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Abstract: iNOS, an important mediator of inflammation, has emerged as an important metabolic
regulator. There are conflicting observations on the incidence of insulin resistance (IR) due to
hyperglycemia/dyslipidemia in iNOS−/− mice. There are reports that high fat diet (HFD) fed mice
exhibited no change, protection, or enhanced susceptibility to IR. Similar observations were also
reported for low fat diet (LFD) fed KO mice. In the present study chow fed iNOS−/− mice were
examined for the incidence of IR, and metabolic perturbations, and also for the effect of sodium
nitrite supplementation (50 mg/L). In IR-iNOS−/− mice, we observed significantly higher body
weight, BMI, adiposity, blood glucose, HOMA-IR, serum/tissue lipids, glucose intolerance, enhanced
gluconeogenesis, and disrupted insulin signaling. Expression of genes involved in hepatic and adipose
tissue lipid uptake, synthesis, oxidation, and gluconeogenesis was upregulated with concomitant
downregulation of genes for hepatic lipid excretion. Nitrite supplementation restored NO levels,
significantly improved systemic IR, glucose tolerance, and also reduced lipid accumulation by rescuing
hepatic insulin sensitivity, glucose, and lipid homeostasis. Obesity, gluconeogenesis, and adipose
tissue insulin signaling were only partially reversed in nitrite supplemented iNOS−/−mice. Our results
thus demonstrate that nitrite supplementation to iNOS−/− mice improves insulin sensitivity and
metabolic homeostasis, thus further highlighting the metabolic role of iNOS.

Keywords: iNOS−/−; nitrite; nitric oxide; insulin resistance; dyslipidemia; liver; adipose tissue;
metabolism

1. Introduction

Nitric oxide (NO), a pleiotropic gaseous signaling molecule, plays an important role in the
cardiovascular and metabolic regulations. NO synthesis is catalyzed by Ca2+ dependent constitutive
NOS (eNOS and nNOS), and Ca2+ independent inducible iNOS [1]. Importance of iNOS was primarily
studied in infectious diseases, and also in inflammatory conditions [2–5]. Subsequent studies, however,
demonstrated constitutive presence of iNOS in various insulin responsive tissues such as liver [6],
adipose tissue [7], skeletal muscle [8], and non-responsive tissues/cells like ileum [9], colon [10],
and neutrophils [11]. Type 2 diabetes is a complex disease and is exceedingly heterogeneous in its
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manifestations with various subtypes necessitating detailed understanding of the mechanisms involved
in its pathophysiology for its better management [12]. Insulin resistance (IR) is the key feature of obese
diabetics due to altered glucose and lipid homeostasis [13]. Interestingly, genetic polymorphism at the
iNOS gene (14-repeat allele) is linked to increased iNOS activity which confers selective advantage
to diabetic individuals. This points towards the protective role of constitutive iNOS in preventing
or delaying the pathological alterations in diabetes [14,15]. Studies from our group and others on
the effect of iNOS derived NO on endothelium functionality have shown that acetylcholine [16] and
insulin [17] mediated vasorelaxation was significantly preserved in obese iNOS−/− mice, which was
independent of IR, dyslipidemia or hyperglycemia, blood pressure, or oxidative stress. Reduction
in NO bioavailability contributes to the pathogenesis of hyperlipidemia, endothelial dysfunction,
atherosclerosis, hypertension, diabetes, and obesity [18–20].

Metabolic perturbations and altered insulin sensitivity have been commonly observed in eNOS,
nNOS, and triple NOS KO mice [21–23]. Most of the studies on iNOS−/− mice have demonstrated its
definitive role in inflammatory [3,5] and infectious conditions [4,24] whereas inconsistent results were
reported for its metabolic role [16,25–33]. HFD fed iNOS−/− mice were protected from infiltration of
pro-inflammatory macrophages and adipose tissue fibrosis [28]. Likewise, iNOS inhibition reversed
hepatic IR and hyperglycemia in obese diabetic mice [34]. These studies suggest that iNOS/NO
play an important role in the initiation of IR. Moreover, iNOS−/− mice showed attenuated fructose
induced-hepatic steatosis [26], dyslipidemia, IR, and nitrosative stress [27]. Fat deposition in the rat liver
and circulatory lipids were, however, increased following iNOS inhibition [35,36]. Likewise, iNOS−/−

mice on long term HFD feeding exhibited increased adiposity [25,28,29], and fasting hyperglycemia
despite being protected against systemic IR [25]. Our previous studies on LFD or HFD diet fed iNOS−/−

mice found them to be IR and also exhibiting perturbed metabolic homeostasis [16,32,37]. Additionally,
iNOS−/− mice fed on HFD or LFD displayed significant weight gain, higher fat mass, and dyslipidemia
with reduced lean mass [33]. Even chow fed iNOS−/− mice had higher fat mass [30] and circulating
triglycerides levels [31]. Above contradictory observations may be due to differing dietary composition,
regimens, and also the selection of control groups to interpret the results. In fact, dietary composition
(high fat or sugar) can be the important reason of exaggerated inflammation and altered homeostasis.

