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Abstract: Lutein (L), zeaxanthin (Z), and meso-zeaxanthin (MZ) have been the focus of research and
commercial interest for their applications in human health. Research into formulations to enhance
their bioavailability is merited. This 6 month randomised placebo-controlled trial involving 81 healthy
volunteers compared the bioavailability of different formulations of free L, Z, and MZ in sunflower
or omega-3 oil versus L, Z, and MZ diacetates (Ld, Zd, and MZd) in a micromicellar formulation.
Fasting serum carotenoids, macular pigment, and skin carotenoid score were analysed at baseline
and 6 months. Serum L, Z, and MZ concentrations increased in all active interventions compared
to placebo (p < 0.001 to p = 0.008). The diacetate micromicelle formulation exhibited a significantly
higher mean response in serum concentrations of Z and MZ compared to the other active interventions
(p = 0.002 to 0.019). A micromicellar formulation with solubilised Z and MZ diacetates is a promising
technology advancement that enhances the bioavailability of these carotenoids when compared to
traditional carotenoid formulations (ISRCTN clinical trial registration number: ISRCTN18206561).
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1. Introduction

Lutein (L), zeaxanthin (Z), and meso-zeaxanthin (MZ) are xanthophyll carotenoids (XC) that
singularly deposit in the human macula lutea [1], where they are known as macular pigment (MP).
L and Z are obtained solely through dietary intake [2]. MZ has been proposed to be obtained from the
endogenous conversion of L in the retinal pigment epithelium [3], but it can be also found in trace
amounts in diet [4]. Over the last two decades, intervention trials have studied the role of L, Z, and MZ
in human health using nutritional supplements [2]. Reports confirmed that these carotenoids enhance
visual performance [5–12] and cognitive function [13], and are potential preventive and therapeutic
agents in retinal pathology, such as non-advanced age-related macular degeneration (AMD) [14].

L used in nutritional supplements is extracted from the marigold flower (Tagetes erecta L.) [15],
while Z is obtained from specific varieties of this flower [16] and peppers [17]. MZ is obtained from
L through a process that promotes the migration of a double bond that turns the ε-ring of L into
a β-ring [18]. In every case, the final purification step forms XC microcrystals [17,19] (Figure 1).
Nutraceutical companies continually seek to develop new methods to protect these microcrystals
from oxidation, improve their solubility in aqueous matrices, and increase their bioavailability in the
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digestive system. Among the methods described to protect the XC microcrystals are the dispersion in
edible oils, encapsulation with biopolymers [20] or mechanochemical complexation [21,22]. To increase
bioavailability and solubility in different matrices, researchers have emulsified the XC following
different methods [23,24]. However, none of these methods manage to dissolve the microcrystals
completely. Recently, a new method esterifying the XCs with short organic acids, claimed to keep XCs
solubilised without the formation of microcrystals under environmental conditions of temperature
and pressure [23,25]. In this process, XCs are esterified with acetate or propionate to form L, Z,
and MZ diacetates (Ld, Zd, and MZd, respectively). After this reaction takes place, XC derivatives
are then homogenised in their natural original flower matrix in the presence of lipids, phospholipids,
fatty acids, and emulsifiers to keep XCs soluble. In the digestive system, this soluble state facilitates
the incorporation of XCs into micromicelles, which are spherical aggregates of lipid molecules in
the presence of amphiphilic compounds known as surfactants [24,26]. This formulation has been
previously tested [27–29] in clinical trials and compared to crystallised formulations (free lutein).
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Figure 1. Formation of lutein (L) from marigold flower as free L (microcrystals) and as a diacetate
derivative. In the flower, L is present as esterified L with fatty acids. To extract this carotenoid, it is
de-esterified and purified by crystallisation. To solubilise these crystals and facilitate absorption in
the digestive system, L and other xanthophyll carotenoids (XCs) can be re-esterified with acetate or
propionate upon crystallisation and re-suspended in the flower’s lipid matrix with added surfactants
to maintain the XCs solubilised under ambient conditions.

Here, we present the findings of the Carotenoid-Omega Availability Study (COAST), which was
performed to compare the bioavailability of Ld, Zd and MZd in a micromicelle formulation with
classical formulations containing the free carotenoids as microcrystals suspended in oil.

