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Abstract: The present study investigated the immunomodulatory activity of reduced glutathione
(GSH) by assessment of the macrophage polarization (MP)-mediated immune response in RAW
264.7 cells. Furthermore, we identified the signal pathway associated with immune regulation by
GSH. The expressions of MP-associated cytokines and chemokines were assessed using cytokine array,
nCounter Sprit platform, ELISA and immunoblotting. Phagocytosis activity and intracellular reactive
oxygen species (ROS) generation were measured using fluorescence-activated cell sorter. As results of
the cytokine array and nCounter gene array, GSH not only up-regulated pro-inflammatory cytokines,
including interleukins and tumor necrosis factor-α, but also overexpressed neutrophil-attracting
chemokines. Furthermore, GSH significantly stimulated the production of immune mediators,
including nitric oxide and PGE2, as well as phagocytosis activity through nuclear factor kappa
B activation. In addition, GSH significantly decreased LPS-induced ROS generation, which was
associated with an activation of nuclear factor erythroid-derived 2-related factor 2 (Nrf2)/ heme
oxygenease-1 (HO-1) signaling pathway. Our results suggest that GSH has potential ROS scavenging
capacity via the induction of Nrf2-mediated HO-1, and immune-enhancing activity by regulation
of M1-like macrophage polarization, indicating that GSH may be a useful strategy to increase the
human defense system.
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1. Introduction

The immune system is a series of effector mechanisms that can destroy pathogens, such as
fungi, viruses, bacteria, and parasites [1]. Macrophages are large phagocytic cells, and play an
important regulator in the innate and adaptive immune response to pathogens [2]. In response to
environmental signals, macrophages induce macrophage polarization (MP), a process of different
functionally distinct phenotypes, such as classically activated macrophages (M1), and alternatively
activated macrophages (M2) [3]. M1 polarized macrophages play a host defense against pathogens,
and they are considered to promote the type 1 T helper (Th1) immune response [4]. They have strong
microbicidal, pro-inflammatory, and tumoricidal activity, and are characterized by the up-regulation
of pro-inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-1β IL-6, IL-12 and
IL-23), chemokines (C-X-C motif chemokine ligand (CXCL) 1-3, CXCL-5 and CXCL8-10), and reactive
nitrogen species or reactive oxygen species (ROS) [5–8]. In contrast, M2 macrophages induce
tissue remodeling, angiogenesis, and tumor progression, and are considered to promote the Th2
immune response [9]. M2a and M2c phenotypes, induced by either the Th2 cytokines IL-4 or IL-10,
respectively, have anti-inflammatory effect via the up-regulation of anti-inflammatory cytokines [10].
The distinguishing features of M2 polarized macrophages were high levels of expression of cluster
of differentiation (CD) 16, (C-X-C motif) chemokine receptor (CXCR) 1, CXCR2, and (C-C motif)
chemokine receptor (CCR) 2, and efficient phagocytic activity [5–8]. The imbalance of MP is resulted
from their conflicting roles for inflammation and immune system, and that have effect on influencing
various diseases, such as obesity, cancer, and rheumatoid arthritis [8]. Therefore, the stimulation of
the immune system via regulation to M1 polarized macrophages is one of the important strategies to
increase the human defense system.

Glutathione is composed of three amino acids of l-cysteine, l-glutamic acid, and glycine, and acts
as an antioxidant [11]. Glutathione modulates the leukotriene regulation, prostaglandin metabolism,
cell proliferation, and regulation of the immune responses [12]. Especially, the balance of intracellular
reduced glutathione (GSH) and oxidized glutathione plays an essential role in controlling the cellular
immune response. [13,14]. As is well known, low levels of GSH decrease the level of secretion of IL-12,
and lead to polarization from the Th1 cytokine profile toward Th2 response patterns, but high levels of
GSH favor a Th1 response [15,16]. Furthermore, numerous studies identified that GSH deficiency occurs,
and is a critical aspect that can contribute to the imbalance in the Th1/Th2 response [17–21]. One study
reported that the recovery of GSH levels can undermined the pathology by down-regulation of the Th1
immune response [22]. Although GSH improved Th1 immune response, it remains poorly understood
whether it has effects on the regulation of MP in RAW 264.7 macrophages. Therefore, in the present
study, we investigated the immunomodulatory activity of GSH by assessment of the M1-mediated
immune response, including MP-related genes expression, nitric oxide (NO) and prostaglandin E2
(PGE2) production, phagocytosis activity, and ROS generation in RAW 264.7 macrophages. Moreover,
we studied the signal pathway associated with the immunomodulatory activity of GSH.

2. Materials and Methods

2.1. Chemicals and Reagents

Reduced glutathione (Luthione®) was obtained from Daehan New Pharm. Co., Ltd. (Seoul, Republic
of Korea). Dulbecco’s modified Eagle’s medium (DMEM), RPMI 1640 GlutaMAXTM medium, fetal
bovine serum (FBS), and Dulbecco’s phosphate buffered saline (DPBS) were obtained from WelGENE Inc.
(Daegu, Republic of Korea). Lipopolysaccharides (LPS; Escherichia coli Serotype, 055:B5), sulfanilamide,
N-(1-Naphthyl) ethylenediamine dihydrochloride (NED), and phosphoric acid were purchased from the
Sigma-Aldrich Chemical Co. (St. Louis, MO, USA). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetra-zolium
bromide (MTT) and 5,6-carboxy-2′,7′-dichlorodihydrofluorescein diacetate (DCF-DA) were obtained
from Invitrogen (Carlsbad, CA, USA). Mouse cytokine array kit (item No. ARY006), interleukin (IL)-1β
(item. No. MLB00C), IL-4 (item No. M4000B), IL-10 (item No. M1000B) and tumor necrosis factor (TNF)-α
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(item No. MTA00B) enzyme-linked immunosorbent assay (ELISA) kit were purchased from R&D Systems,
Inc. (Minneapolis, MN, USA). PGE2 (item No. 500141) enzyme-linked immunosorbent assay (ELISA) kit
and phagocytosis assay kit (item No. 500290) were obtained from Cayman Chemical (Ann Arbor, MI,
USA). The Bradford Protein assay kit was purchased from Bio-Rad Laboratories (Hercules, CA, USA).
Table 1 describes the primary and secondary antibodies used for immunoblotting. All other chemicals
used were of analytical grade, and were purchased from the Sigma-Aldrich Chemical Co.