Studies, both from our group and others, have shown that iNOS−/− mice have decreased NO
availability [32,38,39]. Nitrite, a precursor of NO reservoir, is abundant in green leafy vegetables and
is also presumably protective against diabetes and cardiovascular diseases [21,40]. As iNOS−/− mice
exhibited reductions in the total nitrite content, it is hypothesized that nitrite supplementation in
drinking water might compensate for the reduced NO availability. The present study thus investigates
the incidence of IR in chow fed iNOS−/− mice, and also the effect of nitrite supplementation on the
rescue of systemic, hepatic, and adipose tissue insulin sensitivity. In the present study, the focus was
on liver and adipose tissue as they are involved in the regulation of whole-body energy homeostasis
and form a highly orchestrated metabolic circuit involving nutrient uptake, processing, transport,
and storage. These tissues are shown to be important in the initiation of IR, while association of skeletal
muscle has been highlighted in the later stage of disease [41].

2. Research Design and Methods

2.1. Animal Studies

Twelve weeks old, age matched male wild type(WT) and iNOS−/− (Jackson Laboratory, Bar Harbor,
ME, USA; 002609) mice on C57BL/6J background were bred and maintained in IVC cages (Tecniplast,
Buguggiate, VA, Italy) at 24 ± 2 ◦C. All procedures were approved by Institutional Animal Ethics
Committee of CSIR-CDRI (IAEC/2014/43) in accordance with CPCSEA guidelines. Mice (WT and
iNOS−/−) were kept on chow diet (1320, Altromin, Lage, North Rhine-Westphalia, Germany) and glucose
tolerance test was performed. WT and iNOS−/− mice then received regular or sodium nitrite (50 mg/L,
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NaNO2) supplemented water ad libitum for 5 weeks as was reported earlier [42,43]. Body weight and
length was measured and BMI calculated [44] at the end of 5 weeks of nitrite supplementation.

2.2. Tolerance Tests

Mice fasted for 6 h were administered 2 g/kg d-Glucose, 2 g/kg sodium pyruvate, or 0.6 IU/kg
insulin (Human insulin R, Eli Lilly, Indianapolis, IN, USA) by intraperitoneal (i.p.) route for performing
glucose (GTT), pyruvate (PTT), or insulin tolerance test (ITT). Blood glucose was monitored using
a glucometer (Roche Diagnostics, Mumbai, Maharashtra, India) at 0, 15, 30, 60, and 120 min after
administration of glucose, pyruvate, or insulin and area under the curve (AUC) was calculated as
described previously [32].

2.3. Body Composition Analysis

Body composition (fat and lean mass) was analyzed by echo MRI (E26-226-RM Echo MRI LLC,
Houston, TX, USA) in conscious live mice by applying radio frequency pulses at a distinct static
magnetic field [32].

2.4. Indirect Calorimetry

Conscious, unrestrained mice were individually placed in the Oxymax CLAMS (Columbus
Instruments, Columbus, OH, USA) with free access to food and water for metabolic measurements [45].
After pre-calibration of system and animal acclimatization, oxygen consumption (VO2, mL/kg/h),
carbon dioxide produced (VCO2, mL/kg/h) along with food and water intake, RER (VCO2/VO2,
m/kg/min), metabolic rates (BMR and RMR) and energy expenditure (kcal/h; heat production) were
determined over a 3 day period.

2.5. Serum Biochemistry

Retro-orbital blood was collected from 6 h fasted mice. Estimation of lipids like total cholesterol
(TC), triglycerides (TG), low and high density lipoproteins (LDL and HDL), and non-esterified fatty
acids (NEFA) were performed in the serum using kits (Randox, Crumlin, Co. Antrim, UK, [16]). Insulin
was measured using a kit from Crystal Chem, Elk Grove Village, IL, USA.

2.6. Total Nitrite Estimation

The animals were sacrificed to retrieve the tissues (liver, epididymal white adipose tissues,
and hind limb skeletal muscle). Total nitrite (nitrate and nitrite) was estimated in serum (100 µL) and
tissues (liver, eWAT, and skeletal muscle, 50 mg) using Griess reagent by reducing nitrate to nitrite
using pre-activated cadmium pellets followed by deproteinization in tissue homogenates with 3%
trichloroacetic acid [46].

2.7. Tissue Biochemistry

Liver tissue (50 mg) was processed as described previously for the estimation of hepatic total
cholesterol [47], triglycerides [48], and free fatty acids [49] using Randox (Crumlin, Co. Antrim, UK) kit.

2.8. Hematoxylin and Eosin (HE) Staining

Formalin fixed and, paraffin embedded adipose tissue (eWAT) was sectioned into 5µm thin serial
slices and HE stained for morphological examination [45]. Adipocytes area was calculated using
Adiposoft plugin in Fiji software for Windows 64bit (NIH, Bethesda, MA, USA).

2.9. Oil Red O Staining

Formalin fixed, tissue freezing medium (Leica Biosystems, Ernst-Leitz-Strasse, Wetzlar, Germany)
embedded frozen liver tissues were sectioned in 10 µm thin slices, stained with Oil Red O and
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counterstained with hematoxylin to visualize the lipid accumulation using Leica QWin version 3.5.1
software [47].