2. Materials and Methods

2.1. Design and Study Population

COAST was a 6 month, double-blind, block-randomised placebo-controlled study involving 81
healthy participants between 18 and 65 years old. Participant recruitment and assessment commenced
in December 2017 and ended in December 2018. Recruitment was achieved through local media,
and advertisement at the Waterford Institute of Technology, local fitness centres, and with employees
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of an industry based in Waterford, Ireland. Participants were excluded if they had a medical diagnosis
of a critical or acute medical condition and/or if they were taking nutritional supplements containing
L, Z, MZ, or omega-3 fatty acids. Every participant enrolled in the study provided written informed
consent prior to commencement. The study protocol was approved in May 2017 by the Research
Ethics Committees of the Waterford Institute of Technology (Waterford, Ireland; +353-51-302000;
ethics@wit.ie), ref: 17/HS-MPRG/01 and the HSE, South Eastern Area (University Hospital Waterford,
Waterford, Ireland; +353-51-842026). Industrial Organica, S.A. de C.V., the manufacturer of the
nutritional supplements, had no role in the design of the study, the collection and analysis of the data,
or the preparation of the manuscript. All authors vouch for the accuracy of the data and the fidelity of
the study to the protocol.

2.2. Interventions

COAST was a five-arm intervention study, where participants were randomly allocated, with equal
probability and separately for men and women, to one of four active intervention groups or to a placebo
group. Label claims of the nutritional content in the intervention supplements were as follows: Group 1,
L (10 mg) + MZ (10 mg) + Z (2 mg) provided in one capsule; Group 2, L (10 mg) + MZ (10 mg) + Z (2 mg)
provided in two capsules; Group 3, L (10 mg) + MZ (10 mg) + Z (2 mg) provided in DHA (430 mg)
and EPA (90 mg) in two capsules; and Group 4, Ld (10 mg) + MZd (10 mg) + Zd (2 mg) provided
in a micromicelle formulation in one capsule; or Group 5, placebo (sunflower oil). L, Z, and MZ
were supplied in free form as microcrystals for Groups 1,2, and 3. For Group 4, L, Z and MZ were
supplied as L, Z, and MZ diacetates. In Group 1 and 2, carotenoids were provided in a sunflower oil
suspension; in Group 3, carotenoids were suspended in fish oil supplied by Epax (Ålesund, Norway;
product number: EPAX1050TG), and vitamin E (DL-α-tocopheryl acetate; 5 g/kg) was added as a
preservative; and in Group 4, carotenoids were provided as a solubilisate prepared for micellarisation
(marketed as MicroMic™). The supplements were provided to the participants in a sealed container
and the capsules for all the intervention groups were identical in appearance. Subjects were instructed
to take either 1 or 2 capsules per day depending on the intervention with a meal. The supplements
were provided by Industrial Organica (Monterrey, Mexico) free-of-charge for use in the trial.

Analysis of Supplements

Carotenoid analysis of the supplements used in this study was conducted at our laboratory as
previously described [30]. For carotenoid content of the formulation containing diacetate-carotenoids,
the mobile phase was adjusted to hexane:isopropanol 99:1 (v/v). The carotenoid profile of the oil phase
of supplements was conducted after filtering the content of five capsules through two nylon filters
of 0.45 µm pore diameter (Chromafil, Apex Scientific Ltd., Kildare, Ireland). Capsule contents were
also analysed under optical and polarised light microscopy. Images were taken using an Olympus
BX51 digital microscopy system (Olympus Corporation, Tokyo, Japan) equipped with a polariser and
a ProgRes CT3 digital camera head (Jenoptik, Jena, Germany). Micrographs were obtained using a
60× oil immersion objective. ProgRes CapturePro software (v 2.10.0.0) was used for image capturing.

2.3. Study Evaluations

2.3.1. Demographic, Lifestyle, Medical, and Dietary Assessment

Standardised case report forms were used to record demographics, lifestyle, medical history
and anthropometrics at two timepoints, at baseline and at 6 months following supplementation.
Cigarette smoking was recorded by smoking status as follows: never, if never smoked more than
100 cigarettes, former, if smoked more than 100 cigarettes in the past year and none in the last month;
or current. Education was recorded as high school or less, bachelor’s degree, or postgraduate education.
Physical examination included height and body weight to calculate body mass index (BMI, kg/m2).
International cut-offs for normal, overweight, and obesity were used.
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2.3.2. Outcome Measures

L, Z, and MZ bioavailability measured as a response in serum and tissue concentrations was the
primary outcome of the present study. Serum carotenoid concentrations were analysed as the total
concentrations (µmol/L) for each of carotenoids in serum. Total carotenoid concentrations were obtained
by the sum of L, Z, and MZ concentrations. Tissue concentrations of L, Z, and MZ were measured as a
composite MP and skin carotenoid score. All methods are described below. Outcome variables were
recorded at baseline and at 6 months.

