M. The Double-Edged
Sword Profile of Redox Signaling: Oxidative Events as Molecular Switches in the Balance between Cell
Physiology and Cancer. Chem. Res. Toxicol. 2018, 31, 201-210. [CrossRef] [PubMed]

Huang, Y.; Li, W.; Su, Z,; Kong, A.-N.T. The complexity of the Nrf2 pathway: Beyond the antioxidant
response. |. Nutr. Biochem. 2015, 26, 1401-1413. [CrossRef]

Kuo, LJ.; Yang, L.-X. Gamma-H2AX—A novel biomarker for DNA double-strand breaks. Vivo Athens Greece
2008, 22, 305-309.

Sluss, H.K.; Davis, R.J. H2AX Is a Target of the JNK Signaling Pathway that Is Required for Apoptotic DNA
Fragmentation. Mol. Cell 2006, 23, 152-153. [CrossRef]

Lu, C.; Shi, Y.; Wang, Z.; Song, Z.; Zhu, M.; Cai, Q.; Chen, T. Serum starvation induces H2AX phosphorylation
to regulate apoptosis via p38 MAPK pathway. FEBS Lett. 2008, 582, 2703-2708. [CrossRef]

Min, S.; Kim, K.; Kim, S.-G.; Cho, H.; Lee, Y. Chromatin-remodeling factor, RSF1, controls p53-mediated
transcription in apoptosis upon DNA strand breaks. Cell Death Dis. 2018, 9, 1079. [CrossRef] [PubMed]
Djelloul, S.; Forgue-Lafitte, M.-E.; Hermelin, B.; Mareel, M.; Bruyneel, E.; Baldi, A.; Giordano, A.; Chastre, E.;
Gespach, C. Enterocyte differentiation is compatible with SV40 large T expression and loss of p53 function in
human colonic Caco-2 cells: Status of the pRb1 and pRb2 tumor suppressor gene products. FEBS Lett. 1997,
406, 234-242. [CrossRef]

Ray, R M.; McCormack, S.A.; Johnson, L.R. Polyamine depletion arrests growth of IEC-6 and Caco-2 cells by
different mechanisms. Am. J. Physiol. Gastrointest. Liver Physiol. 2001, 281, G37-G43. [CrossRef] [PubMed]
Trainer, D.L.; Kline, T.; McCabe, F.L.; Faucette, L.E,; Feild, J.; Chaikin, M.; Anzano, M.; Rieman, D.; Hoffstein, S.;
Li, D.J. Biological characterization and oncogene expression in human colorectal carcinoma cell lines. Int. J.
Cancer 1988, 41, 287-296. [CrossRef] [PubMed]

Wu, X.; Xiong, M.; Xu, C.; Duan, L.; Dong, Y.; Luo, Y.; Niu, T,; Lu, C. Resveratrol induces apoptosis of
human chronic myelogenous leukemia cells in vitro through p38 and JNK-regulated H2AX phosphorylation.
Acta Pharmacol. Sin. 2015, 36, 353-361. [CrossRef] [PubMed]

D’Anneo, A.; Carlisi, D.; Lauricella, M.; Puleio, R.; Martinez, R.; Di Bella, S.; Di Marco, P.; Emanuele, S.;
Di Fiore, R.; Guercio, A.; et al. Parthenolide generates reactive oxygen species and autophagy in MDA-MB231
cells. A soluble parthenolide analogue inhibits tumour growth and metastasis in a xenograft model of breast
cancer. Cell Death Dis. 2013, 4, €891. [CrossRef] [PubMed]

Wu, S.; Lu, H; Bai, Y. Nrf2 in cancers: A double-edged sword. Cancer Med. 2019, 8, 2252-2267. [CrossRef]
Woo, Y.; Oh, J.; Kim, J.-S. Suppression of Nrf2 Activity by Chestnut Leaf Extract Increases Chemosensitivity
of Breast Cancer Stem Cells to Paclitaxel. Nutrients 2017, 9, 760. [CrossRef]