Table 1. Name and description of the genes.

Gene Symbol Function (NCBI Gene Database)

Interleukin 1 alpha IL-1α

This cytokine is a pleiotropic cytokine involved in various immune
responses, inflammatory processes, and hematopoiesis. This
cytokine is produced by monocytes and macrophages as a
proprotein, which is proteolytically processed, and released in
response to cell injury, and thus induces apoptosis.

Interleukin 1 beta IL-1β
This cytokine is an important mediator of the inflammatory
response, and is involved in a variety of cellular activities, including
cell proliferation, differentiation, and apoptosis.

Interleukin 3 IL-3
This cytokine is capable of supporting the proliferation of a broad
range of hematopoietic cell types. It is involved in a variety of cell
activities, such as cell growth, differentiation, and apoptosis.

Interleukin 4 IL-4

This cytokine is a ligand for interleukin 4 receptor. The interleukin 4
receptor also binds to IL13, which may contribute to many
overlapping functions of this cytokine and IL13. STAT6, a signal
transducer and activator of transcription, has been shown to play a
central role in mediating the immune regulatory signal of this
cytokine.

Interleukin 6 IL-6

This gene encodes a cytokine that functions in inflammation and the
maturation of B cells. In addition, the encoded protein has been
shown to be an endogenous pyrogen capable of inducing fever in
people with autoimmune diseases or infections.

Interleukin 12 IL-12

This gene encodes a subunit of interleukin 12, a cytokine that acts on
T and natural killer cells, and has a broad array of biological
activities. This cytokine is expressed by activated macrophages that
serve as an essential inducer of Th1 cells development.

Interleukin 16 IL-16

The cytokine function is exclusively attributed to the secreted
C-terminal peptide, while the N-terminal product may play a role in
cell cycle control. Caspase 3 is reported to be involved in the
proteolytic processing of this protein.

Tumor necrosis
factor-alpha TNF-α

This gene encodes a multifunctional proinflammatory cytokine.
This cytokine is involved in the regulation of a wide spectrum of
biological processes, including cell proliferation, differentiation,
apoptosis, lipid metabolism, and coagulation.

Chemokine (C-X-C
motif) ligand 1 CXCL1 This protein plays a role in inflammation, and as a chemoattractant

for neutrophils.

Chemokine (C-X-C
motif) ligand 2 CXCL2

This antimicrobial gene is part of a chemokine superfamily that
encodes secreted proteins involved in immunoregulatory and
inflammatory processes.

Chemokine (C-X-C
motif) ligand 3 CXCL3 This protein plays a role in inflammation, and as a chemoattractant

for neutrophils.

TNF alpha induced
protein 3 TNFAIP3

This gene was identified as a gene whose expression is rapidly
induced by the tumor necrosis factor (TNF). The protein has been
shown to inhibit NF-kappa B activation, as well as TNF-mediated
apoptosis.
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Table 1. Cont.

Gene Symbol Function (NCBI Gene Database)

TNF receptor
superfamily member 11

alpha
TNFRSF11A

This receptor can interact with various TRAF family proteins,
through which this receptor induces the activation of NF-kappa B
and MAPK8/JNK.

Chemokine (C-X-C
motif) ligand 11 CXCL11

Chemokines also play fundamental roles in the development,
homeostasis, and function of the immune system, and they have
effects on cells of the central nervous system, as well as on
endothelial cells involved in angiogenesis or angiostasis.

Macrophage colony
stimulating factor MCS-F The protein encoded by this gene is a cytokine that controls the

production, differentiation, and function of macrophages.

Chemokine (C-C motif)
ligand 2 CCL2 Chemokines are a superfamily of secreted proteins involved in

immunoregulatory and inflammatory processes.

Chemokine (C-C motif)
ligand 3 CCL3

This locus represents a small inducible cytokine. The encoded
protein, also known as macrophage inflammatory protein 1 alpha,
plays a role in inflammatory responses through binding to the
receptors CCR1, CCR4, and CCR5

Chemokine (C-C motif)
ligand 4 CCL4 The encoded protein is secreted, and has chemokinetic and

inflammatory functions.

Chemokine (C-C motif)
ligand 7 CCL7

This gene encodes monocyte chemotactic protein 3, a secreted
chemokine, which attracts macrophages during inflammation and
metastasis.

Chemokine (C-C motif)
receptor-like 2 CCRL2

Chemokines and their receptors mediated signal transduction are
critical for the recruitment of effector immune cells to the site of
inflammation. This gene is expressed at high levels in primary
neutrophils and primary monocytes, and is further upregulated on
neutrophil activation, and during monocyte to macrophage
differentiation.