2.3.3. Macular Pigment Measurement

MP was measured by dual-wavelength autofluorescence (AF) using the Spectralis investigational
macular pigment optical density (MPOD) module (Heidelberg Engineering GmbH, Heidelberg,
Germany). Specifications and details on the technique and image acquisition have been described
elsewhere [30]. In short, pupils were dilated prior to MP measurement, and patient details were
entered into the Heidelberg Eye Explorer (HEYEX version 1.7.1.0) software. Alignment, focus and
camera sensitivity were first optimised in near-infrared reflectance mode. Subsequently, BAF+GAF
(simultaneous blue and green AF) movie images were acquired, while the HEYEX software ensured
proper alignment and averaging of these images in order to generate a MP density map, where the
reference eccentricity was defined at 7◦ retinal eccentricity from point of fixation (where MPOD was
defined as zero). MP measurement was reported in terms of MPOV as standardised previously [30].

2.3.4. Skin Carotenoid Concentrations

Carotenoid concentrations in the skin were obtained using the Nu Skin Pharmanex S3 scanner,
a non-invasive instrument that uses Raman spectroscopy technology [2]. This technique generates a
skin carotenoid score (SCS) by measuring skin carotenoid concentrations between the maximal and
distal palmar creases, directly below the fifth finger of the right hand using the Pharmanex BioPhotonic
Scanner device.

2.3.5. Carotenoid Serum Concentrations

Fasting (overnight fast > 9 h) blood samples were collected at 0, 3, and 6 months for XC serum
analysis. Blood samples were collected by standard venepuncture techniques in 9 mL blood collection
tubes (BD Vacutainer SST Serum Separation Tubes) containing a “Z Serum Sep Clot Activator”.
Collection tubes underwent thorough mixing of the clot activator. The blood samples were left for
30 min at room temperature to clot and then centrifuged at 725 g for 10 min in a GruppeGC12 centrifuge
(Desaga Sarstedt) to separate the serum from the whole blood. Following centrifugation, serum was
transferred to light-resistant microtubes and stored at circa −80 ◦C until the time of batch analysis.
Serum carotenoid analysis was performed by high performance liquid chromatography (HPLC),
using a method previously described by our laboratory [31]. The calibration lines used, as well as the
lower and upper limits of quantification (LLOQ and ULOQ respectively), were as in the cited work.
Serum carotenoid analysis was completed in sixteen independent batches, with a maximum intra-day
precision of 7.28%, measured as RSD, and an inter-day precision of 3.16% (RSD).

2.4. Follow-Up and Adherence

Follow-up study visits were scheduled at 3 months after baseline and at 6 months (endpoint).
Adherence to the treatment regime was assessed by pill count at each visit and by serum analysis at
3 months. Information on their change in lifestyle and health as well as adverse events was collected at
each visit. Adverse events were collected through a non-validated questionnaire.
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2.5. Statistical Analysis

Data were described using usual statistics, including means (±SDs), medians, minimum,
and maximum values for quantitative variables, and frequencies and percentages for qualitative
variables. Between-group differences at baseline were analysed using analysis of variance,
or Kruskal–Wallis, as appropriate for quantitative variables, and chi-square test for qualitative
variables. Groups differed significantly with respect to BMI at baseline, which was further controlled
using ANCOVA. However, BMI in these models was not significantly related to any outcome variable,
so it was subsequently removed from each model. The results reported below, therefore, are all for
simpler models, relating change in outcome variables to intervention alone.

General linear models were used to analyse the change in primary outcome variables (change
carotenoid serum concentrations, MPOV and skin carotenoid score). Change was analysed as the
difference of the outcome variable from baseline and 6 months. The hypotheses were (a) that the
active intervention groups (unrelated treatments) would all have a higher average response after six
months, in serum and in tissue concentrations compared with the placebo group, and (b) that the
diacetate micromicellar formulation would have a higher average response as compared with the
other active interventions. The first of these hypotheses was investigated directly from the fitted linear
models, and the second using pairwise comparisons based on 2-tailed independent samples T-tests.
No adjustment for multiple comparisons was deemed appropriate. Pearson’s coefficient was used to
investigate relationships between change in serum and change in tissue of carotenoid concentrations.
The statistical package IBM SPSS version 25 (Armonk, NY, USA) was used, and a 5% significance level
was applied throughout.

