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Abstract: Studies on the oxidative changes in meat-based, low-moisture, ready to eat foods are
complicated due to complex food system and slow lipid-protein oxidative deterioration. The current
study evaluates the oxidative changes over six months of storage on shredded beef and chicken
products (locally known as serunding) for physicochemical analysis, lipid oxidation (conjugated dienes
and malondialdehydes) and protein co-oxidation (soluble protein content, amino acid composition,
protein carbonyl, tryptophan loss and Schiff base fluorescence) at 25 ◦C, 40 ◦C and 60 ◦C. The lipid
stability of chicken serunding was significantly lower than beef serunding, illustrated by higher
conjugated dienes content and higher rate of malondialdehyde formation during storage. In terms of
protein co-oxidation, chicken serunding with higher polyunsaturated fatty acids (PUFA) experienced
more severe oxidation, as seen from lower protein solubility, higher protein carbonyl and Schiff
base formation compared to beef serunding. To conclude, chicken serunding demonstrates lower
lipid and protein stability and exhibits higher rate of lipid oxidation and protein co-oxidation than
beef serunding. These findings provide insights on the progression of lipid oxidation and protein
co-oxidation in cooked, shredded meat products and could be extrapolated to minimize possible
adverse effects arising from lipid oxidation and protein co-oxidation, on the quality of low-moisture,
high-lipid, high-protein foods.

Keywords: lipid oxidation; low moisture food; protein co-oxidation; ready-to-eat; shredded meat;
serunding

1. Introduction

Low-moisture, ready-to-eat (RTE) meat-based food refers to an animal-derived, cooked and
processed product that is typically rich in protein and lipid, and is stabilised by a lowered water
activity (aw < 0.9) to inhibit bacterial growth [1–3]. The consumption of meat-based RTE foods has
increased, mainly because of a modern and busy lifestyle, which demands for convenience and minimal
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preparation time [1]. Moreover, its advantages of being readily packed, does not require additional
cooking to be safely consumed, energy dense, light-weight (moisture removed) and good stability at
varying environments for an extended period of time make it a popular choice among travellers [4].

Despite the advancement in packaging technology, lipid oxidation and subsequent co-oxidation
with non-lipid molecules (particularly protein) remains inevitable and represents the most important
mechanism of quality degradation in meat-based RTE products [5]. Protein co-oxidation is strongly
interlinked with lipid oxidation in meat-based RTE products because lipid and protein are closely
associated in food structures and in membranes. Indeed, most intermediate and final products from
lipid oxidation would react with protein [6,7]. The comprehensive mechanisms involved in protein
co-oxidation with lipid were elaborated by Schaich [7].

Studies on the protein co-oxidation with lipid in meat-based RTE products is complicated because
the progress of lipid-protein co-oxidative degradation in low moisture foods has been relatively
slow (which takes months to years) compared to high moisture foods [6,8,9]. The current study
evaluates the long-term storage effect (six-months) at different temperatures (25 ◦C, 40 ◦C and 60 ◦C)
on lipid and protein co-oxidation in cooked, shredded RTE meat products (serunding), as it represents
a complex food model of high lipid, high protein and low moisture. Additionally known as meat
floss or desiccated meat, serunding is a popular, traditional local cuisine that is uniquely flavoured
with coconut milk. The use of dried, cooked meat and coconut milk as the major ingredients causes
the final product to be low in moisture but rich in lipid and protein. The significance of the current
work in relation to food safety is seen in the health concerns caused by consuming food products that
have undergone lipid oxidation and protein co-oxidation. Estévez and Xiong [10] demonstrated that,
health risks such as oxidative stress and related diseases, are associated with the intake of oxidised
protein. Thus, evaluating the oxidation and co-oxidation processes in food products would serve as
a basis for future studies related to food-body cell interactions.

To the authors’ best knowledge, the effect of long-term storage on lipid oxidation and protein
co-oxidation (occurs after lipid oxidation, through pathways with highly reactive, oxidised lipid
products) in shredded meats has not been reported elsewhere. Using two shredded meat products
from beef and chicken, the present study evaluates the changes in physicochemical properties
(fatty acid composition, aw, colour), primary (conjugated dienes) and secondary lipid oxidation
products (malondialdehydes) on a weekly/biweekly basis. Protein damage in these products,
as a result of lipid-protein co-oxidation, is also evaluated using several protein co-oxidation
markers (protein solubility, protein carbonyl content, tryptophan loss and Schiff base formation).
However, the current work presents some limitations such as lacking in the study that adds antioxidants
into RTE meat products to evaluate the oxidative processes during the lag phase, as well as
detailed carbonyl measurements. In the future, the detection of specific protein carbonyl products,
including α-aminoadipic semialdehydes and γ-glutamic semialdehydes, could be accommodated
following the work by Villaverde and Estévez [11].