Nuclear factor kappa B
subunit 1 NFκB1

This gene encodes a 105 kD protein which can undergo
cotranslational processing by the 26S proteasome to produce a 50
kD protein. This protein is a Rel protein-specific transcription
inhibitor, and the 50 kD protein is a DNA binding subunit of the
NF-B (NFKB) protein complex.

Nuclear factor kappa B
subunit 2 NFκB2

This gene encodes a subunit of the transcription factor complex
NF-B. The NF-B complex is expressed in numerous cell types, and
functions as a central activator of genes involved in inflammation
and immune function.

Mitogen-activated
protein kinase kinase

kinase kinase 4
MAP4K4 This kinase has been shown to specifically activate MAPK8/JNK,

and mediate the TNF-alpha signaling pathway.

Mitogen-activated
protein kinase 11 MAPK11

This gene encodes a member of a family of protein kinases that are
involved in the integration of biochemical signals for a wide variety
of cellular processes, including cell proliferation, differentiation,
transcriptional regulation, and development.

Notch homolog 1 Notch1

Notch signaling is an evolutionarily conserved intercellular
signaling pathway. This receptor plays a role in the development of
numerous cell and tissue types. Mutations in this gene are
associated with aortic valve disease, Adams-Oliver syndrome, T-cell
acute lymphoblastic leukemia, chronic lymphocytic leukemia, and
head and neck squamous cell carcinoma.

Notch homolog 2 Notch2

Notch family members play a role in a variety of developmental
processes by controlling cell fate decisions. The Notch signaling
network is an evolutionarily conserved intercellular signaling
pathway, which regulates interactions between physically adjacent
cells.

Name and description of the genes with a significant difference compared with control (p < 0.05).
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2.2. Cell Culture

Murine macrophage-like RAW 264.7 cells were obtained from the Korea Cell Line Bank
(Seoul, Republic of Korea), and were cultured in DMEM supplemented with 10% FBS. Human
monocytic cell line THP-1 and U-937 cells were purchased from American Type Culture Collection
(Manassas, MD, USA) and maintained in RPMI 1640 GlutaMAXTM medium supplemented with 10%
FBS. The culture medium was replaced every 2–3 days, and maintained in an incubator at 37 ◦C in an
atmosphere of 5% CO2. For all experiments, the RAW264.7 cells were grown to 80–90% confluence.

2.3. Assessment of Cell Viability

The cell viability was determined by MTT assay. Briefly, RAW 264.7 cells were seeded on 96-well
plates at a density of 1 × 104 cells/well, and incubated for 24 h. The cells were treated with different
concentrations of GSH of 0.5–2.0 mg/mL and LPS of 1–2 ng/mL. After 24 h, MTT solution was added to
each well, and incubated for 2 h at 37 ◦C. The medium was discarded, and then dimethylsulfoxide
was added to dissolve the formazan dye. The absorbance was measured using a microplate reader
(VERSA Max; Molecular Device Co., Sunnyvale, CA, USA) at 540 nm. The morphological changes of
cells were visualized with phase-contrast microscopy (Carl Zeiss, Oberkochen, Germany).

2.4. Cytokines Profiling

The relative expression levels of 40 mouse cytokines were determined in cell culture supernatant
using a mouse cytokine array kit. In brief, RAW 264.7 cells were incubated with control media, 0.5,
or 1.0 mg/mL GSH for 24 h, and LPS (1 ng/mL) was used as a positive control [23]. Following this,
the supernatant was incubated on a nitrocellulose membrane containing 40 different cytokine antibodies
for 1 h. The membranes were washed, and then incubated with streptavidin-horseradish peroxidase
(HRP) for 30 min. Chemiluminescent detection was performed according to the manufacturer’s
instructions. Immune-reactive spots were visualized by the Fusion FX Image system (Vilber Lourmat,
Torcy, France), and quantitative analysis of spots was performed using the ImageJ® software (version
1.50i; NIH, Bethesda, MD, USA) to quantify protein expression levels.

2.5. nCounter Gene Expression Assay

We applied the nCounter in-solution hybridization method using nCounter Sprint platform
(NanoString Technologies, Inc. Seattle, WA, USA) to measure the gene expression levels of candidate
genes, as previously described [24]. The cells were treated with GSH or LPS, and incubated for 24 h,
and then the total RNAs isolated by collecting the cells. After solution-phase hybridization between
the target mRNA and reporter-capture probe pairs, excess probes were removed, and the probe/target
complexes were aligned and immobilized in the nCounter cartridge (NCT-120), which was then placed
in a digital analyzer for image acquisition and data processing. The raw data was normalized using
the housekeeping gene, and the gene expression change was represented by heatmap. The heatmap
represented differentially expressed genes by RNA sequencing analysis with fold-change cutoff of 0.5
and 2 (red and green, respectively).

2.6. Measurement of the NO, IL-1β, IL-4, IL-10, TNF-α, and PGE2 Production

The cells were treated with 0.5 or 1.0 mg/mL GSH for 24 h, and then cell culture supernatants
were harvested to measure the NO, cytokines, and PGE2 production. LPS (1 ng/mL) and DMEM
were used as the positive control and blank control, respectively. The production of NO was assayed
using Griess reagent, as previously described [25]. In brief, 100 µL of sulfanilamide/NED solution was
mixed with an equal volume of supernatant, and incubated for 5 min at room temperature (RT) in
dark. The absorbance was measured using a microplate reader at 540 nm. The nitrite concentration of
samples was calculated using the standard curve. The amount of IL-1β, IL-4, and IL-10, TNF-α, and
PGE2 was measured using ELISA kits, according to the manufacturer’s instructions.
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2.7. Phagocytosis Assay