Pall, M.L.; Levine, S. Nrf2, a master regulator of detoxification and also antioxidant, anti-inflammatory and
other cytoprotective mechanisms, is raised by health promoting factors. Sheng Li Xue Bao 2015, 67, 1-18.
[CrossRef]

Xu, Y.; Ren, H,; Liu, J.; Wang, Y.; Meng, Z.; He, Z.; Miao, W.; Chen, G.; Li, X. A switchable NO-releasing
nanomedicine for enhanced cancer therapy and inhibition of metastasis. Nanoscale 2019, 11, 5474-5488.
[CrossRef]

Yang, H.; Bai, W,; Gao, L.; Jiang, J.; Tang, Y; Niu, Y; Lin, H.; Li, L. Mangiferin alleviates hypertension induced
by hyperuricemia via increasing nitric oxide releases. J. Pharmacol. Sci. 2018, 137, 154-161. [CrossRef]
[PubMed]


http://dx.doi.org/10.1016/j.ejphar.2009.02.004
http://www.ncbi.nlm.nih.gov/pubmed/19222998
http://dx.doi.org/10.1016/j.bcp.2019.06.016
http://www.ncbi.nlm.nih.gov/pubmed/31228463
http://dx.doi.org/10.12659/MSMBR.893327
http://www.ncbi.nlm.nih.gov/pubmed/25664686
http://dx.doi.org/10.1155/2013/696104
http://www.ncbi.nlm.nih.gov/pubmed/24163818
http://dx.doi.org/10.26355/eurrev_201807_15431
http://dx.doi.org/10.1021/acs.chemrestox.7b00311
http://www.ncbi.nlm.nih.gov/pubmed/29513521
http://dx.doi.org/10.1016/j.jnutbio.2015.08.001
http://dx.doi.org/10.1016/j.molcel.2006.07.001
http://dx.doi.org/10.1016/j.febslet.2008.06.051
http://dx.doi.org/10.1038/s41419-018-1128-2
http://www.ncbi.nlm.nih.gov/pubmed/30348983
http://dx.doi.org/10.1016/S0014-5793(97)00208-1
http://dx.doi.org/10.1152/ajpgi.2001.281.1.G37
http://www.ncbi.nlm.nih.gov/pubmed/11408253
http://dx.doi.org/10.1002/ijc.2910410221
http://www.ncbi.nlm.nih.gov/pubmed/3338874
http://dx.doi.org/10.1038/aps.2014.132
http://www.ncbi.nlm.nih.gov/pubmed/25619392
http://dx.doi.org/10.1038/cddis.2013.415
http://www.ncbi.nlm.nih.gov/pubmed/24176849
http://dx.doi.org/10.1002/cam4.2101
http://dx.doi.org/10.3390/nu9070760
http://dx.doi.org/10.13294/j.aps.2015.0001
http://dx.doi.org/10.1039/C9NR00732F
http://dx.doi.org/10.1016/j.jphs.2018.05.008
http://www.ncbi.nlm.nih.gov/pubmed/29934052

Antioxidants 2019, 8, 422 21 of 21

52.

53.

54.

55.

56.

57.

58.

59.

60.

Paskas, S.; Mazzon, E.; Basile, M.S.; Cavalli, E.; Al-Abed, Y.; He, M.; Rakocevic, S.; Nicoletti, F.; Mijatovic, S.;
Maksimovic-Ivanic, D. Lopinavir-NO, a nitric oxide-releasing HIV protease inhibitor, suppresses the growth
of melanoma cells in vitro and in vivo. Invest. New Drugs 2019, 37, 1014-1028. [CrossRef] [PubMed]

Basile, M.; Mazzon, E.; Krajnovic, T.; Draca, D.; Cavalli, E.; Al-Abed, Y.; Bramanti, P.; Nicoletti, F.; Mijatovic, S.;
Maksimovic-Ivanic, D. Anticancer and Differentiation Properties of the Nitric Oxide Derivative of Lopinavir
in Human Glioblastoma Cells. Molecules 2018, 23, 2463. [CrossRef] [PubMed]