2. Materials and methods

2.1. Materials

Fresh beef and chicken breast meats were purchased from a local market in Kelantan,
Malaysia. Meats were trimmed off visible fat and immediately kept at 4 ◦C prior to the making
of shredded meat products. All chemicals used were of high performance liquid chromatography
(HPLC) or analytical grade and were obtained from Acros organics (Geel, Belgium) and Sigma-Aldrich
(St Louis, MO, USA). Purified water used for cooking was obtained by passage through a Milli-Q
system (Millipore Corp., Bedford, MA, USA).
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2.2. Preparation of Shredded Meat Products

Beef and chicken meats were sliced into thick pieces of about 5 × 5 × 10 cm in size, then boiled
overnight in water (meat:water ratio at 1:1.5, w/v) until tender, drained, and allowed to cool. The boiling
water was added with few slices of tamarind to remove the raw smell of meat. The remaining water
was collected as a meat broth. When adequately cooled, the fibres of cooked meat were manually
shredded to obtain strands of meat. The sauce was prepared using the following ingredients: Coconut
milk (25.42 g/100 g), sugar (6.78 g/100 g), onion (22.03 g/100 g), garlic (3.39 g/100 g), ginger (3.39 g/100 g),
salt (1.69 g/100 g), tamarind paste (Garnicia atroviridis) (0.03 g/100 g), dried chilli (1.69 g/100 g) and
freshly grounded coriander seeds (1.69 g/100 g). All ingredients were blended using the meat broth
until a homogenous mixture was formed. The mixture was then concentrated in a saucepan by heating
at 80 ◦C–90 ◦C with continuous stirring to prevent charring. When concentrated to 50% of its original
volume, shredded meats were added (33.89 g/100 g) and stirred continuously until the desired dryness
was achieved. The whole cooking process took up to 8 h. Upon cooling, shredded beef and chicken
meats were sealed into light-proof, gas-impermeable individual packagings. During six-months
storage, shredded meat samples were arranged in single layers on well-ventilated trays and incubated
at 20 ◦C, 40 ◦C and 60 ◦C, respectively. For control, samples were stored at −80 ◦C to prevent
oxidation reaction.

2.3. Physicochemical Quality Assessment on Shredded Meat Products

2.3.1. Proximate Composition

The proximate analysis (moisture, ash, crude fat and crude protein) was performed according to
the Association of Official Analytical Chemists (AOAC) official method [12]. All determinations were
done in triplicates.

2.3.2. Reducing Sugar Content

The reducing sugar analysis was done following the method described by Utrera et al. [13] with
slight modification. Reducing sugar was first extracted from shredded meats using distilled water at
1:4 (w/v) ratio by a homogeniser (IKA Ultra-Turrax, Staufen, Germany). The mixture was homogenised
at 1600 rpm and 25 ◦C for 2 min. A homogenated sample was centrifuged for 3 min at 800 × g,
then filtered and made up to 25 mL using distilled water. Extract (0.5 mL) was added into 0.5 mL
of 1% 3,5-dinitrosalicylic acid (DNS) solution and placed in a boiling water bath (100 ◦C) for 5 min.
After cooling, the reaction mixture was further diluted before the absorbance was measured at 540 nm.
Reducing the sugar content was calculated from a glucose standard curve (R2 = 0.9990, 0.0–1.0 mg/mL).
Results were expressed as mg glucose/g sample.

2.3.3. Fatty Acid Composition

Fatty acid methyl esters (FAMEs) were prepared by trans-esterification of the oil using a sodium
methoxide complex as catalyst, with slight modification from The American Oil Chemists’ Society
method Ce 1-62 [14]. The analysis of FAME was conducted using a gas chromatography system (Agilent
6890N Network GC System), fitted with a flame ionisation detector and an automated liquid sampler
(Agilent 7683 series). The entire system is controlled by the Chemstation®Software. FAMEs were
separated on a DB-WAX capillary column (30 m × 0.25 mm ID, 0.25 µm film thickness). All instruments
were supplied by Agilent Technologies Inc., Santa Clara, CA, USA. The column was initially set at
100 ◦C for 2 min, before being increased to 230 ◦C at 5 ◦C/min and lastly held for 10 min at 230 ◦C.
The carrier gas was helium (flow rate = 1.0 mL/min) controlled at 103.4 kPa. The sample volume of
1 µL was injected with a split ratio of 1:20. Peak identification was done by comparison to FAMEs
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standard (Supelco Park, Bellefonte, PA, USA). The fatty acid profile was expressed in % using the area
normalisation method, based on the following equation:

Individual FAME area
Total area

× 100% (1)

2.3.4. Water Activity, aw

Water activity (aw) was determined by inserting a plastic disposable cup filled with
5 g–6 g of sample into the sample drawer of the aw meter (AquaLab, Decagon Devices, Inc.,
Pullman, WA, USA). The sample was levelled prior to determination.

2.3.5. Colour Measurement

Colour measurement was performed on the sample surface using a Minolta Chromameter (Minolta
Camera Corp., Meter Division, Ramsey, NJ, USA), which consisted of a measuring head (model CR-300),
with an 8 mm diameter measuring area and a data processor (model DP-301). Measurements were made
at room temperature with an illuminant D65 and a 0◦ angle observer. L*, a* and b* values (CIE L*a*b*
colour system) were assessed as a measure of lightness, redness and yellowness, correspondingly.