3. Results

A total of 81 participants were enrolled at baseline with 68 (84%) participants completing final
assessment at 6 months; nine (11%) participants were lost to follow-up and four (5%) discontinued the
study, one due to pregnancy, two due to minor adverse events, and one due to a general practitioner
request (Figure 2). Adverse events reported throughout the 6 months of the study were all related
to minor gastrointestinal symptoms: bloating, acid reflux and discomfort. There was no statistical
difference between active interventions and placebo (p > 0.05). One participant allocated to the placebo
arm was excluded from analysis as he reported supplementation with carotenoids during the duration
of the study, which was confirmed by the detection of high concentrations of MZ in serum at 6 months.
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Figure 2. Screening, randomisation, and follow-up of study participants. Abbreviations: L, lutein;
MZ, meso-zeaxanthin; Z, zeaxanthin. A total of 2 participants discontinued the interventions due to
adverse events related to gastrointestinal symptoms, bloating and gastric discomfort when taken in a
fasted state. Lost to follow-up was due to loss of contact.



Antioxidants 2020, 9, 767 6 of 15

All the participants who completed the study consumed in average 89% of the assigned
number of tablets. There were no significant differences in tablet count between groups (p = 0.512).
Participants tested at 3 months had an average increase in their serum concentrations of L and Z by
239% and 37%, respectively, and MZ serum concentrations increased from 0 to 0.075 µmol/L.

3.1. Baseline Data

The mean (range) age of the participants was 44.8 (25 to 62) years, and 47.8% (n = 32) were
women. Baseline characteristics were statistically comparable across the five groups, except for BMI
(p = 0.027), which was within the normal range in Group 2 and Group 5, but higher for Group 1,
Group 3, and Group 4 (Table 1).

Table 1. Baseline characteristics of the study participants 1.

Variable
All Subjects

(n = 67)

Subjects Divided by Intervention Group

Group 1
(n = 11)

Group 2
(n = 14)

Group 3
(n = 16)

Group 4
(n = 13)

Group 5
(n = 13)

Age (y) 44.8 ± 10 46.0 ± 9.4 44.9 ± 8.9 41.6 ± 10.7 46.3 ± 12.2 46.1 ± 9.7

Females, No. (%) 32 (47.8) 5 (45.5) 7 (50) 8 (50) 5 (38.5) 7 (53.8)

Smoking, No. (%)
Never 32 (47.8) 5 (45.4) 7 (50.0) 8 (50) 5 (38.5) 7 (53.8)

Former 25 (37.3) 4 (36.4) 4 (28.6) 6 (37.5) 7 (53.8) 4 (30.8)
Current 10 (14.9) 2 (18.2) 3 (21.4) 2 (12.5) 1 (7.7) 2 (15.4)

Education, No. (%)
High-school 29 (43.3) 2 (18.2) 5 (35.7) 7 (43.7) 10 (76.9) 5 (38.4)

College 25 (37.3) 7 (63.6) 4 (28.6) 6 (37.5) 2 (15.4) 6 (46.2)
Postgraduate 13 (19.4) 2 (18.2) 5 (35.7) 3 (18.8) 1 (7.7) 2 (15.4)

BMI
[range]

27.3 ± 5.6
[19–43]

28.4 ± 6.1
[20–42]

24.5 ± 4.5
[20–38]

28.7 ± 6.9
[19–43]

30.2 ± 5.3
[20–39]

25.0 ± 3.3
[21–30]

Xanthophyll Carotenoid Concentrations (Serum and Tissue)

Serum L, µmol/L 0.194 ± 0.096 0.184 ± 0.067 0.223 ± 0.116 0.188 ± 0.120 0.177 ± 0.108 0.187 ± 0.057

Serum Z, µmol/L 0.073 ± 0.029 0.074 ± 0.028 0.086 ± 0.038 0.071 ± 0.030 0.060 ± 0.022 0.073 ± 0.029

MPOV
[range]

4553 ± 2095
[527–10,033]

5263 ± 1789
[2243–8861]

4793 ± 2885
[527–10,033]

3890 ± 1925
[1327–7649]

4277 ± 2115
[1027–8639]

4784 ± 1446
[2632–7880]

Skin Carotenoid
Score 36,027 ± 12,458 37,970 ± 13,652 40,833 ± 15,063 34,656 ± 11,142 30,385 ± 12,065 36,538 ± 9173

1 Plus-minus values are means ± SD. There were no significant between-group differences at baseline except
for BMI (p = 0.027). P values were based on chi-square and ANOVA or Kruskall–Wallis where appropriate.
Abbreviations: L, lutein; Z, zeaxanthin; BMI, body mass index; y, years; MPOV, macular pigment optical volume.
Interventions are as follows: Group 1, L (10 mg) + MZ (10 mg) + Z (2 mg) provided in one capsule; Group 2,
L (10 mg) + MZ (10 mg) + Z (2 mg) provided in two capsules; Group 3, L (10 mg) + MZ (10 mg) + Z (2 mg) provided
in DHA (430 mg) and EPA (90 mg) in two capsules; and Group 4, Ld (10 mg) + MZd (10 mg) + Zd (2 mg) provided
in one capsule; or Group 5, placebo (sunflower oil).