2.10. Western Blot Analysis and Real Time PCR

Insulin was administered at a dose of 0.6 IU/kg i.p. and animals were culled after 30 min to
collect organs (liver and eWAT) for Western blot studies along with unstimulated controls in both
WT and iNOS−/− mice with or without nitrite supplementation. Liver and adipose tissue protein
extracts were subjected to SDS-PAGE, transferred to PVDF membrane, and probed with primary
antibodies against Akt or p-AktSer473 (details listed in Table S1) and visualized with chemiluminescence
of horse radish peroxidase-linked secondary anti-rabbit or anti-sheep IgGs using ECL detection solution
and normalized with β-actin. Quantitative densitometry was performed using Image J software for
Windows 64bit (NIH, Bethesda, MA, USA). Real time PCR was performed as described previously [46]
with primers listed in Table S2 and normalized with 18S rRNA.

2.11. Statistical Analysis

Data is presented as mean ± SEM. Independent unpaired Student’s t test was used for
comparisons as appropriate using GraphPad Prism 7 software. Differences at p < 0.05 were considered
statistically significant.

2.12. Data Availability

All data supporting the findings of this study are available from the corresponding author on
reasonable request.

3. Results

3.1. Gross Parameters, Systemic Insulin, Glucose, Pyruvate Tolerance, and Circulating Lipids

Chow fed iNOS−/− mice at almost similar levels of food consumption weighed more, had higher
BMI, body length, and fat mass while lean mass (Figure 1A–E and Figure S1G), VCO2/heat production,
and metabolic rates (BMR and RMR, Figure S1A–C) were less as compared to WT mice. In iNOS−/−

mice, total nitrite contents in the serum, liver, adipose tissue, and skeletal muscle were significantly
less (Figure 1F,G) along with decreased eNOS expression but with enhanced nNOS in the liver and
adipose tissue (Figure S1D–F). Additionally, iNOS−/− mice were glucose intolerant and also had
higher circulating glucose levels (Figure 1J) as evident by the persisting increase in circulating glucose
levels even 2 h after its administration (Figure 1H,I). iNOS−/− mice also displayed systemic insulin
resistance as evident by ITT, PTT (Figure 1M,N,S,T), and increased circulating insulin levels (Figure 1K),
HOMA-IR, decreased QUICKI, and unchanged HOMA-B (Figure S1H–J). The relative liver and
adipose tissue weights were higher in iNOS−/− mice as compared to WT (Figure 1L). Circulating total
cholesterol, triglycerides, NEFA, and LDL were significantly more in iNOS−/− mice while HDL levels
were comparable to WT mice (Figure 1O–R and Figure S1K).
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mice. (C) Body mass index (BMI) (WT: n = 20, iNOS−/−: n = 16), (D) food consumption (WT: n = 8, 

iNOS−/−: n = 10), (E) whole body fat mass and lean mass (%) (n = 12), (F) total nitrite levels in serum (n 

= 24), (G) total nitrite levels in insulin sensitive tissues—liver (n = 9), white adipose tissue (n = 8), and 

skeletal muscle (n = 5). (H) Intraperitoneal glucose tolerance test (GTT) and (I) area under the curve 

(AUC) calculated from IPGTT data (n = 40). (J) Fasting blood glucose levels (n = 40), (K) fasting serum 

insulin levels (WT: n = 16, iNOS−/−: n = 18), (L) relative liver weight (WT: n = 10, iNOS−/−: n = 16), and 

epididymal white adipose tissue weight (eWAT) (WT: n = 11, iNOS−/−: n = 12). (M) Intraperitoneal 

insulin tolerance test (ITT) and (N) AUC calculated from ITT (WT: n = 12, iNOS−/−: n = 10). Serum lipid 

levels after 6 h fasting (WT: n = 16, iNOS−/−: n = 22). (O) Total cholesterol (TC), (P) triglycerides (TG), 

(Q) non-esterified free fatty acids (NEFA), (R) low density lipoprotein (LDL). (S) Intraperitoneal 

pyruvate tolerance test (PTT) and (T) AUC calculated from PTT (WT: n = 12, iNOS−/−: n = 10) in chow 

fed WT and iNOS−/− mice. Data are represented as mean ± SEM. Black circles: WT, black squares: 