2.4. Lipid Oxidation Analysis

2.4.1. Lipid Extraction and Total Lipid Content

Total lipid was extracted in accordance with the procedure detailed by Ibadullah [15].
Shredded meat samples were mixed with chloroform: Methanol (2:1, v/v) in 1:5 (w/v) ratio, flushed with
argon and allowed to stand for 30 min, then centrifuged at 14,000 × g, 4 ◦C for 30 min. The extraction
steps were repeated once and both supernatants were combined. The pooled supernatant was
evaporated to determine the amount of lipid, expressed as a percentage of lipid recovery (%) based on
the initial sample weight. Dried lipid extracts were flushed with argon, sealed, and stored at −20 ◦C
until further analysis. The meal from serunding samples was dried for 2 h–3 h at room temperature to
produce a fat-free sample for use in protein analysis.

2.4.2. Conjugated Dienes (CD)

The CD content was determined by a modification from The American Oil Chemists’ Society
standard method Th 1a-64 [16]. Briefly, 30 µL of lipid extract, obtained from Section 2.4.1, was added
into 10 mL of isooctane and the absorbance was measured at 234 nm against isooctane (blank).
Concentrations of CD (mM) were calculated from Beer’s Law using a molar extinction coefficient of
29,500 (L mol−1 cm−1) for isooctane. CD was expressed as mmol CD/mol lipid.

2.4.3. Thiobarbituric Acid Reactive Substances (TBARS) Value

The TBARS concentration was determined using the Food TBARS Assay Kit (Oxford Biomedical
Research Inc., Rochester Hills, MI, USA). Shredded meat samples were mixed with distilled water
at 1:2 (w/v) ratio, then homogenised at 1000 rpm for 3 min to form a smooth suspension. The TBA
reagent (consisting of 2.5 g of 2-thiobarbituric acid + 50 mL of proprietary acid catalyst) was added to
the suspension at 1:1 (v/v) ratio. The mixture was then vigorously agitated for 1 min using the vortex
mixer to produce a homogenised sample. The reaction was allowed for 60 min at room temperature.
Quantification was performed by measuring the absorbance at 532 nm. TBARS concentrations were
determined using a malondialdehyde (MDA) standard calibration curve (R2 = 0.9999, 0 to 3.0 mg/L).
The results were expressed as mg MDA equivalents/kg sample.
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2.5. Protein Co-oxidation Analysis

2.5.1. Soluble Protein Content

Briefly, de-oiled samples from Section 2.4.1 were extracted overnight using a sodium phosphate
buffer (0.2 M, pH 7.9) containing 0.02% sodium azide with constant shaking at 150 rpm. The mixture
was then centrifuged at 14,000 × g for 30 min. The supernatant was collected, flushed with argon gas
and stored at −80 ◦C until analysis. The soluble protein content was determined using the method
from Bradford [17] and expressed in percentage as the total soluble proteins per sample weight (w/w,
dry basis). Bovine serum albumin (BSA) was used as the protein standard.

2.5.2. Amino Acid Composition

The amino acid composition was determined using the PicoTag pre-column phenyl-isothiocyanate
(PITC) derivatisation method with slight modification [18]. The HPLC technique was applied using
a C18 reversed phase column (Hypersil GOLDTM, Thermo Scientific, 250 mm × 4.6 mm ID, 5 µm
particle size). The mobile phases consisted of buffer A (0.1 M ammonium acetate, pH 6.5) and buffer B
(0.1 M ammonium acetate + acetonitrile + methanol, 44:46:10 v/v/v, pH = 6.5). the column temperature
was maintained at 43 ◦C in a gradient run of buffer A (100–0% in 50 min) and buffer B (0–100% in
50 min) at a flow rate of 1 mL/min. Absorbance was recorded at 254 nm. Amino acids were identified
and quantified by comparing their peaks with that from external standards. Determinations were
conducted in triplicates and results were reported as mg amino acid/g sample.

2.5.3. Protein Carbonyl

Carbonyl content was determined by derivatisation with 2,4-dinitrophenyl hydrazine (DNPH) as
described by Soglia, Petracci and Ertbjerg [19] with some modifications. The shredded meat sample
was added into a phosphate buffer (20 mM, pH 6.5 containing 0.6M NaCl) at a ratio of 1:10 (w/v).
Four aliquots (0.2 mL each) were treated with 1.0 mL of ice-cold 10% trichloroacetic acid (TCA) to
precipitate the proteins. After centrifugation at 4500 × g for 3 min, the supernatant was discarded.
Two aliquots were treated with 0.5 mL of 10 mM DNPH dissolved in 2.0 M hydrochloric acid (HCl)
while the other two remaining aliquots were treated with 0.5 mL of 2.0 M HCl (blank). After 1 h of
reaction at room temperature, 0.5 mL of ice-cold 20% TCA was added. Samples were then centrifuged
and the supernatant was discarded. Excess DNPH was removed by washing three times with 1 mL of
ethanol:ethylacetate (1:1, v/v). The pellets were dissolved in 1 mL of 6.0 M guanidine hydrochloride in
20 mM phosphate buffer (pH = 6.5). Absorbance was read against blank at 370 nm to estimate the
carbonyl concentration (represented as protein hydrazones). Another set of absorbance was measured
at 280 nm to estimate the protein concentration. Carbonyl concentration was calculated based on the
molar absorptivity for protein hydrazones (22,000 M−1 cm−1) and correction factor for hydrazone peak
tail overlapping (0.43) using the following equation [20,21]:

A370sample−A370blank
22, 000× [A280sample− (A370sample−A370 blank) × 0.43]

× 106 (2)

Carbonyl concentration was expressed as nmol DNPH/mg protein.