The baseline serum and tissue levels of study nutrients were balanced across the treatment groups
(Table 1). MZ concentrations in all participants were undetectable at baseline, which confirms the
exclusion criterion of MZ supplementation.

3.2. Analysis of Carotenoids in Supplements

The biochemical analysis of the supplements used in this study showed different carotenoid
concentrations to those in the label claim (Table 2). The statistical analysis conducted to compare
results of the analysed concentrations to those in the label claim did not show significantly different
results. Therefore, we decided to present the dosages of the formulations as stated by the label claim.
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Table 2. Carotenoid concentrations analysed per capsule interventions 1.

Carotenoid Group 1 Group 2 Group 3 Group 4 Group 5

Lutein 9.42 ± 0.11 5.80 ± 0.19 4.48 ± 0.07 10.24 ± 0.54 0
Meso-zeaxanthin 13.06 ± 0.15 8.12 ± 0.27 6.49 ± 0.12 10.62 ± 0.61 0

Zeaxanthin 2.12 ± 0.03 1.38 ± 0.04 1.75 ± 0.03 1.98 ± 0.11 0
Dosage (capsule/day) 1 2 2 1 1

Total carotenoids ingested per day (mg) 24.60 30.60 25.44 22.84 0
1 Plus-minus values are means ± SD. Values are total carotenoid concentrations per capsule (mg). There were no
significant between-group differences in change of L serum concentrations per gram taken (p = 0.419); change in
Z, and MZ serum concentrations per gram taken were higher for Group 4 (p < 0.001). P values were based on
chi-square and ANOVA or Kruskall-Wallis where appropriate. Bonferroni correction was performed for post-hoc
analysis. Label claim for total nutrient concentrations were as follows: Group 1, L (10 mg) + MZ (10 mg) + Z (2 mg)
provided in one capsule; Group 2, L (10 mg) + MZ (10 mg) + Z (2 mg) provided in two capsules; Group 3, L (10 mg)
+ MZ (10 mg) + Z (2 mg) provided in DHA (430 mg) and EPA (90 mg) in two capsules; and Group 4, Ld (10 mg) +
MZd (10 mg) + Zd (2 mg) provided in one capsule; or Group 5, placebo (sunflower oil).

Light microscopy analysis showed the presence of needle-shaped microcrystals in Groups 1, 2,
and 3 but the absence of them in Group 4 (Figure 3a–d). This was further confirmed under polarised
light microscopy (Figure 3e–h). To assess the carotenoid profile of the oil phase of the capsules
containing microcrystals, we separated the oil phase from the microcrystals in capsules of Group 2.
The analysis of the complete content of the capsule (including the microcrystals) showed the presence
of the three carotenoids (Supplementary Materials Figure S1A); however, the oil contained almost
exclusively L (Supplemental Figure S1B). This content of L accounted for roughly 1.1% of the total L in
the capsule.
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3.3. L, Z, and MZ Serum Concentrations

The increase in serum concentrations of L, Z, and MZ in all active groups was statistically
significant compared to placebo (p < 0.001 to p = 0.008) (Table 3), except for Group 2 (p = 0.366).

In addition, the increase in Z and MZ serum concentrations in Group 4 (diacetate micromicelle
formulation) was significantly greater compared to the other three active groups (p = 0.002 to 0.019)
(Table 4, Figure 4). Table 4 compares the effect of Group 4 on serum and tissue response compared to
the other interventions.
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Table 3. Response in serum and tissue concentrations to different formulations of nutritional
supplements with L, Z, and MZ compared to placebo 1.

Intervention
Outcome (µmol/L)

L Z MZ MPOV Skin

Group 1 (n = 11)

0 Mo 0.18 ± 0.07 0.07 ± 0.03 0 5263 ± 1789 37,970 ± 13,652
6 Mo 0.61 ± 0.25 0.09 ± 0.03 0.06 ± 0.03 5943 ± 1567 52,303 ± 15,253

Change 0.43 ± 0.22 0.02 ± 0.02 0.06 ± 0.03 680 ± 661 14,333 ± 8467
p value 2 <0.001 0.007 <0.001 0.039 0.024

Group 2 (n = 14)

0 Mo 0.22 ± 0.12 0.09 ± 0.04 0 4793 ± 2885 40,833 ± 15,063
6 Mo 0.56 ± 0.29 0.09 ± 0.02 0.04 ± 0.03 5802 ± 3254 48,571 ± 10,921