The phagocytic activity was determined using a phagocytosis assay kit, in accordance with
the manufacturer’s instructions. Briefly, the cells were seeded on 4-well chamber slide (SPL Life
Sciences Co., Pocheon, Republic of Korea) at a density of 2 × 105 cells/well, and incubated for 24 h.
For subsequences, the cells were treated with 0.5 or 1.0 mg/mL GSH, or LPS (1 ng/mL), and then
fluorescently labeled Latex Beads-Rabbit IgG-FITC complex was added to each well. After incubation
for 2 h, the cells were washed with assay buffer, and treated with 40 µM 4′,6-Diamidino-2-phenylindole
(DAPI) for 10 min at 37 ◦C in 5% CO2 atmosphere. The fluorescence intensity was measured by
fluorescence microscopy (Leica Microsystems, Wentzler, Germany) and flow cytometer (BD Biosciences,
San Jose, CA, USA).

2.8. Measurement of Intracellular ROS Generation

The production of intracellular ROS was measured using ROS-sensitive fluorescent dye, DCF-DA,
as previously described [26]. To determine the amount of ROS generation by flow cytometer
and fluorescence microscopy, the cells were seeded into 6-well plate and 4-well slide chamber,
respectively. After incubation of 24 h, the cells were pretreated with the indicated concentrations
of GSH for 1 h, and then stimulated with LPS (1 ng/mL) for 6 h. In the last 20 min of treatment,
10 µM DCF-DA was added to the incubated cells in dark environment. For the assessment of
ROS production by flow cytometer, the cells were washed twice with calcium- and magnesium-free
Dulbecco’s phosphate-buffered saline (DPBS), and 10,000 events were immediately analyzed using a
flow cytometer (BD Biosciences) at 480 nm/520 nm. To observe the ROS generation by fluorescence
microscopy, the cells were washed twice with DPBS, and then fixed with 4% paraformaldehyde (pH
7.4) for 20 min. The fixed cells were washed twice with PBS, and analyzed by fluorescence microscopy
(Carl Zeiss).

2.9. Western Blot Analysis

As described previously, total protein was extracted from the cells using the Bradford Protein
assay kit [27]. The nuclear protein extracts obtained from the cells were prepared using the NE-PER
Nuclear and Cytoplasmic Extraction Reagents (Thermo Fisher Scientific Inc., Waltham, MA, USA).
An equal amount of protein from the samples was separated by 10–13% sodium-dodecyl sulfate gel
electropThermoTherhoresis, and transferred onto polyvinylidene difluoride membranes (Schleicher &
Schuell, Keene, NH, USA). The membranes were blocked with 5% non-fat skim milk in Trisbuffered
saline containing 0.1% Triton X-100 (TBST) for 1 h, and probed with specific primary antibodies,
which were purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA, USA), Merck Millipore
(Temecula, CA, USA), BD Biosciences (Franklin Lakes, NJ, USA), and Abcam Inc. (Cambridge,
UK), at 4 ◦C overnight. After washing 3 times with TBST, the membranes were incubated with the
appropriate HRP-conjugated secondary antibodies (Santa Cruz Biothechnology, Inc.,) for 2 h at RT.
The expression of protein was detected by enhanced chemiluminescence kit (GE Healthcare Life
Sciences, Little Chalfont, UK), and visualized by Fusion FX Image system (Vilber Lourmat).

2.10. Statistical Analysis

All experiments were performed at least three times. Data were analyzed using GraphPad Prism
software (version 5.03; GraphPad Software, Inc., La Jolla, CA, USA), and expressed as the mean
± standard deviation (SD). Differences between groups were assessed using analysis of variance
followed by ANOVA-Tukey’s post hoc test, and p < 0.05 was considered to indicate a statistically
significant difference.
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3. Results

3.1. Effects of GSH on the Cell Viability of RAW 264.7 Macrophages

Cell viability of RAW 264.7 cells after incubation with GSH for 24 h was estimated with MTT
assay. GSH did not affect the viability in RAW 264.7 cells up to 1 mg/mL, but showed slight cytotoxicity
at concentration of over 1.5 mg/mL (Figure 1A). LPS as positive control had no cytotoxicity up to
2.0 ng/mL. Figure 1B shows that the morphology of the control cell appeared a round form, whereas
GSH and LPS changed to an activated irregular form with spindle-shaped cells. Based on these results,
the immunomodulatory activity of GSH at concentration of up to 1 mg/mL in RAW 264.7 cells was assessed.
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Figure 1. Effects of reduced glutathione on the cell viability in RAW 264.7 macrophages. Cells were
treated with different concentration of GSH (0.5 to 2 mg/mL) and LPS of 1 and 2 ng/mL for 24 h. (A) Cell
viability was measured by MTT assay. Data are expressed as the mean ± SD (n = 3). The statistical
analyses were conducted using analysis of variance (ANOVA-Tukey’s post hoc test) between groups.
*** p < 0.001 when compared to control. (B) The representative morphological changes of cells were
taken using an inverted microscope (Scale bar; 20 µm).