2.5.4. Tryptophan Loss and Schiff Base Fluorescence Spectroscopy

Protein co-oxidation was monitored using a spectrofluorometric assay according to the
method described by Ibadullah [15]. An argon-flushed supernatant from Section 2.5.1 was used.
Intrinsic fluorescence from aromatic amino acids (primarily tryptophan) was determined by recording
fluorescence emission spectra (λem) from 300 nm to 450 nm with excitation at 280 nm, using 9 nm
bandwidth and excitation/emission slits at 10 nm. Emission intensity of tryptophan was recorded
at 330 nm. Presumptive formation of Schiff base complexes between lipid carbonyls and protein
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amino groups were detected by recording λem from 400 nm to 650 nm with excitation at 350 nm.
Emission intensity was recorded at 430 nm. All spectra were recorded in synchronous mode that
produced both excitation and emission curves, displayed as an average of the three spectra for
each sample.

2.6. Statistical Analysis

All results were evaluated using one-way analysis of variance (ANOVA). The comparison of
lipid and protein co-oxidation markers between the shredded chicken and beef was measured using
a general linear model. The mean difference between groups were assessed using Tukey’s post hoc
test operating at a 5% level of significance (p < 0.05). All statistical analysis was performed using the
Minitab 16 statistical software (Minitab Inc., State College, PA, USA).

3. Results and Discussions

3.1. Physicochemical Analysis of Shredded Meat Products

3.1.1. Proximate Composition and aw

Table 1 depicts the proximate analysis for two shredded meat products, namely beef and chicken.
The low moisture content (<10%) and aw (<0.85) in these products allowed them to be classified as
low-moisture foods [22] with an extended shelf life compared to fresh meat products. While beef
serunding demonstrated protein and fat contents that were comparable to literature, chicken serunding
showed lower protein and higher fat than those reported. However, the fat content in chicken serunding
remained similar to that from beef, indicative of oil absorption from coconut milk that occurred at
a similar rate between both meat products under the same processing conditions. The lipid-rich
coconut milk was fully absorbed into the meat fibre during long cooking hours, thus explained the high
fat content detected in the final product. High fat content then leads to a lowered protein content in
both samples in the present study, as the proximate analysis is reported on “per 100%” basis. A higher
fat proportion in 100 g of sample indicates a lower protein proportion in the same 100 g.

Table 1. Proximate analysis (%), aw and reducing sugar content (mg glucose/g serunding) for beef and
chicken serunding obtained from present data and reported data.

Component. Present Data Reported Data*

Beef Chicken Beef Chicken

Moisture 6.36 ± 0.03 a 7.46 ± 0.07 b 4.20–12.12 4.32–13.56
Protein 23.60 ± 0.02 a 21.77 ± 0.12 b 19.86–36.39 29.71–40.72

Fat 31.99 ± 0.10 a 32.30 ± 0.36 a 3.20–39.00 6.04–21.98
Ash 5.20 ± 0.01 a 4.97 ± 0.09 b 4.08–5.16 3.17–5.91

Carbohydrate
(by difference) 32.85 ± 0.15 a 33.50 ± 0.53 a N/A N/A

Water activity
Reducing sugar

0.381 ± 0.003 a

1.09 ± 0.027 a
0.431 ± 0.002 b

1.02 ± 0.033 b
0.410–0.640

N/A
N/A
N/A

Means with different superscripts were significantly different at p < 0.05. * Reported data were obtained from three
literatures [23–25].

In dried food products, water activity (aw) is a critical parameter which affects the stability
and shelf life. Numerous deteriorative reactions, including lipid oxidation, Maillard browning,
and enzymatic reactions still occur at relatively low aw values [26]. Specifically, for oxidative
deterioration, Sun, Senecal, Chinachoti and Faustman [26] demonstrated that lipid oxidation was
favoured at low aw (0.0–0.33) in freeze-dried beef patties stored at 49 ◦C while Cheng et al. [27] showed
that lipid oxidation still occurred at aw = 0.33 in formulated infant milk powder. Thus, the measurement
of aw is crucial to determine the stability for dried foods stored over long time. It was found that,
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after six months of storage, the aw for the control sample stored at −80 ◦C increased significantly from
0.381 to 0.403 for beef serunding and from 0.431 to 0.463 for chicken serunding. This shows that the
increment in aw is inevitable even at an ultra-low storage temperature. For samples stored at 25 ◦C,
40 ◦C and 60 ◦C, aw increased more rapidly at higher temperature than at lower temperature when
compared across week zero to week 24 (data not shown). This shows that temperature plays a critical
role in determining the quality of dried food products over long storage, whereby higher temperatures
will cause a more rapid increment in aw thus adversely affecting the product quality.

3.1.2. Fatty Acid Composition (FAC)

The FAC in dried, shredded meat products is more critical than its total fat content because the
vulnerability towards lipid oxidation depends largely on the fatty acid (FA) unsaturation degree.
To date, no data is available on the FAC of serunding. Table 2 tabulates the FAC of beef and chicken
serunding in comparison with raw and cooked beef and chicken. It is noticed that both serunding
products showed significantly higher saturated fat than raw and cooked meats, due to the addition of
coconut milk that is rich in saturated fat. Although the usage of coconut milk causes an increment in
the saturated fat content, coconut milk is known to contain mainly medium chain triglycerides (MCT,
6–12 carbon chain length) that provides much health benefits to the body, such as weight reduction,
increased insulin sensitivity and raise “good cholesterol” level [28–30]. The total MCT contents in
shredded meat products were fairly high, recorded 56.02% in beef and 63.51% in chicken, respectively.