Change 0.34 ± 0.29 0.00 ± 0.03 0.04 ± 0.03 1010 ± 914 7738 ± 9369
p value 2 0.001 0.366 <0.001 0.006 0.543

Group 3 (n = 16)

0 Mo 0.19 ± 0.12 0.07 ± 0.03 0 3890 ± 1925 34,656 ± 11,142
6 Mo 0.52 ± 0.29 0.09 ± 0.03 0.04 ± 0.03 4911 ± 1846 45,542 ± 10,750

Change 0.33 ± 0.25 0.02 ± 0.03 0.04 ± 0.03 1021 ± 743 10,885 ± 7115
p value 2 <0.001 0.008 <0.001 0.001 0.087

Group 4 (n = 13)

0 Mo 0.18 ± 0.11 0.06 ± 0.02 0 4277 ± 2115 30,385 ± 12,065
6 Mo 0.58 ± 0.43 0.11 ± 0.05 0.16 ± 0.15 5331 ± 2061 47,718 ± 12,718

Change 0.40 ± 0.38 0.05 ± 0.04 0.16 ± 0.15 1054 ± 680 17,333 ± 12,664
p value 2 0.002 <0.001 0.001 0.001 0.012

Group 5 (n = 13)

0 Mo 0.19 ± 0.06 0.07 ± 0.03 0 4784 ± 1446 36,538 ± 9173
6 Mo 0.18 ± 0.06 0.07 ± 0.02 0 4894 ± 1581 42,077 ± 9557

Change −0.01 ± 0.05 0.00 ± 0.01 0 110 ± 606 5539 ± 9125
p value 2 - - - - -

1 Values are mean ± SD, L (indicates lutein serum concentrations, µmol/L); Z (indicates zeaxanthin serum
concentrations, µmol/L); MZ (indicates meso-zeaxanthin serum concentrations, µmol/L); MPOV, macular pigment
optical volume; Skin indicates skin carotenoid score. 2 Between-group differences comparing change from baseline
in each intervention group with placebo were analysed with the use of an independent-sample t-test. Change was
calculated as the difference from baseline. Interventions are as follows: Group 1, L (10 mg) + MZ (10 mg) + Z (2 mg)
provided in one capsule; Group 2, L (10 mg) + MZ (10 mg) + Z (2 mg) provided in two capsules; Group 3,
L (10 mg) + MZ (10 mg) + Z (2 mg) provided in DHA (430 mg) and EPA (90 mg) in two capsules; and Group 4,
Ld (10 mg) + MZd (10 mg) + Zd (2 mg) provided in one capsule; or Group 5, placebo (sunflower oil).

Table 4. Effect of the diacetate formulation on serum and tissue response compared to the
other formulations 1.

Outcome
Group 4 vs. Group 1 Group 4 vs. Group 2 Group 4 vs. Group 3

Difference in Change p-Value Difference in Change p-Value Difference in Change p-Value

L −0.027 (−0.297 to 0.244) 0.839 0.056 (−0.208 to 0.320) 0.666 0.070 (−0.175 to 0.315) 0.563
Z 0.033 (0.006 to 0.059) 0.018 0.045 (0.018 to 0.072) 0.002 0.030 (0.005 to 0.055) 0.019

MZ 0.109 (0.020 to 0.197) 0.019 0.124 (0.036 to 0.211) 0.009 0.126 (0.039 to 0.214) 0.008
MPOV 374 (−196 to 944) 0.187 45 (−598 to 687) 0.888 33 (−515 to 581) 0.903
SKIN 3000 (−6310 to 12,310) 0.511 9595 (811 to 18,379) 0.034 6448 (−1191 to 14,087) 0.095

1 Values are mean (95%CI). Abbreviations: L, lutein (indicates L serum concentrations, µmol/L);
Z, zeaxanthin (indicates Z serum concentrations, µmol/L); MZ, meso-zeaxanthin (indicates MZ serum concentrations,
µmol/L); MPOV, macular pigment optical volume; Skin indicates skin carotenoid score. The between-group
differences were analysed with the use of an independent-sample t-test to compare group 4 against the other 3 active
groups. Interventions are as follows: Group 1, L (10 mg) + MZ (10 mg) + Z (2 mg) provided in one capsule; Group 2,
L (10 mg) + MZ (10 mg) + Z (2 mg) provided in two capsules; Group 3, L (10 mg) + MZ (10 mg) + Z (2 mg) provided
in DHA (430 mg) and EPA (90 mg) in two capsules; and Group 4, Ld (10 mg) + MZd (10 mg) + Zd (2 mg) provided
in one capsule; or Group 5, placebo (sunflower oil).
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Figure 4. Effect of different formulations in change of serum concentrations. Between-group differences
in change in (a) Z and (b) MZ serum concentrations expressed as change from baseline and 6 months.
Z and MZ serum response in Group 4 was significantly higher compared to the other active interventions
and placebo (p < 0.000 to p = 0.019). Outliers are marked with a circle (O) and extreme outliers are
marked with an asterisk (*) on the boxplot
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3.4. L, Z, and MZ Tissue Concentrations