iNOS−/− mice. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 vs. WT. 
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Figure 1. Gross parameters, systemic glucose tolerance, insulin sensitivity, gluconeogenesis, and circulating
lipids in chow fed wild type (WT) and iNOS−/− mice. (A) Body weight from the initiation (0 week) to
study termination (5 weeks) (WT: n = 20, iNOS−/−: n = 16). (B) Area under the curve (AUC) calculated
from the gradual change in the body weight of WT and iNOS−/− (WT: n = 20, iNOS−/−: n = 16) mice.
(C) Body mass index (BMI) (WT: n = 20, iNOS−/−: n = 16), (D) food consumption (WT: n = 8, iNOS−/−:
n = 10), (E) whole body fat mass and lean mass (%) (n = 12), (F) total nitrite levels in serum (n = 24),
(G) total nitrite levels in insulin sensitive tissues—liver (n = 9), white adipose tissue (n = 8), and skeletal
muscle (n = 5). (H) Intraperitoneal glucose tolerance test (GTT) and (I) area under the curve (AUC)
calculated from IPGTT data (n = 40). (J) Fasting blood glucose levels (n = 40), (K) fasting serum
insulin levels (WT: n = 16, iNOS−/−: n = 18), (L) relative liver weight (WT: n = 10, iNOS−/−: n = 16),
and epididymal white adipose tissue weight (eWAT) (WT: n = 11, iNOS−/−: n = 12). (M) Intraperitoneal
insulin tolerance test (ITT) and (N) AUC calculated from ITT (WT: n = 12, iNOS−/−: n = 10). Serum
lipid levels after 6 h fasting (WT: n = 16, iNOS−/−: n = 22). (O) Total cholesterol (TC), (P) triglycerides
(TG), (Q) non-esterified free fatty acids (NEFA), (R) low density lipoprotein (LDL). (S) Intraperitoneal
pyruvate tolerance test (PTT) and (T) AUC calculated from PTT (WT: n = 12, iNOS−/−: n = 10) in chow
fed WT and iNOS−/− mice. Data are represented as mean ± SEM. Black circles: WT, black squares:
iNOS−/− mice. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 vs. WT.

3.2. Status of Metabolic Homeostasis in WT and iNOS−/− Mice

3.2.1. Metabolic Homeostasis in the Liver Tissue

iNOS−/− mice had higher lipid accumulation in liver as evident by significant increase in hepatic
triglycerides, free fatty acids levels (Figure 2A,B), and Oil red O stained area (Figure 2C). qPCR analysis
of transcriptional regulators of lipid synthesis and β-oxidation of fatty acids revealed significantly
enhanced expression of PPARγ and LXRα, and PPARα, PGC-1α, and PGC-1β (Figure 2D). Similarly,
the expression of genes involved in the triglyceride synthesis including SREBP-1c, FAS, and ACC1 was
also more in KO mice as compared to WT mice (Figure 2E). Expressions of fatty acid uptake genes
CD36, SR-1B, and ApoE were significantly enhanced in the liver of iNOS−/− mice as compared to WT
(Figure 2F). On the other hand, expression of lipid efflux genes, ABCG5 and ABCG8, was however
significantly less in the liver of iNOS−/− mice (Figure 2G). Moreover, enhanced gluconeogenesis in
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iNOS−/− mice correlated with increase in the expression of PC while expression of G6PC, PEPCK,
and transcriptional regulator FOXOA1 (data not shown) was not altered in the liver (Figure 2H).
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Figure 2. Metabolic homeostasis in liver of chow fed WT and iNOS−/− mice. Lipid accumulation in
liver. (A) Hepatic triglycerides (n = 12), (B) hepatic free fatty acids (WT: n = 10, iNOS−/−, n = 12) and
(C) hepatic Oil red O staining (WT: n = 6, iNOS−/−, n = 5). (D) qPCR expressions of transcriptional
regulators involved in lipid synthesis: PPARy (WT: n = 11, iNOS−/−, n = 16) and LXRα (n = 8) and
genes involved in fatty acids oxidation: PPARα (n = 11–16), PGC-1α, and PGC-1β (n = 8). (E) qPCR
expression of genes involved in lipid synthesis (WT: n = 11, iNOS−/−, n = 16): SREBP-1c, FAS, and
ACC1. (F) qPCR expression of genes involved in lipid uptake (n = 8): CD36, SR-B, ApoE, and LPL.
(G) qPCR expression of genes involved in lipid efflux (WT: n = 11, iNOS−/−, n = 16): ABCG5 and
ABCG8. (H) qPCR expression of genes involved in gluconeogenesis (WT: n = 11, iNOS−/−, n = 16):
PEPCK, G6PC, and PC (n = 8) in chow fed WT and iNOS−/− mice. Data are represented as mean ± SEM.
Black circles: WT, black squares: iNOS−/− mice. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001
vs. WT.