3.2. GSH Increased MP-Derived Cytokines and Chemokines

To assess the effect of GSH on MP, we determined the expression of different 40 cytokines after
24 h in response to treatment with GSH. Figure 2A,B show that GSH significantly increased the
expression of cytokines, namely IL-3, IL-16, IL-2, CXCL11, M-CSF, and CCL4 (p < 0.05 compared
with control). In contrast, GSH slightly decreased the expression of G-CSF, GM-CSF, and CCL-1,
and CXCL2. In addition, we monitored the expression of MP-related genes using nCounter Sprint
platform (Figure 3A). According to the analysis for up to 800 candidate genes, we found that GSH
markedly up-regulated chemokine ligands, including CCL5 and CCL13 (Figure 3B). Furthermore,
we also identified that GSH induced the over-expression of IL-1β, IL-6, and TNF-α in RAW 264.7
macrophages (Figure 3C). Table 1 indicates the name and description of the genes with significant
difference compared to control. We reconfirmed the expression of the most potent cytokines, including
IL-1β, TNF-α, IL-4 and IL-10 using ELISA kit and immunoblotting. Figure 4A shows that GSH
significantly induced the production of IL-1β compared with control in a dose-dependent manner
(0.5 mg/mL GSH: 2.81 ± 0.54 pg/mL; 1 mg/mL GSH: 5.55 ± 0.52 pg/mL). In addition, 0.5 and 1 mg/mL
GSH up-regulated the production of TNF-α to 397.49 ± 5.84 and 439.93 ± 3.94 pg/mL, respectively
(Figure 4B). Meanwhile, LPS as a positive control also significantly up-regulated the production of
IL-1β (4.20 ± 0.14 pg/mL) and TNF-α (279.24 ± 4.77 pg/mL) compared with control, although the levels
were lower than for 1 mg/mL GSH. As shown in the result of immunoblot analysis, the effect of GSH
on the expression of the most potent cytokines was similar to ELISA. GSH induced the overexpression
of IL-1β (1 mg/mL GSH: 1.76 fold of control) and TNF-α (1 mg/mL GSH: 1.60 fold of control) compared
with the control, and LPS also slightly increased the expression of these cytokines (Figure 4G,H).
However, we observed the levels of putative M2 marker including IL-4 and IL-10 were no changed
with GSH or LPS (Figure 4C,D) in RAW264.7 cells. Additionally, we confirmed the effect of GSH on the
MP-derived cytokines in human monocytic cell lines including THP-1 and U-937. In common with
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results from RAW 264.7 cells, the levels of cellular TNFα and expression of inflammatory mediators
were up-regulated by GSH treatment in THP-1 and U-937 cells, but the levels of M2 markers (i.e., IL-4
and IL-10) were not changed by GSH (supplementary Figure S1C–F).
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Figure 2. Effects of GSH on MP-derived cytokines and chemokines. Protein array analysis demonstrating
the effects of GSH on cytokine profile. Cells were treated with the indicated concentrations of GSH
(0.5 to 2 mg/mL) and LPS of 1 and 2 ng/mL for 24 h. The supernatants were then analyzed using the
cytokine array. (A) Spots with the most prominent differentially regulated cytokines are identified by
circles. (B) Quantitative analysis of spots on the cytokine array membrane. Quantitative analysis of
mean pixel density was performed using the ImageJ® software, and data are the mean ± SD of three
independent experiments. * p < 0.05 and † p < 0.05 indicate up-regulation and down-regulation of
significant differences compared to control group, respectively.
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Figure 3. Heatmap of candidate gene expression for MP using NanoString nCounter® miRNA
Expression Assays. The cells were treated with GSH or LPS, and then incubated for 24 h. Total RNA
was collected by collecting the cells, and hybridization was performed using a reporter probe and a
capture probe. After digital analysis through nCounter nanostring assay (NCT-120), the raw data was
normalized using the housekeeping gene, and the gene expression change was represented by the fold
change value. (A) Heatmap representing differentially expressed genes with fold-change cutoff of 0.5
and 2 (red and green, respectively). (B) and (C) Expression of each gene was indicated as fold change
compared with control. Table 1 shows the abbreviations and designations defined.
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Figure 4. Effects of GSH on most-potent cytokines, NO and PGE2 production in RAW 264.7 macrophages.
Cells were treated with GSH of 0.5 to 1 mg/mL and 1 ng/mL LPS, and then incubated for 24 h.
The production of IL-1β (A), TNF-α (B), IL-4 (C) and IL-10 (D) on cell supernatant were measured by
ELIAS kits. (E) The amounts of NO were measured using the Griess reagent in culture supernatant.
(F) The levels of PGE2 were measured by an ELIAS kit. (G) The cell lysates were immunostained for
IL-1β, TNF-α, iNOS, and COX-2. Actin was used as an internal control. Images of the membranes were
photographed with the Fusion Fx image acquisition system. (H) Relative band density was measured
by ImageJ. All data are expressed as the mean ± SD (n = 3). The statistical analyses were conducted
using analysis of variance (ANOVA-Tukey’s post hoc test) between groups. * p < 0.05 ** p < 0.01 and
*** p < 0.001 indicates significant difference compared to the non-treated control group. # p < 0.05,
## p < 0.01 and ### p < 0.001 when compared to LPS treatment.