Table 2. Fatty acid composition (%) of beef and chicken serunding compared with reported data on
raw and cooked meats. Means with different superscripts were significantly different at p < 0.05.
Reported data were obtained from two literatures [31,32].

Present Data Reported Data

Sample Beef
Serunding

Chicken
Serunding

Raw Cooked

Beef Chicken Beef Chicken

C6:0 0.67 ± 0.01 a 0.73 ± 0.01 b - - - -
C8:0 7.72 ± 0.10 a 8.43 ± 0.08 b - - - -

C10:0 5.85 ± 0.05 a 6.50 ± 0.09 b - - - -
C12:0 41.78 ± 0.33 a 47.85 ± 0.70 b - - - -
C14:0 15.51 ± 0.08 a 17.29 ± 0.17 b - - - -
C14:1 0.10 ± 0.01 - - - - -
C16:0 11.01 ± 0.10 b 8.32 ± 0.37 a - - - -
C16:1 0.45 ± 0.00 b 0.11 ± 0.01 a - - - -
C17:0 0.20 ± 0.00 - - - - -
C18:0 4.98 ± 0.14 b 2.44 ± 0.29 a - - - -

C18:1, cis-9 5.29 ± 0.22 a 5.98 ± 0.61 b - - - -
C18:2, cis-9,12 1.45 ± 0.11 a 4.12 ± 0.61 b 3.07 - - -

Saturated 87.73 ± 0.17 a 91.65 ± 0.45 b 48.65 31.27 40.15 32.11
Monounsaturated 5.84 ± 0.16 a 6.09 ± 0.63 b 47.65 43.31 50.76 45.76
Polyunsaturated 1.45 ± 0.11 a 4.12 ± 0.05 b 3.70 18.87 5.50 20.53

Another noteworthy observation is the significant reduction in unsaturated FA content (both
mono- and polyunsaturated) in serunding compared to their respective raw and cooked form.
Beef serunding contained only 7.29% unsaturated FA while raw and cooked beef contained much higher
amounts at 51.35% and 56.26%, respectively. Chicken serunding contained only 10.21% unsaturated
FA while raw and cooked chicken contained 62.18% and 66.29%, respectively. This reduction in
shredded meat products is due to long hour cooking which decreases the FA unsaturation degree.
Moreno et al. [33] showed in their study that, when different edible oil was heated, a significant drop
in the unsaturation percentage was detected, as a result of spontaneous thermal oxidation which
deteriorated polyunsaturated fatty acids (PUFA) into hydroperoxides. The long heating process thus
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explained the reduced FA unsaturation degree and low monounsaturated fatty acids (MUFA) and
PUFA content in shredded meats. The stability of unsaturated FA is improved by the addition of
several functional ingredients such as onion, garlic, chilli, ginger, tamarind and coriander seeds which
act as natural antioxidants. Each ingredient has certain antioxidative components, such as capsaicin
in red chilli, zingeron in ginger, alin and alisin in onion and garlic [34]. These natural antioxidants
prevent the complete oxidation of MUFA and PUFA, leaving behind a minor amount that remained
intact and was detected in the final products.

3.1.3. Colour

Serunding appears brown in colour. This browning is due to several factors: (i) Denaturation
of myoglobin, (ii) Maillard reaction and (iii) aldol condensation between lipid carbonyl and protein.
As a meat-based food, the myoglobin in serunding mainly exists in a denatured form after cooking.
Denaturation of myoglobin eventually results in brown colour formation (the cooked meat colour) [35].
Maillard reaction is mainly responsible for browning during a long cooking process (8 h). It takes place
between reducing sugar and amino-bearing compounds (meat protein) and is accelerated by heat.
From Table 1, both beef and chicken serunding contains reducing sugar at 1.09 mg and 1.02 mg glucose/g
sample, respectively. These sugars reacted with protein molecules when heat was applied during
the cooking process, intensifying the formation of brown pigments and contributed towards the final
brown colour in the product. During 24 weeks of storage, aldol condensation took over progressively
when lipid carbonyl was formed via spontaneous oxidation. These lipid carbonyls would substitute
reducing sugar as a carbonyl source to further react with protein and enhance darkening. This was
explained by the significant decrement in L*, a*, b* values over 24 weeks of storage for samples stored
at 40 ◦C and 60 ◦C (Figure 1), indicative of product darkening over time. The colour changes in samples
stored at lower temperature (25 ◦C) were insignificant over 24 weeks of storage. This suggested that
a heat-driven Maillard reaction coupled with an aldol condensation and caused enhanced darkening
in samples stored at higher temperatures of 40 ◦C and 60 ◦C, compared to that stored at 25 ◦C.
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during six-months storage.