3.2.2. Metabolic Homeostasis in the Adipose Tissue

Enhanced expressions of PPARγ, LXRα, PPARα, PGC-1α, and PGC-1β in adipose tissue suggest
increase in lipogenesis and fatty acids oxidation in iNOS−/− mice in comparison to WT (Figure 3A).
Augmentation in the expression of lipogenic genes including SREBP-1c, FAS, and ACC1 was also
evident in eWAT of KO mice (Figure 3B). Further, the fatty acid uptake gene-CD36 and lipolysis
gene-LPL were also significantly upregulated in the adipose tissue of iNOS−/− mice as compared to
WT with increased adipocyte area (Figure 3C,D). Increase in PC (Figure 3E) with no change in the
expression of PEPCK and G6PC (Figure 3E) was observed in the adipose tissue of iNOS−/− mice.
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Figure 3. Metabolic homeostasis in adipose tissue of chow fed WT and iNOS−/− mice. (A) qPCR
expressions of transcriptional regulators involved in lipid synthesis (WT: n = 9, iNOS−/−: n = 10):
PPARy and LXRα and genes involved in fatty acids oxidation: PPARα, PGC-1α, and PGC-1β. (B) qPCR
expression of genes involved in lipid synthesis (WT: n = 9, iNOS−/−: n = 10): SREBP-1c, FAS, and ACC1.
(C) qPCR expression of genes involved in lipid uptake (WT: n = 9, iNOS−/−: n = 10): CD36 and LPL.
(D) Mean adipocyte area (WT: n = 6, iNOS−/−: n = 5). (E) qPCR expression of genes involved in
gluconeogenesis (WT: n = 9, iNOS−/−: n = 10): PEPCK, G6PC, and PC (WT: n = 5, iNOS−/−: n = 7) in
chow fed WT and iNOS−/− mice. Data are represented as mean ± SEM. Black circles: WT, black squares:
iNOS−/− mice. * p < 0.05, ** p < 0.01, **** p < 0.0001 vs. WT.

3.3. Alterations in the Gross Parameters, Glucose Tolerance, Insulin Sensitivity, Gluconeogenesis,
and Circulating Lipids after Nitrite Supplementation in Chow Fed iNOS−/− Mice

iNOS−/− mice displayed complete reversal in the nitrite content in serum, liver, skeletal muscle,
and also adipose tissue upon nitrite supplementation (Figure S2A,B). At similar food/water consumption,
and physical activity (data not shown), nitrite supplemented iNOS−/− mice exhibited significant
reduction in the gross parameters such as BMI, body weight, and fat mass but increased lean
mass (Figure S2E–G). VCO2, heat production, BMR, and RMR along with body length remained
unaltered in the nitrite supplemented group (Figure S3A–C,G). Nitrite supplemented iNOS−/− animals
showed decreased adipose tissue and liver weight (Figure S2J) whereas eNOS mRNA and protein
expressions in the liver and adipose tissue were increased (Figure S3D,E) with no change in nNOS
(Figure S3F) or iNOS expression (data not shown). Nitrite treatment significantly and partially
improved systemic glucose intolerance and blood glucose levels in iNOS−/− mice (Figure S2C,D,K).
Nitrite supplementation also significantly improved the insulin sensitivity (Figure S2H,I) and restored
insulin levels (Figure S2L), HOMA-IR, HOMA-B, and improved QUICKI (Figure S3H–J) in iNOS−/−

mice. Systemic gluconeogenesis was marginally reduced (p < 0.05) after nitrite supplementation
in iNOS−/− mice (Figure S2M,N). Nitrite supplementation also normalized serum triglycerides and
NEFA levels with partial reduction in total cholesterol but had no effect on HDL and LDL levels
(Figures S2O–R and 3K). Higher LDL levels in nitrite treated iNOS−/− mice correlated with increased
LDLR and PCSK9 protein expression in the liver (Figure S2S,T) while LDLR was marginally reduced
in iNOS−/− mice (Figure S2S). Results of nitrite supplementation in WT mice were as per established
literature, and hence are not shown.

3.4. Metabolic Homeostasis in Liver and Adipose Tissue in Chow Fed iNOS−/− Mice after Nitrite Supplementation

Expression of genes involved in the lipid synthesis (SREBP-1c, FAS, and ACC1) was reduced
in the liver (Figure 4A) and adipose tissue (Figure 5A) of iNOS−/− mice following nitrite treatment
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and correlates with the reduction in hepatic lipid accumulation (Figure 4F–H) and marginal decrease
(p < 0.05) in the adipocytes area in eWAT (Figure 5E). However, genes involved in cholesterol synthesis
(HMGCoR, SREBP2) were not altered in the liver and adipose of WT, iNOS−/−, and nitrite treated
iNOS−/−mice (data not shown). Nitrite treatment in iNOS−/−mice reduced G6PC expression (Figure 4B)
with no change in PEPCK expression in the liver (Figure 4B) or eWAT (Figure 5B). Similarly, PC
expression was marginally but significantly decreased in liver (Figure 4B) and adipose tissue (Figure 5B)
in nitrite supplemented iNOS−/− mice.
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Figure 4. Metabolic homeostasis in liver of chow fed iNOS−/− mice with and without nitrite
supplementation. (A) qPCR expression of genes involved in lipid synthesis (iNOS−/−: n = 16, iNOS−/− +