3.3. GSH Induces the Production of NO and PGE2

Cells were treated with GSH of 0.5 to 1 mg/mL and 1 ng/mL LPS, and then incubated for 24
h. We measured whether GSH modulated the production of NO and PGE2. Figure 4E shows that
GSH treatment significantly enhanced the amount of NO in a dose-dependent manner (0.5 mg/mL
GSH: 4.69 ± 0.20 µM, 1.53-fold of control; 1 mg/mL GSH: 6.15 ± 0.32 µM, 2.01-fold of control), but no
change was observed in LPS treatment. In addition, above the GSH concentration of 0.5 mg/mL, the
secretion of PGE2 was also markedly up-regulated to 6656.52 ± 226.83 pg/mL in a dose-dependent
manner (Figure 4F). LPS also significantly increased the levels of PGE2 (4118.76 ± 114.26 pg/mL), but
the levels were lower than the efficacy of 0.5 mg/mL GSH. Then, we examined the expression of NO
inducible enzyme, inducible NO synthase (iNOS), and PGE2 synthesis enzyme, cyclooxygenase-2
(COX-2). GSH slightly increased the protein expression of iNOS (1 mg/mL GSH: 1.47 fold of control),
and substantially overexpressed COX-2 (1 mg/mL GSH: 25.61 fold of control, Figure 4E,G,H). The
results of immunoblot analysis have something in common with Figure 4C,D. Meanwhile, GSH also
increased the levels of NO in THP-1 and U-937 cells, human monocytic cell lines, in the same manner
with RAW 264.7 cells (supplementary Figure S1B).
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3.4. GSH Activated the Phagocytosis of Macrophages

To assess the effect of GSH on phagocytosis, we performed a fluorescence-activated cell sorting
(FACS)-based assay and a fluorescence microscopy observation. Figure 5A,C show that GSH
significantly increased the numbers of phagocytic cells to 3.88-fold (0.5 mg/mL GSH) and 5.38-fold
(1 mg/mL GSH) of control in RAW 264.7 macrophages, respectively. In addition, as the result of
FACS-based assay, we reconfirmed that GSH markedly enhanced the phagocytic cells (0.5 mg/mL GSH:
41.77 ± 2.20%; 1 mg/mL GSH: 81.37 ± 1.57%) (Figure 5B,D). LPS also up-regulated the phagocytosis
activity, and the levels were similar to those of the 0.5 mg/mL GSH treatment.
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Figure 5. Effects of GSH on phagocytosis activity in RAW 264.7 macrophages. Cells were treated with GSH
of 0.5 to 1 mg/mL and 1 ng/mL LPS, and for 24 h. (A) The phagocytosis activity was visualized by fluorescence
microscopy. Scale bar; 200 µm. (B) The fluorescence intensity was counted and indicated as the number of
phagocytic cells per field of view. (C) The phagocytosis capacity of GSH was gauged by flow cytometer. The
images shown are representative of at least three independent experiments. (D) The statistical analyses were
conducted using analysis of variance (ANOVA-Tukey’s post hoc test) between groups. *** p < 0.001 when
compared to control. ## p < 0.01 and ### p < 0.001 when compared to LPS treatment.

3.5. GSH Suppressed LPS-Induced Intracellular ROS Generation

We investigated the effect of GSH on ROS generation estimated during the phagocytosis of macrophage.
To evaluate the intracellular ROS generation, we performed FACS-based assay using DCF-DA fluorescence
dye. Figure 6A shows that GSH treatment did not change the intracellular ROS generation, following by
concentration rise (0.25 to 1 mg/mL). In contrast, LPS significantly increased ROS generation to 49.13%. Based
on these results, we assessed whether the potent anti-oxidative effect of GSH contributes to the scavenging
of ROS in LPS-stimulated macrophages. As a result, GSH markedly suppressed the production of ROS in
LPS-stimulated RAW 264.7 cells, in a dose-dependent manner (Figure 6A). Additionally, we reconfirmed
that LPS strongly enhanced the production of intracellular ROS under fluorescence microscopy (Figure 6B).
However, GSH markedly suppressed the increase of ROS generation, followed by LPS.
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Figure 6. Effects of GSH on intracellular ROS generation in RAW 264.7 macrophages. Cells were pretreated
with various concentrations of GSH for 1 h, and then stimulated with LPS (1 ng/mL) for 6 h. (A) After
staining with DCF-DA, DCF fluorescence was monitored by flow cytometer. Results are presented as the
means of two independent experiments. (B) Images were obtained by fluorescence microscopy (scale bar;
200 µm). The images shown are representative of at least three independent experiments.
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3.6. GSH Activated Nrf2 and NF-κB Signaling Pathways

We performed an immunoblot analysis for the effect of GSH on the Nrf2 signal pathway.
Figure 7A,C show that the expression and phosphorylation of Nrf2 were also up-regulated in the
GSH-treated cell. In contrast, GSH gradually decreased the expression of Kelch-like ECH associated
protein 1 (Keap1), a repressor protein that binds to Nrf2, and promotes its degradation by the
ubiquitin proteasome pathway [28,29]. Moreover, GSH induced the gradually increase of antioxidant
enzyme heme oxygenease-1 (HO-1), one of the Nrf2-dependent cytoprotective enzymes, in a time-
and dose-dependent manner. Furthermore, GSH showed statistically significantly induced nuclear
accumulation of Nrf2 (Figure 7E). In addition, we monitored the expression of immune-related signal
genes using the nCounter analysis system. Table 1 indicates the name and description of those genes
with significant difference compared with control. Consequently, we confirmed that GSH up-regulated
the expression of mitogen-activated protein kinase (MAPK) and Notch signal genes, as well as NF-κB
signal genes in RAW 264.7 macrophages (Figure 8).
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Figure 7. Effects of GSH on Keap1/Nrf2 activation in RAW 264.7 macrophages. (A,C) Cells were
incubated with 1 mg/mL GSH for the indicated periods, or with the indicated concentration of GSH
for 24 h. Expression of Nrf2, HO-1, and Keap1 was determined by Western blot analysis with total
cell lysates. Actin was used as an internal control. (B,D) Relative band density was measured by
ImageJ. (E) Cells were incubated with the indicated concentration of GSH for 24 h. Expression of Nrf2
was determined by Western blot analysis with cytosol and nuclear fraction. Actin and Lamin B were
used as an internal control for cytosol and nuclear, respectively. (F,G) Relative band density for Nrf2
expression of cytosol and nuclear fraction was measured by ImageJ. All data are the means ± SD (n
= 3). The statistical analyses were conducted using analysis of variance (ANOVA-Tukey’s post hoc
test) between groups. ** p < 0.01 and *** p < 0.001 indicates significant difference compared to the
non-treated control group.
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Figure 8. Effects of GSH on NF-κB signaling systems in RAW 264.7 macrophages. Cells were treated
with GSH of 0.5 to 1 mg/mL and 1 ng/mL LPS, and for 24 h. Total RNA was collected by collecting
the cells, and hybridization was performed using a reporter probe and a capture probe. After digital
analysis through nCounter nanostring assay (NCT-120), the raw data was normalized using the
housekeeping gene, and the gene expression change was represented by the fold change value.
(A) Heatmap representing differentially expressed genes with fold-change cutoff of 0.5 and 2 (red and
green, respectively). (B) The expression of each gene was indicated as fold change compared with
control. Table 1 shows the abbreviations and designations defined.

