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Abstract: The development of vaccines to treat and prevent human immunodeficiency 

virus (HIV) infection has been hampered by an incomplete understanding of “protective” 

immune responses against HIV. Natural control of HIV-1 infection is associated with  

T-cell responses against HIV-1 Gag proteins, particularly CD8
+
 T-cell responses restricted 

by “protective” HLA-B alleles, but other immune responses also contribute to immune 

control. These immune responses appear to include IgG antibodies to HIV-1 Gag proteins, 

interferon--dependant natural killer (NK) cell responses and plasmacytoid dendritic cell 

(pDC) responses. Here, it is proposed that isotype diversification of IgG antibodies against 

HIV-1 Gag proteins, to include IgG2, as well as IgG3 and IgG1 antibodies, will broaden 

the function of the antibody response and facilitate accessory cell responses against HIV-1 

by NK cells and pDCs. We suggest that this should be investigated as a vaccination 

strategy for HIV-1 infection. 

Keywords: HIV; vaccine; HIV-1 Gag; IgG antibody diversification; IgG subclasses 

 

1. Introduction 

The development of human immunodeficiency virus (HIV) vaccines is a global health priority, 

particularly at a time when therapeutic vaccines are being considered as a component of a strategy for 

eradicating HIV infection [1]. However, the development of therapeutic HIV vaccines has been 

hampered by an incomplete understanding of protective immune responses that control HIV infection, 
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as exemplified by the failure of multiple candidate vaccines [2]. Here, we propose the hypothesis that 

isotype diversification of IgG antibodies against HIV-1 Gag proteins contributes to the control of HIV-1 

replication and review the supporting evidence for this hypothesis, including data from our own 

studies. Furthermore, we discuss how this information might be applied to therapeutic vaccination 

strategies for HIV-1 infection. 

2. Natural Control of HIV-1 Infection Is Associated with T-Cell Responses against HIV-1  

Gag Proteins 

Approximately 1% of patients with HIV-1 infection control the infection without antiretroviral 

therapy (ART) and are referred to as controllers [3]. Intense analysis of controllers is being undertaken 

to define “protective” immune responses against HIV-1 proteins that might be enhanced by therapeutic 

vaccines. Studies of HIV-1 controllers suggest that natural immune control of HIV-1 correlates with  

T-cell responses against viral proteins, particularly CD8
+
 T-cell responses against proteins of the virus 

core encoded by Gag that are restricted by “protective” HLA-B alleles [4,5], “helped” by Th1 CD4
+
  

T-cells [6] and are “highly functional” [7]. Similarly, natural control of HIV-2 infection is also associated 

with high-magnitude polyfunctional Gag-specific CD8
+
 T-cell responses [8]. Of note, resting CD4

+
  

T-cells “latently” infected with HIV-1 express Gag proteins on the cell surface more than other HIV 

proteins and are a potential target of immune responses against Gag proteins in patients receiving ART [9]. 

However, vaccine-induced CD8
+
 T-cell responses against HIV-1 Gag proteins have not been associated 

with prevention or control of HIV-1 infection in randomised controlled clinical trials involving large 

numbers of patients [2,10], though a clinical trial of an Ad5/Gag vaccine as a therapeutic vaccine did 

demonstrate that vaccine-induced Gag-specific CD4
+
 T-cells producing IFN- correlated with control 

of HIV-1 replication [11]. 

3. IgG Antibody Responses against HIV-1 Gag Proteins, Plasmacytoid Dendritic Cells and  

IFN--Dependant Natural Killer Cell Responses May Also Contribute to Control of  

HIV-1 Infection 

Approximately one third of HIV-1 controllers do not exhibit evidence of HLA-B-restricted CD8
+
 T-cell 

responses against Gag proteins [12], suggesting that other immune responses also contribute to natural 

control of HIV-1 infection. At least 15 published studies undertaken between 1989 and 2000 in untreated 

HIV-1-infected adults and children who were not selected on the basis of a controller phenotype, 

demonstrated that progression of HIV-1 disease was slower in patients with higher serum levels and/or 

avidity of IgG antibodies to HIV-1 Gag proteins (p17, p24, p55) [13–29], suggesting that HIV-1 Gag 

proteins might be used as vaccine immunogens for eliciting antibodies to control HIV-1 infection. HIV-1 

Gag proteins might have the particular advantage of exhibiting high intra-clade and inter-clade epitope 

conservation, at least for T-cell epitopes [30], and might thereby elicit broadly reactive antibodies.  