Nitrite: n = 14): SREBP-1c, FAS, and ACC1. (B) qPCR expression of genes involved in gluconeogenesis
(iNOS−/−: n = 16, iNOS−/− + Nitrite: n = 14): PEPCK, G6PC, and PC (n = 8). (C) qPCR expressions
of transcriptional regulators involved in lipid synthesis: PPARy (iNOS−/−: n = 16, iNOS−/− + Nitrite:
n = 14) and LXRα (n = 8) and genes involved in fatty acids oxidation: PPARα (iNOS−/−: n = 16,
iNOS−/− + Nitrite: n = 14), PGC-1α, and PGC-1β (n = 8). (D) qPCR expression of genes involved in
lipid uptake (n = 8): CD36, SR-B, ApoE, and LPL. (E) qPCR expression of genes involved in lipid
efflux (iNOS−/−: n = 16, iNOS−/− + Nitrite: n = 14): ABCG5 and ABCG8. Lipid accumulation in
liver, (F) hepatic triglycerides (iNOS−/−: n = 12, iNOS−/− + Nitrite: n = 10), (G) hepatic free fatty
acids (iNOS−/−: n = 12, iNOS−/− + Nitrite: n = 10), and (H) hepatic Oil red O staining (iNOS−/−:
n = 5, iNOS−/− + Nitrite: n = 6) in chow fed iNOS−/− mice with or without nitrite supplementation.
Data are represented as mean ± SEM. Black squares: iNOS−/− mice without nitrite supplementation,
black diamonds: iNOS−/− mice with nitrite supplementation. * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001 vs. iNOS−/−.
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Figure 5. Metabolic homeostasis in adipose tissue of chow fed WT and iNOS−/− mice with and without
nitrite supplementation. (A) qPCR expression of genes involved in lipid synthesis (iNOS−/−: n = 10,
iNOS−/− + Nitrite: n = 6): SREBP-1c, FAS, and ACC1. (B) qPCR expression of genes involved in
gluconeogenesis (iNOS−/−: n = 10, iNOS−/− + Nitrite: n = 8): PEPCK, G6PC, and PC (iNOS−/−: n = 7,
iNOS−/− + Nitrite: n = 8). (C) qPCR expressions of transcriptional regulators involved in lipid synthesis
(iNOS−/−: n = 10, iNOS−/− + Nitrite: n = 8): PPARy and LXRα and genes involved in fatty acids
oxidation: PPARα, PGC-1α, and PGC-1β. (D) qPCR expression of genes involved in lipid uptake
(iNOS−/−: n = 10, iNOS−/− + Nitrite: n = 8): CD36 and LPL. (E) Mean adipocyte area (iNOS−/−: n = 5,
iNOS−/− + Nitrite: n = 6) in chow fed iNOS−/− mice with or without nitrite supplementation. Data
are represented as mean ± SEM. Black squares: iNOS−/− mice without nitrite supplementation, black
diamonds: iNOS−/− mice with nitrite supplementation. * p < 0.05, ** p < 0.01, *** p < 0.001vs. iNOS−/−.

Expression of PPARγ and LXRα was normalized after nitrite supplementation in liver (Figure 4C)
and adipose tissue (Figure 5C). PPARα and PGC-1β expression in liver (Figure 4C) and adipose tissue
(Figure 5C) was significantly reduced following nitrite supplementation to iNOS−/− mice. PGC-1αwas
decreased in adipose tissue of nitrite treated iNOS−/− mice (Figure 5C) but not in liver (Figure 4C).
Expression of CD36, SR-1B, ApoE, and lipolysis gene, LPL in liver (Figure 4D), and CD36 and LPL in
adipose tissue (Figure 5D) was regressed by nitrite supplementation in iNOS−/− mice. ABCG5 and
ABCG8 expression remained unaltered after nitrite supplementation in iNOS−/− mice (Figure 4E).

3.5. Insulin Signaling in Nitrite Supplemented Chow Fed WT and iNOS−/− Mice

Metabolic homeostasis is primarily regulated by insulin signaling via Akt in the insulin sensitive
organs. Total Akt expression was reduced significantly in the liver and adipose tissue of iNOS−/−

mice as compared to WT, and after nitrite treatment was restored in the liver (Figure 6A) but only
marginally in the adipose tissue in iNOS−/− mice (Figure 6C). Akt-1/2/3 phosphorylation (Ser473) was
also significantly reduced in the liver of iNOS−/− mice as compared to WT, which was completely
reversed after nitrite supplementation (Figure 6B). Nitrite significantly enhanced the p-Akt levels in
the adipose tissue of WT mice but not in the iNOS−/− mice (Figure 6D).
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Figure 6. Insulin signaling in chow fed WT and iNOS−/− mice and its alteration by nitrite treatment.
Immunoblots of liver (A) Akt-1/2/3 (n = 7) and (B) p-Akt-1/2/3 (n = 5). Immunoblots of adipose tissue
(n = 3) (C) Akt-1/2/3 and (D) p-Akt-1/2/3. Bar diagrams represent mean ± SEM in chow fed, control,
or nitrite treated WT and iNOS−/− mice in both basal and insulin stimulated conditions. White circles:
WT; black circles: WT supplemented with nitrite; white squares: iNOS−/−; black squares: iNOS−/−

supplemented with nitrite. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 between indicated groups.