3.4.1. MP and MPOV

The increase in MPOV in all groups was statistically significant compared to placebo (Table 3).
Interestingly, the correlation between the change in total serum carotenoids and MPOV was r = 0.408,
p = 0.001 (Figure 5). There were no significant differences between the four active intervention groups
when comparing MPOV improvements.
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Figure 5. The relationship between the change in carotenoid serum concentration and change in tissue
(response). Linear regression analyses of total carotenoid serum concentrations (L + Z + MZ)
and (a) MPOV (r = 0.408, p = 0.001), and (b) carotenoid skin score (r = 0.528, p < 0.001).
Interventions are as follows: Group 1, L (10 mg) + MZ (10 mg) + Z (2 mg) provided in one
capsule; Group 2, L (10 mg) + MZ (10 mg) + Z (2 mg) provided in two capsules; Group 3,
L (10 mg) + MZ (10 mg) + Z (2 mg) provided in DHA (430 mg) and EPA (90 mg) in two capsules;
and Group 4, Ld (10 mg) + MZd (10 mg) + Zd (2 mg) provided in one capsule; or Group 5,
placebo (sunflower oil).
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3.4.2. Carotenoid Skin Concentrations

The change in skin carotenoid concentrations was positively correlated with the total change in
serum concentrations (r = 0.528, p < 0.001) (Figure 5). The change in skin carotenoid concentrations
was statistically significant only in Group 1 and Group 4 compared to placebo (p = 0.024 and p = 0.012,
respectively) (Table 3). In addition, increases in skin carotenoid score in Group 4 were significantly
higher compared to Group 2 (p = 0.034) (Table 4).

4. Discussion

In this multiple-arm, randomised clinical trial, daily supplementation with L, Z, and MZ using
different formulations significantly increased serum concentrations of these nutrients compared to
placebo. After 6 months of supplementation, the mean serum concentrations of L and Z increased by
193% and 37%, respectively. This dose–response effect is consistent with the ratio of L and Z provided
in the supplement (i.e., circa 5:1). In addition, MZ serum concentrations significantly increased from
baseline. These percentage increases in serum were comparable to previous studies using similar
carotenoid formulations and amounts [12,32]. For example, L increased by 200% in the AREDS 2
study [32], and by 304% in the CREST AMD study [12].

A finding that merits discussion is the impact of the diacetate micromicelle formulation on the
absorption of the ingested carotenoids. In the present study, the serum response to Zd and MZd
(Group 4, solubilised acetate-esterified XC) was significantly greater compared to the formulations
containing free carotenoids. However, it was striking to see that the serum response to Ld remained
similar to that of free L. This, however, is consistent with a previous clinical trial performed by Landrum
et al., which reported that serum response to Ld was slightly higher but not statistically different when
compared to the group supplemented with free L provided as microcrystals in oil [28]. Interestingly,
the results of a study in hens conducted by our group to assess the bioavailability of XC diacetates are
similar to the present work, as Zd and MZd exhibited a greater capability to increase the deposition of
Z and MZ in egg yolk than the free form of these carotenoids [33]. Again, the increase achieved by Ld
was similar to the increase observed with free L.