Maksimovic-Ivanic, D.; Mojic, M.; Bulatovic, M.; Radojkovic, M.; Kuzmanovic, M.; Ristic, S.; Stosic-Grujicic, S.;
Miljkovic, D.; Cavalli, E.; Libra, M.; et al. The NO-modified HIV protease inhibitor as a valuable drug for
hematological malignancies: Role of p70S6K. Leuk. Res. 2015, 39, 1088-1095. [CrossRef] [PubMed]

Seabra, A.B.; Duran, N. Nitric oxide donors for prostate and bladder cancers: Current state and challenges.
Eur. J. Pharmacol. 2018, 826, 158-168. [CrossRef] [PubMed]

Paull, T.T.; Rogakou, E.P,; Yamazaki, V.; Kirchgessner, C.U.; Gellert, M.; Bonner, W.M. A critical role for
histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol. CB 2000, 10,
886-895. [CrossRef]

Rogakou, E.P,; Nieves-Neira, W.; Boon, C.; Pommier, Y.; Bonner, W.M. Initiation of DNA fragmentation
during apoptosis induces phosphorylation of H2AX histone at serine 139. J. Biol. Chem. 2000, 275, 9390-9395.
[CrossRef] [PubMed]

Shao, R.-G.; Shimizu, T.; Pommier, Y. 7-Hydroxystaurosporine (UCN-01) Induces Apoptosis in Human Colon
Carcinoma and Leukemia Cells Independently of p53. Exp. Cell Res. 1997, 234, 388-397. [CrossRef]

Solier, S.; Pommier, Y. The nuclear y-H2AX apoptotic ring: Implications for cancers and autoimmune diseases.
Cell. Mol. Life Sci. 2014, 71, 2289-2297. [CrossRef]

Sekhar, S.; Venkatesh, J.; Cheriyan, V.; Muthu, M.; Levi, E.; Assad, H.; Meister, P.; Undyala, V.; Gauld, J.;
Rishi, A. A H2AX-CARP-1 Interaction Regulates Apoptosis Signaling Following DNA Damage. Cancers
2019, 11, 221. [CrossRef]

@ © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1007/s10637-019-00733-3
http://www.ncbi.nlm.nih.gov/pubmed/30706336
http://dx.doi.org/10.3390/molecules23102463
http://www.ncbi.nlm.nih.gov/pubmed/30261624
http://dx.doi.org/10.1016/j.leukres.2015.06.013
http://www.ncbi.nlm.nih.gov/pubmed/26220866
http://dx.doi.org/10.1016/j.ejphar.2018.02.040
http://www.ncbi.nlm.nih.gov/pubmed/29501865
http://dx.doi.org/10.1016/S0960-9822(00)00610-2
http://dx.doi.org/10.1074/jbc.275.13.9390
http://www.ncbi.nlm.nih.gov/pubmed/10734083
http://dx.doi.org/10.1006/excr.1997.3650
http://dx.doi.org/10.1007/s00018-013-1555-2
http://dx.doi.org/10.3390/cancers11020221
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Preparation of Mango Peel Extract 
	Reversed Phase HPLC/MS Experiments 
	Cell Cultures and Compounds 
	Cell Viability Assessment 
	Clonogenic Assay 
	Analysis of DNA Damage and Cell Cycle Distribution 
	Acridine Orange and Ethidium Bromide Double Staining for the Detection of Apoptosis 
	Assessment of Intracellular Generation of Reactive Oxygen Species 
	Western Blotting Analysis 
	Statistical Analysis 

	Results 
	HPLC-ESI-QTOF-MS Analysis Reveals the Composition of Mango Peel Extract (MPE) 
	MPE Induces Cytotoxic Effects and Morphological Changes in Colon Cancer Cells 
	MPE Treatment Inhibits Clonogenic Ability of Colon Cancer Cells 
	MPE Triggers DNA Fragmentation and Apoptotic Cell Death in Colon Cancer Cells 
	Assessment of Oxidative Stress Mediated Signaling in MPE-Treated Cells 
	DNA Fragmentation and Apoptotic Cell Death Induced by MPE is Related to H2AX-Mediated Genotoxic Stress 

	Discussion 
	Conclusions 
	References