4. Discussion

Single (eNOS) [21], double (eNOS/nNOS) [22], and triple (eNOS, nNOS, and iNOS) [23] NOS
knockout mice are IR and display metabolic perturbations. Studies conducted so far on iNOS−/−

mice used several dietary fats such as lard or vegetable oils [25,29,32,33,50] among which lard is
more obesogenic and diabetogenic [51]. In addition, dietary regimens and protocols to examine the
role of iNOS in IR, obesity, and diabetes [25,27,29,33,50] were also different reporting either IR and
dyslipidemia [16,31–33] or protection against IR as outcome [25–30]. The decreased NO bioavailability in
endothelial dysfunction, atherosclerosis, diabetes, obesity, and metabolic syndrome is well established.
The role of iNOS as a pro-inflammatory agent is also well established but its protective role under normal
physiological conditions, and cardiovascular disorders is less investigated. The present comparative
study was therefore undertaken in chow fed iNOS KO, and WT mice to systematically assess insulin
sensitivity by monitoring systemic (GTT, ITT, PTT), tissue (insulin signaling), biochemical (glucose
and lipids), and molecular (lipid and glucose metabolism) parameters, as well as by calorimetry
using a comprehensive lab animal monitoring system. Furthermore, metabolic perturbations were
evaluated at the hepatic and adipose tissue level by investigating expressions of crucial genes and
insulin signaling.

iNOS−/− mice fed on chow diet [30], LFD [32,33], or HFD [25,28,33] exhibited gain in weight and
fat mass with no change in food intake [28]. We also observed that weight gain by iNOS−/− mice with
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similar food intake, correlated both with increase in body fat and decrease in lean mass. In addition,
iNOS−/− mice in the present study displayed so far unreported higher BMI and body length (Figure 1C
and Figure S1G). On the contrary no change in the body weight in KO mice was reported [27,29,39,50]
even with higher chow or HFD intake [25,29]. These observed discrepancies can be ascribed to the
differences in the protocols and diets used in the studies [25,27–30,39].

Non-specific NOS inhibition enhanced serum and hepatic lipids in rodents [35,36] and increased
eWAT and perirenal fat deposits [52]. Area of adipocytes was also enhanced in iNOS−/− mice fed on
chow diet or HFD diet for 16–18 weeks [25,28,29] suggesting a link between absence of iNOS and
increased adiposity. In the present study we observed significant reduction in VCO2, heat production,
and metabolic rates with no change in the physical activity in chow fed iNOS−/− mice. Low BMR and
RMR are associated with metabolic thrift, weight gain, and obesity [53]. Interestingly Nakata et al.
reported increase in triglycerides in chow fed iNOS−/−, nNOS−/−, eNOS−/−, n/i/eNOS−/− mice [31].
Kakimoto et al. also found increased lipids in iNOS−/− mice 4 weeks after LFD or HFD feeding [33]
even though they used C57BL/6N mice which are less prone to obesity due to intact NNT activity.
Moreover, Nozaki et al. showed increased circulating and hepatic NEFA in HFD fed iNOS−/− mice
while others did not find change in the lipids [26,27,29,30]. Our findings thus confirm the obese
phenotype of iNOS−/− mice.

Blood glucose, AUC values of GTT and IIT, as shown in a recently published report [54],
were similar to our findings in KO mice. Perreault et al. also showed systemic hyperglycemia [25],
and Cha et al. found marginally increased insulin levels [30,39]. Incidentally, in some of the reports,
basal glucose levels in WT mice were on the higher side [28,55]. GTT was mostly conducted using 1 g/kg
dose of glucose [25,28,29,31,33] while in the present study we used 2 g/kg glucose in a relatively large
number (>30) of iNOS−/− mice. Moreover, our finding on PTT support the enhanced gluconeogenesis
in KO mice.

Expectedly, total nitrite levels in iNOS−/− mice were significantly less as has also been reported by
others [27,28,32,38,39,50] with decreased eNOS and increased nNOS expression in liver and adipose
tissue. This might be due to compensatory mechanisms developed due to the loss of a particular NOS
gene. Interestingly, low nitrite diet fed mice displayed glucose intolerance, IR, and high circulating lipid
levels [19]. Nitrite acts a precursor for NO generation in saliva, stomach, blood, urine, and skin through
enzymatic and non-enzymatic mechanisms and it was thus hypothesized that it may compensate the
reduced NO availability in the iNOS−/−mice. Nitrite supplementation to iNOS−/−mice reversed insulin
sensitivity, insulin levels, augmented lean mass, decreased fat mass and liver weight, with partial yet
significant rescue in glucose levels, glucose tolerance, and gluconeogenesis. These findings suggest
nutrition based strategies, like use of green leafy vegetables and other nitrite rich foods, against IR.
Nitrate/nitrite treatment also improved glucose intolerance in eNOS−/− mice [21,56], reduced fasting
blood glucose in db/db mice [42], rescued glucose intolerance and HOMA-IR in diabetic KKAy mice [43],
and reversed insulin levels with improvement in GTT and PTT in HFD fed diabetic rats [57]. Reduction
in RMR and VO2 with no change in RER has also been reported in healthy human volunteers after
nitrate supplemented diet [58]. Moreover, long term treatment with nitrate/nitrite also improved blood
glucose, insulin sensitivity with decreased insulin and HOMA-IR in WT mice [59] as also observed
by us. Likewise, no significant change in LDL levels was observed upon nitrite treatment [19,57].
This can be due to increased PCSK9 expression in liver along with enhanced expression of LDLR.
The marginal effect of nitrite on obesity related parameters [19,43,56,57] cannot be explained only
on the basis of reversal in NO levels and eNOS expression in KO mice [19]. Partial reversal of
adiposity by nitrite supplementation in iNOS−/− mice suggests a role of other regulators in metabolic
perturbations. Moreover, recent advances have made us more aware of gut microbiota contribution to
metabolic disorders through an axis of communication with adipose tissue regulating body weight and
metabolism [60]. However, the role of gut microbiome has not been examined so far in the iNOS−/−