The formulation used in Group 4 contained acetate-esterified XCs plus a series of lipids and
surfactants that keep these carotenoid derivatives solubilised in the capsule, without forming
microcrystals [23]. These pre-solubilised XCs would be ready for micelle formation in the digestive
system for absorption in the intestinal mucosa. On the other hand, free carotenoids form crystals
which have to be solubilised by the digestive system prior to the incorporation into micelles [34].
This advantage of pre-solubilised acetate-esterified XCs could explain the greater efficiency of Zd
and MZd in increasing serum Z and MZ levels when compared to the microcrystalline form of these
carotenoids. It is striking, therefore, that this theoretical superiority of acetate-esterified XCs over
microcrystals is appreciated for Zd and MZd, but not for Ld. Multiple mechanisms may be preventing
Ld from facilitating an increased absorption. For example, L contains an ε-ring that is oriented
differently from the β-ring of Z and MZ, which seems to affect the position that this XC occupies
in lipid membranes [35]. Ld, with an acetate group added to the ε-ring, could be positioned less
favourably than Zd and MZd in nascent micelles, which could limit its processing by the carboxyl
ester lipase (CEL) and subsequent contact with the scavenger receptor class B type 1 (SRB- 1) for
internalisation in the intestinal cells. On the other hand, to explain the different behaviour of Ld we
also suggest an alternative hypothesis: L microcrystals could be sufficiently solubilised in the digestive
tract, thus efficiently yielding soluble free L for micelle formation. In this way, Ld would not offer any
advantage over L microcrystals, unlike what we have seen with Zd and MZd. The analysis of one
of the formulations containing free carotenoids as microcrystals shows that L has a greater tendency
to dissolve in the oil when compared to Z and MZ, which supports this hypothesis. Nevertheless,
it would be necessary to understand the physicochemical behaviour of the crystalline form of these
xanthophylls in the digestive system to test this hypothesis.
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In tissue, after 6 months of supplementation, the mean MPOV significantly increased by 33% on
average for all interventions compared to placebo, but improvement over time between the active
interventions was not significantly different (given that MPOV improved in all interventions) (Table 3).
However, it should be noted that the largest increase in MPOV was seen in Groups 2, 3 and 4,
which exhibited almost double the MPOV increases than Group 1. Nevertheless, Group 4, which had
the lowest concentrations of carotenoids in the formulation (Table 1), exhibited the largest response
(Table 3). A longer duration of supplementation is required to assess the long-term differences between
these interventions in terms of MPOV response and functional benefits in vision. With respect to the
skin carotenoid score, statistically significant improvements compared to placebo were seen in Groups
1 and 4 only; however, Group 4 was significantly superior to Group 2 (Table 4). This finding is likely
attributable to the enhanced bioavailability of Zd and MZd achieved in the micromicelle formulation.

We want to highlight that in the present work, the increase over time in the XC concentrations
significantly correlated in serum and tissue for all the groups (r = 0.408, p = 0.001 and r = 0.528,
p < 0.001, respectively). Of note, this is an important result because in our previous interventional
trials the change in serum carotenoids poorly correlated with a change in MP, something that is also
seen in blood/retinal non-responders [36,37].

The present work describes the behaviour of a diacetate formulation in a solubilisate prepared
for micellarisation of L, Z, and MZ compared with crystalline formulations. This study was a
double-blind placebo-controlled trial providing a high quality of evidence to the field of nutritional
supplements assessed in a multidisciplinary approach. Our findings provide additional evidence for
XC bioavailability. The improved response to Zd and MZd is timely given the recent work by Binxing
et al., where it appears that Z and MZ are preferentially accumulated in the human retina over L [38].
However, we still acknowledge the importance of the three carotenoids, including L, which collectively
contribute to the formation of MP. Future studies should evaluate how these carotenoids become
available for absorption in the intestinal tract, their transport in serum, and their absorption in tissue.
In addition, a study to separate the effects from both the micellar solubilisate and the acetylation
of the aforementioned formulation is needed in order to understand the role of each factor in the
bioavailability of these carotenoids.

One limitation of the present study was that in order to compare multiple interventions, the sample
size in each group had to be reduced. Even though a multiple-arm RCT design helps to overcome
sample limitations, each group had a small sample size, with only one group having >15 participants
(Group 3). In addition, other studies reported change over time in serum and tissue over longer
periods of time, and these reports suggested that sustained supplementation with carotenoids is
required to achieve maximal improvements in MPOV and functional outcomes [39]. However,
even though a longer study is likely to have shown a greater difference between groups in MPOV,
in this 6 month intervention we did demonstrate significant improvements in MPOV (for all Groups)
and skin carotenoid score (for Groups 1 and 4) compared to placebo. The other challenge faced in
clinical studies such as this is compliance. Even though we complied with RCT guidelines by counting
tablets, we additionally measured XC concentrations in serum at 3 months as an additional compliance
marker. Finally, the participants in our study were healthy Irish adults without known established
diseases. Thus, we do not know whether these results would be similar in other ethnic groups, diseases,
or children, though we speculate that the same biologic mechanisms are operative.

5. Conclusions

In conclusion, Z and MZ diacetates in a micromicellar formulation presented an increased
bioavailability, most likely due to improved micellarisation and absorption efficiency. This formulation
is a promising technology advancement that enhances the bioavailability of Z and MZ when compared
to traditional carotenoid formulations.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3921/9/8/767/s1,
Figure S1: Representative chiral HPLC carotenoid profile of a capsule from intervention Group 2.

http://www.mdpi.com/2076-3921/9/8/767/s1
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