Another noteworthy observation was on the samples stored at 60 ◦C. At this temperature, both beef
and chicken serunding showed a faster rate of product darkening compared to 25 ◦C and 40 ◦C starting
from week two onwards. Additionally, the packaging for both samples became bloated and the samples
turned greasy and brittle, to the point that it was easily crumbled into ashy pieces when touched
with fingers. These observations concluded that the storage of low-moisture, high-lipid, high-protein
food product at an accelerated temperature (60 ◦C) was not feasible. However, the lipid oxidation
and protein co-oxidation processes at an accelerated temperature is worth being studied and is thus
reported in the following section.

3.2. Lipid Oxidation

3.2.1. Extracted Lipid

Based on Figure 2a, there is a gradual increase (p < 0.05) in lipid extractability over incubation
time at all storage temperatures. The increased lipid extractability may be due to advanced disruption
in the meat structures at the later stage of storage which caused oil separation from serunding samples
and increased the accessibility to the solvent. It was observed that oily layers built up in the packaging
for serunding samples at 60 ◦C from week four onwards. Due to severe damage of the meat structure,
the melted fat crystals and the entrapped oil can no longer be held within the food matrices [15] and
was thus easily extracted.
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3.2.2. Conjugated Dienes (CD)

CD is a primary lipid oxidation product that is formed when the double bonds in unsaturated
fatty acids are shifted, converting nonconjugated fatty acids into conjugated ones. From Figure 2b,
the CD contents for chicken serunding are consistently higher than that for beef serunding irrespective
of storage weeks and temperatures. This is due to the presence of higher amounts of PUFA in chicken
meat than in beef, making chicken serunding a more favourable substrate to initiate lipid oxidation.
Another observation is that the CD contents in samples stored at 25 ◦C and 40 ◦C peaked at a later
stage (week 10–12). This is in contrast with the CD content for samples stored at 60 ◦C, which peaked
much earlier at week four, followed by a continuous decrement until week 24. This indicates the
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adverse effect from a high temperature that rapidly speeds up the primary lipid oxidation process and
jeopardizes the quality of the final product, further justifying the unsuitability of storing low moisture,
high-lipid, high-protein food products at 60 ◦C. As discussed earlier in Section 3.1.2, the addition of
several ingredients which act as natural antioxidants help in delaying CD formation at 25 ◦C and
40 ◦C, as antioxidants remain comparatively stable at these temperatures than storage at the highest
temperature (60 ◦C). The antioxidative potential of natural antioxidants to suppress lipid oxidation
had been elucidated in cooked chicken products by CD measurements [36,37]. This proves the capacity
of natural antioxidants to reduce CD formation in meat products and explains its role in the delay
of CD formation in shredded meats. The decrement in CD levels during the later stage of storage
could be explained by the formation of secondary lipid oxidation products of lower molecular weight,
e.g., aldehydes and ketones [38].

3.2.3. Malondialdehydes (MDA)

MDA is a common marker product for secondary lipid oxidation, particularly in meat
muscle foods [6]. It is typically assessed as thiobarbituric acid reactive substances (TBARS).
From Figure 2c, the MDA level shows a consistent increment from week zero to week 24 in all samples,
with chicken serunding exhibiting a higher MDA formation rate than beef in the following order:
60 ◦C > 40 ◦C > 25 ◦C. The early formation of MDA, particularly in chicken serunding, is unexpected
because in typical oxidation pathways in a low moisture food system, the formation of secondary
oxidation products should occur at a later stage of storage after the formation of CD has ceased.
This opposite trend of prominent MDA formation in chicken serunding at early storage is due to its
higher content of polyunsaturated fats and phospholipids, which have higher susceptibility towards
oxidative reaction and is responsible for rapid secondary lipid degradation, as detected in the high
MDA content during early storage. Towards the end of storage (week 16 onwards), the MDA formation
reached a stagnant phase regardless of sample types and temperatures. This phenomenon suggested
the occurrence of other reactions such as the active radical transfer with non-lipid molecules (protein)
that took place parallelly with the MDA formation. MDA (α,β-unsaturated aldehydes) is an electrophile
that can react with nucleophilic groups in protein. Previous studies showed that MDA could covalently
bind with lysine residues to form a MDA-lysine adduct [39], react with N-terminus of peptides and
electrophilic ε-amino group of glutamine to form Schiff base adducts and also bind with cysteine side
chain due to the presence of the thiol group [40]. These possible pathways of the MDA interaction
with protein may explain the stagnant MDA formation after 16 weeks of storage. Based on the results
from CD and MDA, chicken serunding showed higher lipid oxidation and lower lipid stability than
beef serunding (p < 0.05) throughout 24 weeks of storage.

3.3. Protein Co-oxidation

In the present study, the susceptibility of meat serunding towards protein co-oxidation was assessed
by various measurements including protein solubility, depletion of protein components (amino acid
composition and tryptophan loss) and the formation of protein co-oxidation products (carbonyls and
Schiff bases). Primary and secondary lipid oxidation products could act as substrates to initiate protein
co-oxidation. Thus, once lipid oxidation occurs, protein co-oxidation then takes place subsequently.
These reactions cause variations in the amino acid composition, which leads to decreased solubility,
tryptophan losses and formation of carbonyl compounds.