In addition, an increasing amount of evidence indicates that natural control of HIV-1 infection is 

associated with responses by interferon (IFN)--dependant natural killer (NK) cells [31] and plasmacytoid 

dendritic cells (pDCs) [32,33], which are the major producers of IFN-[34]. Both NK cells and pDCs 

mediate innate immune responses against viruses [34,35], but both also function as accessory cells in 

IgG antibody responses, and therefore, their function might be enhanced by IgG antibodies induced by 



Vaccines 2013, 1 330 

 

 

vaccines. Activation of both cell types induces a diverse anti-viral response that, in particular, includes 

lysis of virus-infected cells by NK cells and production of type I interferons by pDCs [34,35]. 

Plasmacytoid dendritic cells also function as antigen-presenting cells for T-cells [36–39], including 

cross-presentation to CD8
+
 T-cells [40,41], and regulate B-cell differentiation [42]. 

4. The Role of Non-Neutralising Antibodies in the Control of HIV-1 Infection 

Non-neutralising antibodies mediate their effect by activating accessory cells, which also function 

as antigen-presenting cells and/or elicit innate immune responses. Activation of accessory cells by IgG 

non-neutralising antibodies is mediated by the Fc region of the antibody binding to Fc receptors [43]. 

Antibody responses of this type elicited against HIV-1 proteins include antibody-dependant NK cell 

responses (often referred to as antibody-dependant cell-mediated cytotoxicity; ADCC) [44,45], 

antibody-dependant cell-mediated viral inhibition (ADCVI) [46] and phagocytic antibodies [47,48].  

It is currently unclear to what extent these antibody responses are associated with control of HIV-1 

infection. Thus, whilst ADCVI responses to whole virus may be associated with prevention of HIV 

infection after vaccination with recombinant gp120 [46], they are not associated with prevention of HIV-1 

superinfection [49]. Similarly, long-term slow progression of HIV-1 infection has been associated with a 

wide breadth of antibody-dependant NK cell responses to regulatory/accessory proteins of HIV-1 [50], 

but immune escape from ADCC antibodies to envelope proteins is common [45].  

5. Diversification of IgG Antibody Responses against HIV-1 Gag Proteins May Broaden  

Fc Receptor Ligation and Accessory Cell Responses against HIV-1 

Antibody-induced activation of NK cells (including ADCC) results from ligation of FcRIIIa and is 

primarily mediated by monomeric or complexed antibodies of the IgG1 and IgG3 subclass, though 

complexed IgG2 and IgG4 antibodies can also bind to the 158V genotype of FcRIIIa, which confers a 

higher affinity of Fc binding than the 158F genotype [51,52]. Plasmacytoid dendritic cells express the 

activatory receptor, FcRIIa, as well as small amounts of the inhibitory receptor, FcRIIb, in about 

10% of healthy individuals, but not the activatory receptors, FcRI or FcRIIIa [53–57]. FcRIIa plays 

a dominant role in phagocytic antibody responses [58] and has been demonstrated to facilitate the 

phagocytosis of immune complexes containing “self” or viral nucleic acids by pDCs, resulting in 

sensing of those nucleic acids by toll-like receptors and pDC activation [54,55,59]. 

Studies in patients with HIV-1 infection have demonstrated that FcRIIa is the major FcR mediating 

phagocytosis of IgG antibodies complexed with gp120 [47]. FcRIIa may be particularly effective in 

phagocytosis-induced activation of myeloid cells by immune complexes in HIV-1 infection, because, 

unlike other activatory FcRs (FcRI and FcRIIIa), signal transduction via the immunoreceptor 

tyrosine-based activation motif (ITAM) of FcRIIa does not require the FcR common -chain adaptor 

molecule, which is depleted by HIV-1 infection [60]. Support for this is provided by the observation that 

the 131H genotype of the FcRIIa gene, which confers higher affinity Fc binding to FcRIIa than the 131R 

genotype, is associated with slower progression of HIV-1 disease [61]. In contrast, the “high-affinity” 

158V genotype of FcRIIIa has been associated with an increased risk of acquiring HIV-1 infection [62,63] 

and also with an increased risk of HIV-1 disease progression [62], though the methods for analysing 

disease progression in that study are open to criticism.  
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6. Diversification of IgG Antibodies against HIV-1 Gag Proteins to Include IgG2 Antibodies May 