4. Discussion

Macrophages function as a critical regulator in multiple biological events, including reproduction,
vasodilation, angiogenesis, malignancy, and immune response [30]. In response to various stimulators
or pathophysiologic conditions, macrophages can adopt different function as M1 and M2 macrophages,
and that induced phenotype switch between macrophage subsets [8,31,32]. The phenotype transition
is involved alteration of the macrophage transcriptome and regulatory networks [33]. In the response
to pathogens, M1 macrophages come to the wounded place, and acts as a host defense, and elicits
an immune system through phagocytosis, antigen presentation, and cytokine secretion [3]. Then M2
macrophages are recruited to repair tissue and heal the wound [34]. To avoid the recruitment
of monocyte/macrophages, M1 can switch the phenotype to M2 [35]. Under healthy condition,
macrophages remain in an M1/M2 balanced state. In contrast, dysregulation of MP, which results
in disease progression, and may trigger tumor progression under physiological condition [36,37].
Therefore, the stimulation of the immune system via regulation to M1 polarized macrophages is one
of the significant approaches to increase the human defense system. Based on this theory, many
scientists are concerned for new materials that have immune-enhancing activity through M1-mediated
pro-inflammatory cytokines and chemokines, and this has become an important research theme in
the field of cancer prevention and immunopharmacology [38–41]. In the present study, we estimated
the immune-modulatory effect of GSH, known as a potent antioxidant. We also assessed the effect
of GSH on M1-derived pro-inflammatory mediator in RAW 264.7 cells. Our results show that GSH
induced the macrophage activation up to 1 mg/mL treatment (Figure 1), as well as up-regulated
pro-inflammatory cytokines, including IL-1β, IL-6, IL-3, IL-16, and TNF-α, as results of the cytokine
array and nCounter gene array (Figures 2 and 3). Furthermore, we confirmed GSH significantly
stimulated the secretion and expression of the most potent M1-associated cytokine IL-1β and TNF-α
by ELISA and immunoblot analysis (Figure 4A,B,G). These cytokines are well known to play a central
role in mediating the inflammation and immune regulatory signal (Table 1). However, GSH no effect
on the levels of Th2 cytokines IL-4 and IL-10 that induced M2 polarization. Many studies suggested
that immune-enhancing compounds induce the secretion of these pro-inflammatory cytokines [38–41].
Especially, endogenous pyrogens including IL-1β are released in response to pathogen at the early
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stage of the immune reaction. [31]. It also has the capability to promote phagocytosis, which stimulates
macrophage proliferation, and induces leukocyte migration [42]. Similar to IL-1 β, TNF-α is also
an important pro-inflammatory cytokine, which is one of the first to be released in response to a
pathogen, and stimulated the acute phase of the immune response by activating macrophages [43].
In concert with IL-17, TNF-α induces the secretion of neutrophil-attracting chemokines and cell adhesion
molecules [5–8,44,45]. In the present study, we found that GSH overexpressed neutrophil-attracting
chemokines, such as CCL4, and M-CSF, as a result of the cytokine array (Figure 2A,B). Furthermore,
we confirmed that CCL5 and CXCL13 showed conspicuous alteration by GSH as a result of nCounter
gene expression assay (Figure 3A,B). These chemokines are inflammatory chemoattractants for T cells,
basophils, eosinophils, and dendritic cells [31]. Moreover, they are well known to play a central role in
mediating the inflammation and immune regulatory signal Table 1 Consequently, our results have
demonstrated that GSH enhanced the secretion and expression of pro-inflammatory cytokines and
chemokines, which involve M1-mediated immune response, whereas no effect on M2-related cytokines.

As one of the immune cells, macrophages promote the inflammatory responses by not only
producing pro-inflammatory cytokines, but also mediators, such as NO and PGE2 [46,47]. NO is a
toxic defense molecule that acts as an effector of the host innate immune response [48]. In addition,
macrophages inhibit pathogen replication by releasing numerous cellular molecules, including NO [48].
NO also contributes to the physiologic and pathophysiologic process, including the growth and
death of many immune and inflammatory cell types. Zhao et al. [49] reported that intracellular GSH
prevented cell apoptosis via NO in vascular smooth muscle cells. Trimenstein et al. [50] also identified
the production of NO dependent on PGE2 levels in hepatocytes. Another pro-inflammatory mediator,
PGE2 has an important role in the regulation of cellular immune response, such as T cell proliferation,
lymphokine production, and cytotoxicity [51]. It is generated from arachidonate by the action of
COX-2, which is a more critical source of prostanoid formation in inflammation [52]. Figure 4F shows
that GSH markedly enhanced the secretion of PGE2 in a dose-dependent manner, and at levels higher
than LPS as positive control. The increase of PGE2 levels resulted from the up-regulation of COX-2
(Figure 4G). Similar to these results, our findings show that GSH significantly enhanced the secretion
of NO in a dose-dependent manner through the up-regulation of iNOS in RAW 264.7 macrophages
(Figure 4E,G). This result proves the GSH can have immune-enhancing activity by increasing NO and
PGE2, as effectors of the host defense system.