3.3.1. Soluble Protein Content

Figure 3a shows the protein solubility of both beef and chicken serunding at 25 ◦C, 40 ◦C and
60 ◦C over 24 weeks of storage. At higher storage temperature, protein solubility decreased more
rapidly in both serunding products, of which samples at 60 ◦C showed a significant drop starting from
as early as week two while samples at 25 ◦C and 40 ◦C showed a drop only from week 10 onwards.
Additionally, chicken serunding demonstrated lower protein solubility as compared to beef serunding
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at all storage temperatures. The changes in protein solubility were parallel with the occurrence of
lipid oxidation that is more rapid in chicken serunding than that in beef serunding. These observations
suggested that lipid oxidation products could react with protein molecules to cause modifications that
reduce protein solubility.
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3.3.2. Amino Acid Composition

Table 3 tabulates the amount of amino acid residues for beef and chicken serunding before and
after 24 weeks of storage. Most amino acids recorded a significant reduction after 24 weeks of
storage, indicating that protein molecules in both serunding products experienced structural alteration
during storage. Amino acid residues, particularly lysine, arginine, histidine and proline, are prone
to oxidise into carbonyls that can adversely affect the functionality of meat proteins in cooked meat
products [41]. This is because these amino acids are located primarily on protein surfaces and have
readily abstractable hydrogens, thus they become the primary targets for oxidizing lipids to attack and
initiate protein co-oxidation [15,42]. A decrease in these amino acids in both serunding products partially
explained the formation of protein carbonyl as discussed in the following section. On the other hand,
most of the hydrophobic amino acids, such as glycine, alanine and isoleucine, showed a significant
loss in both serunding during storage. Initially, these amino acids have no promptly abstractable
hydrogens and are minimally involved in hydrogen bonding and embedded within the insides of
protein molecules. Upon heat treatment during cooking of serunding, the proteins were denatured and
unfolded, exposing these amino acids to the attack by lipid radicals that were produced progressively
over time [6,15], thus reducing the amino acid content as detected at the end of storage.
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Table 3. Amino acid composition of beef and chicken serunding at week zero and week 24 of storage. abcd Values with different letters are significantly different across
the same row (p < 0.05) within the same sample.

Amino Acid
(mg/g

Protein)

Beef Serunding Chicken Serunding

Week 0 Week 24 Week 0 Week 24

Control 25 ± 1 0C 40 ± 1 0C 60 ± 1 0C Control 25 ± 1 0C 40 ± 1 0C 60 ± 1 0C

1 Glycine 12.69 ± 1.32 a 12.57 ± 0.36 a 10.94 ± 0.05 a 11.86 ± 0.03 a 9.95 ± 0.12 a 9.52 ± 0.05 b 8.74 ± 0.10 c 9.61 ± 0.13 ab

2 Histidine 12.97 ± 2.55 a 7.18 ± 0.19 b 6.58 ± 0.52 b 6.38 ± 0.03 b 6.75 ± 0.33 a 6.16 ± 0.27 ab 6.82 ± 0.11 a 5.55 ± 0.14 b

3 Arginine 27.64 ± 0.23 a 21.88 ± 0.93 b 18.01 ± 0.38 c 16.70 ± 0.22 c 23.46 ± 0.50 a 20.68 ± 0.01 ab 20.69 ± 0.27 ab 19.97 ± 0.04 b

4 Threonine 20.70 ± 0.98 a 13.60 ± 0.36 b 11.02 ± 0.16 c 13.39 ± 0.09 b 11.16 ± 1.22 a 12.47 ± 0.17 a 11.42 ± 0.09 a 10.79 ± 0.01 a

5 Alanine 21.33 ± 0.27 a 19.09 ± 0.03 b 15.71 ± 0.32 c 15.61 ± 0.09 c 23.28 ± 0.32 a 20.65 ± 0.26 b 20.10 ± 0.04 b 14.38 ± 0.04 c

6 Proline 11.05 ± 0.20 bc 13.46 ± 0.51 a 10.26 ± 0.24 c 11.72 ± 0.11 b 10.24 ± 0.47 a 10.45 ± 0.11 a 10.55 ± 0.17 a 10.11 ± 0.0 a

7 Tyrosine 17.18 ± 2.11 a 11.49 ± 0.00 b 8.87 ± 0.09 b 11.51 ± 0.07 b 10.62 ± 0.31 a 9.09 ± 0.04 b 8.01 ± 0.30 c 8.61 ± 0.03 bc

8 Methionine 9.95 ± 0.32 a 6.27 ± 0.05 bc 4.61 ± 0.46 c 7.47 ± 0.64 b 6.64 ± 0.01 a 6.74 ± 0.25 b 6.07 ± 0.01 b 5.29 ± 0.35 b

9 Isoleucine 13.75 ± 1.42 a 13.75 ± 0.18 a 10.29 ± 0.17 b 12.68 ± 0.11 ab 12.73 ± 0.26 a 11.47 ± 0.17 b 10.77 ± 0.39 b 10.56 ± 0.00 b

10 Leucine 16.36 ± 0.37 d 25.40 ± 0.26 a 18.72 ± 0.21 c 21.69 ± 0.25 b 19.35 ± 0.03 a 17.32 ± 0.53 b 18.14 ± 0.24a b 17.33 ± 0.41 b

11 Phenylalanine 119.59 ± 0.21 a 114.27 ± 0.30 b 63.50 ± 0.32 c 61.80 ± 0.21 d 98.55 ± 0.12 a 98.37 ± 1.04 a 85.10 ± 0.28 b 83.27 ± 0.04 b