mice thus warranting further investigations on these lines.
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Gene expression analysis data correlates with the functional and biochemical findings in iNOS−/−

mice. Unaltered expression of G6PC and PEPCK in iNOS−/−mice were observed earlier [27], and PPARy
expression was also reported to be increased in eWAT of HFD fed iNOS−/− mice [29]. Increase in the
expression of SREBP-1c and LPL in the adipose tissue also correlated with profound increase in the
circulating NEFA as was observed during iNOS inhibition induced lipolysis in the adipose tissue [61].
PGC-1α induction promotes mitochondrial biogenesis as well as augmented gluconeogenic gene
expression and increased lipid oxidation in altered metabolic states [62]. Increased PGC-1α in eWAT
of HFD fed iNOS−/− mice was also observed earlier [28]. Lipolysis in the adipose tissue promotes
supply of fatty acids and acetyl CoA to the liver to enhance glucose production via PC activation [63].
Induction in PC expression (Figure 2H) supports enhanced gluconeogenesis, which was previously not
examined in iNOS−/− mice. Nitrite treatment marginally reversed the induction in PC expression but
not that of PGC-1α in the liver (Figure 4C). Increase in PPARy expression in the liver and adipose tissue
of iNOS−/− mice was normalized by the nitrite treatment. The present study extensively examined
IR and insulin signaling in the liver of iNOS−/− mice and found disrupted insulin signaling unlike
earlier studies which show no change [25,27,29]. Interestingly, iNOS−/− mice fed on chow diet showed
significant increase in fat mass and marginal reduction in the insulin signaling (PI3K-Akt axis) [30].
Reduction in the sensitivity of insulin signaling in liver and adipose tissue of iNOS−/− mice was rescued
by nitrite treatment in liver but not in adipose tissue providing an explanation for the partial recovery
of obese phenotype in iNOS−/− mice. The present study, by using a multipronged approach, thus
highlights the importance of iNOS in maintaining glucose and lipid homeostasis, and IR.

5. Conclusions

The present study was aimed at characterizing adult iNOS−/− mice for IR by systematically
evaluating the phenotypic, biochemical, functional parameters and also by limited analysis of important
genes. Chow fed adult iNOS−/− mice like other NOS−/− mice exhibited systemic IR, dyslipidemia,
and metabolic perturbations. Improvement in IR after nitrite supplementation correlated with
compensated NO levels which partially reversed the gluconeogenesis, dysregulated insulin signaling,
and weight gain suggesting the beneficial role of homoeostatic iNOS/NO in metabolic regulation.
The results obtained thus demonstrate the important contribution of liver and adipose tissue in
impacting the insulin sensitivity in iNOS−/− mice.
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Abbreviations

ABCG5/8 ATP-binding cassette subfamily G member 5/8;
ACC1 Acetyl-CoA carboxylase 1;
ApoE Apolipoprotein E;
BMI Body mass index;
BMR Basal metabolic rate;
CD36 Cluster of differentiation 36;
eNOS Endothelial-nitric oxide synthase;
eWAT epididymal white adipose tissue;
FAS Fatty acid synthase;
FoxO1 Forkhead box O1
G6PC Glucose-6-phosphatase;
HFD High fat diet;
HMGCoR 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase;
HOMA-IR Homeostatic Model Assessment of Insulin Resistance;
iNOS−/− Inducible-nitric oxide synthase knockout;
IPGTT Intra-peritoneal glucose tolerance test;
IR Insulin resistance;
ITT Insulin tolerance test;
KO Knock out
LDLR Low-Density Lipoprotein Receptor;
LFD Low fat diet;
LPL Lipoprotein Lipase;
LXR Liver X receptor;
nNOS Neuronal-nitric oxide synthase;
NO Nitric oxide;
pAkt phospho protein kinase B;
PC Pyruvate carboxylase;
PCSK9 Proprotein convertase subtilisin/kexin type 9;
PEPCK Phosphoenolpyruvate carboxykinase;
PGC Peroxisome proliferator-activated receptor-γ coactivator;
PI3K Phosphoinositide 3-kinases;
PPAR Peroxisome proliferator-activated receptor;
PTT Pyruvate tolerance test;
QUICKI Quantitative insulin-sensitivity check index;
RER Respiratory Exchange Ratio;
RMR Resting metabolic rate;
SR-1B Scavenger receptor, class B type 1;
SREBP-1c Sterol regulatory element-binding protein 1c;
VLDL Very-low-density lipoprotein;
WT Wild type
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