The transcription factor NF-κB promotes immune response by the regulation of inflammatory
gene expression [53]. In response to cytokines produced by lymphocytes and other immune cells,
NF-κB-dependent differentiation of MP is an important factor in the progress of inflammation [53].
Numerous studies have demonstrated that the activation of NF-κB leads to the signaling pathways,
such as MAPKs, that play a critical role in the regulation of inflammatory responses [54,55]. Sen et al.
also reported that TNF-α induced the activation of NF-κB associated with cytoplasmic GSH levels [56].
Therefore, we performed screening of NF-κB-related signaling genes through the nCounter Sprint
platform. Our results showed that GSH up-regulated not only the expression of NF-κB subunits,
including NF-κB1 and NF-κB2, but also MAPK family members (Figure 8). Interestingly, GSH also
increased the expression of Notch 1 and 2 in the present study. Several studies have reported that
Notch-1 is interrelated with NF-κB, and both pathways synergistically modulate the pro-inflammatory
function [57–59]. Although further studies should be conducted to confirm the up- and down-streams
of NF-κB signaling, these findings suggest that the immune-modulatory efficacy of GSH is associated
with the NF-κB, MAPK, and Notch signaling pathways.

Phagocytosis is crucial to a variety of cellular biological functions, including tissue remodeling,
and the continuous clearance of dying cells. Moreover, activated macrophages are characterized
by phagocytosis, which represent essential response to the host defense against pathogens [60].
Therefore, we evaluated whether GHS regulates phagocytosis in RAW 264.7 macrophages. Our results
showed that 0.5 mg/mL GSH significantly stimulated the number of phagocytic cells and phagocytosis,
and at levels similar to that of the positive control. Additionally, the capacity of phagocytosis is markedly
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increased by GSH in a dose-dependent manner (Figure 5). There are well-known that phagocytes
produce ROS during phagocytosis, and subsequently eliminate pathogens by ROS-mediated microbial
DNA damage [61,62]. Namely, ROS have a biocidal effect on infiltrated pathogens, and they can also
injure the cells of the host [63]. In the present study, GSH did not change intracellular ROS generation
during phagocytosis, but LPS markedly increased it (Figure 6A). However, GSH treatment significantly
decreased LPS-induced ROS generation in a dose-dependent manner (Figure 6A,B). As is well known,
the increase of ROS by LPS was due to the activation of Toll-like receptor 4 (TLR4) cascade, but was
suppressed by GSH. This finding suggests that GSH is the most abundant antioxidant and major
detoxification agent for cell defense against ROS, unlike immunological ROS generation [64]. In other
words, our results indicate that GSH plays a role in the cell defense against ROS. Based on this result,
we investigated the alteration of transcription factors related to the ROS scavenging capacity of GSH.
HO-1 has antioxidant and cytoprotective properties, and play a key role in the innate immunity [65,66].
Previous report described that HO-1 modulated innate immunity by attenuated the TLR4-mediated
signaling [67]. In addition, there are well-known that the activation of Nrf2 enhances HO-1 expression
in several cell types [66]. Nrf2 binds to Keap1 in its resting state, but it is dissociated in Keap1 when
exposed to electrophiles or other mediators [68]. In present study, we found that GSH increased
nuclear accumulation of Nrf2, while decreasing Keap1 expression, and this process was accompanied
by increased expression of HO-1 (Figure 7). The notable here is that Nrf2 plays a critical regulator in
modulating the intracellular GSH level. Several scientists have confirmed that Nrf2 is important in
maintaining intracellular GSH levels and HO-1 in redox homeostasis [69–71]. Our previous report [72]
and Song et al.’s report [73] also demonstrated that GSH activates Nrf2-mediated signal pathways to
protect cells from oxidative stress. Furthermore, increasing evidences described that GSH-mediated
redox-status regulates Th1/Th2 balance in innate immune response [16,74]. Peterson et al. reported that
GSH depletion attenuated Th1-mediated cytokine production and induced Th2-mediated response [71].
In current study, our findings shown that GSH mediates the induction of HO-1 through the regulation
of Keap1-Nrf2 pathway, which may suggests contribute to eliminating ROS. However, further studies
are required to identify the GSH depletion-mediated molecular mechanisms on MP and the role of
endogenous GSH involved on MP.

5. Conclusions

Overall, we have shown that GSH induced macrophage activation and M1 polarization in the RAW
264.7 cell model. In brief, GSH stimulated M1-associated immune response, including pro-inflammatory
cytokines, chemokines, inflammatory mediators, and phagocytosis. The immune-modulatory effect of
GSH was associated with NF-κB, MAPKs, and Notch signal pathways. Furthermore, GSH has potential
ROS scavenging ability through activation of the Keap1-Nrf2 signaling-mediated HO-1. In addition,
GSH may exhibit immune-enhancing activity by the modulation of M1-like MP, and such efficacy of
GSH may be a useful strategy to increase the human defense system.
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