12 Lysine 56.67 ± 0.43 a 36.63 ± 0.24 b 26.63 ± 0.96 c 24.48 ± 0.36 d 29.82 ± 0.09 a 25.14 ± 0.71 b 24.65 ± 0.11 b 23.79 ± 0.14 b
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3.3.3. Protein Carbonyl

The extent of protein co-oxidation in serunding samples were tracked further by evaluating the
most significant index in protein co-oxidation, i.e., formation of carbonyl compounds. The quantitation
of carbonyl compounds spectrophotometrically using 2,4-dinitrophenylhydrazine is a widely used
method for evaluating protein co-oxidation in muscle foods. Previous studies have discussed the
success quantification of protein carbonyl in a large range of meat samples including beef, chicken and
porcine muscles [43,44].

Figure 3b shows that the formation of protein carbonyl takes place in a temperature-dependent
manner. At the highest temperature of 60 ◦C, protein carbonyl formation is the most prominent,
followed by 40 ◦C and lastly 25 ◦C. This observation fosters the idea that the storage of low moisture
foods at an accelerated temperature is not feasible. High levels of protein carbonyl at the early
stage of 60 ◦C storage is explained by several pathways which cause the accumulation of carbonyls,
including protein interaction with secondary lipid oxidation products (MDA), fragmentation of
protein backbones through the α-amidation pathway and β-scission as well as direct oxidation of
amino acid side chains including arginine, lysine, proline and threonine [43]. When comparing at the
same temperature, chicken serunding showed a higher carbonyl formation rate than beef serunding.
This finding was in line with the higher lipid oxidation rate and lower protein solubility in chicken
serunding as discussed earlier, which makes it more susceptible towards protein co-oxidation.

3.3.4. Tryptophan Loss and Schiff Base Fluorescence Spectroscopy

Tryptophan residue, an aromatic amino acid, is known for being preferential targets of lipid
oxidative products, particularly MDA. Tryptophan is located primarily on protein surfaces where it is
in closest contact with oxidizing lipids and therefore, vulnerable during oxidative reactions [42,45,46].
These reactions cause conformational changes in protein molecules and lead to a decrease in the
intrinsic fluorescence of tryptophan. Thus, the loss of tryptophan is used as one of the markers to
evaluate protein co-oxidation in meat. In the present study, the loss of tryptophan is depicted in
Figure 3c. The tryptophan fluorescence emission in chicken serunding was constantly lower than beef
serunding at all weeks, indicating the lower amount of tryptophan in chicken than in beef. In addition,
chicken serunding depicted a higher tryptophan loss (−26% at 25 ◦C, −18% at 40 ◦C and −29% at 60 ◦C)
than beef serunding (−14% at 25 ◦C, −14% at 40 ◦C and −16% at 60 ◦C) compared to the control after
24 weeks of storage. The lowered tryptophan content and higher tryptophan loss in chicken serunding
could be explained by the higher rate of MDA formation in chicken serunding as shown in Figure 2c.
The higher amount of MDA in chicken serunding would actively attack tryptophan molecules and
disrupt its native structure, therefore lowering the respective fluorescence emission.

The Schiff base formation involves the production of stable radicals primarily from the reaction
between lysine, histidine, glutamine or cysteine with reactive lipid oxidative products, which fluoresce
at the conjugated structure –N=CH-CH=CH- [15]. Specifically, it involves the reaction between
an electrophilic group at the carbonyl structure of aldehydes from secondary lipid oxidative products
(MDA) and a nucleophilic group on proteins (electron-rich side chain of amino acids), to form Schiff base
adducts [47], which act as an important indicator of protein co-oxidation. The Schiff base fluorescence
emissions of serunding products are shown in Figure 3d. Chicken serunding exhibited higher Schiff base
fluorescence compared to beef serunding at all temperatures. This is due to the lipid oxidation that is
more active in chicken serunding to produce higher amounts of reactive radicals to take part in protein
co-oxidation, releasing more Schiff base compounds. Secondly, the active involvement of lysine during
the Schiff base formation explained the reduced lysine content in both serunding products, as depicted
in Table 3. Lastly, the Schiff base was formed continuously even towards the end of the storage,
signifying the progressive formation of protein co-oxidation products in serunding despite the fact that
it is a low-moisture food with slower oxidation rate compared to intermediate or high-moisture foods.
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4. Conclusions

Using shredded meat as a food model, the current study demonstrates the occurrence of
lipid oxidation and protein co-oxidation in a low-moisture, high-lipid, high-protein food system.
Storage temperature depicts a significant impact on the product quality, whereby an accelerated
temperature (60 ◦C) causes major deteriorations in the final product and is thus not feasible for storage.
Chicken serunding is more prone towards lipid oxidation and protein co-oxidation than beef, as seen in
all oxidation marker analysis, due to a higher PUFA content in chicken meat. Higher PUFA also speeds
up the occurrence of secondary lipid oxidation, demonstrated by the high built-up of the MDA content
in chicken serunding during early storage. The rate of oxidation reactions for chicken serunding does
not follow the same pattern, faster than beef serunding. These results can be taken into consideration
when proposing effective processing/storage conditions to minimize possible adverse effects arising
from lipid-protein co-oxidation, on the quality of cooked, shredded meat products.
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