Facilitate Ligation of FcRIIa by Complexed Antibodies 

Studies of immune complex binding to FcRIIa in vitro demonstrate that all four subclasses of IgG 

are able to ligate the 131H genotype and, to a lesser extent, the 131R genotype of FcRIIa, especially 

in the form of large immune complexes [51,52]. Although the affinity of ligation of FcRIIa by IgG2 

and IgG4 is less than that for IgG1 and IgG3, analyses of plasma immune complexes suggest that IgG2 

antibodies play a particularly important role in the binding of immune complexes to FcRIIa. IgG2 is 

the most abundant IgG isotype in plasma IgG/IgM immune complexes of healthy individuals and a 

disease-associated increase in the ratio of IgG3 to IgG2 in the immune complexes is associated with 

decreased binding to Fc receptors on myeloid cells [64]. We have shown that IgG2 is much more 

abundant than IgG1 in FcRIIa-binding immune complexes from plasma of healthy individuals and 

HIV controllers, but that failure to control HIV-1 replication is associated with more abundant IgG1 in 

the immune complexes [48]. 

It is well-established that IgG2 antibodies and FcRIIa play an important role in phagocytic antibody 

responses against polysaccharide antigens of encapsulated bacteria [65,66]. We suggest that IgG2 

antibodies also contribute to phagocytic IgG antibody responses against antigens of persistent viruses, 

such as HIV-1, mediated via immune complexes and FcRIIa expressed by pDCs. Targeting of viral 

antigens to FcRIIa on BDCA-3
+
 dendritic cells by IgG antibodies has been proposed as a strategy for 

eliciting T-cell responses against viral antigens [67]. IgG2 is the only IgG subclass capable of covalent 

dimerization [68], which may enhance the function of this subclass of IgG antibody in phagocytosis and/or 

immune complex formation. In addition, IgG2 exhibits the highest degree of resistance to proteolytic 

degradation [69] and may also exhibit greater resistance than IgG1 to the adverse effects of deglycosylation 

of the Fc region on binding to FcRIIa [70], though this was not confirmed in another study [52]. 

Support for our hypothesis that an IgG antibody response against HIV Gag proteins that has diversified 

to include IgG2 antibodies may be beneficial in the control of HIV-1 infection has been provided from 

studies in HIV-1 controllers or long-term non-progressors (LTNPs). Ngo-Giang-Huong et al. [71] 

examined plasma samples from 71 LTNPs, who had plasma HIV-1 RNA levels varying from <20 to 

860,000 copies/mL and demonstrated that IgG2 antibodies to p55 and p24 were associated with lower 

plasma HIV-1 RNA levels. In contrast, plasma levels of IgG1 antibodies to these antigens did not 

correlate with HIV-1 RNA levels. We have examined plasma samples from 32 HIV-1 controllers, of 

whom 14 were elite controllers (plasma HIV RNA level <50 copies/mL), for IgG1 and IgG2 antibodies 

to HIV-1 proteins and shown that controllers had higher levels of IgG2 antibodies to Gag proteins than 

non-controllers and that this association was strongest in patients who did not carry the “protective” 

HLA-B57 allele [48]. In contrast, Banerjee et al. [72] examined serum from 16 HIV-1 controllers, of 

whom 13 had a plasma HIV-1 RNA level of <75 copies/mL, and demonstrated that although serum 

levels of total IgG and IgG1 antibodies to p24 were higher in HIV-1 controllers than patients with 

progressive HIV-1 disease, serum levels of IgG2 anti-p24 did not differ between HIV-1 controllers and 

patients with progressive HIV-1 disease. It is unclear why control of HIV-1 replication was associated 

with IgG2 antibodies against HIV-1 Gag proteins (p55 and/or p24) in two studies [48,71], but only 

with IgG1 antibodies to HIV-1 p24 in another [72]. Differences might reflect the use of Western blot 

assays and antigens from virus lysates in the studies by Ngo-Giang-Huong et al. [71] and French et al. [48], 
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as opposed to ELISAs and recombinant HIV-1 proteins in the study by Banerjee et al. [72]. Furthermore, 

the study of HIV-1 controllers by Banerjee et al. [72] did not subgroup patients according to carriage 

of “protective” HLA-B alleles. 

In summary, we suggest that diversification of an IgG antibody response against HIV-1 Gag proteins 

to include IgG2 antibodies, as well as IgG3 and IgG1 antibodies, may enhance the activation of accessory 

cell immune responses by NK cells and pDCs via ligation of both FcRIIIa and FcRIIa.  

7. Isotype Diversification of IgG Antibodies to Core or Capsid Proteins of Other Persistent 

Viruses Is Associated with Control of Infection  

Further support for our hypothesis that isotype diversification of IgG antibodies against HIV-1 Gag 

proteins is associated with control of HIV-1 infection is provided by evidence from patients infected by 

other persistent viruses. Data from patients with acute hepatitis C virus (HCV) infection suggests that IgG2 

antibodies to HCV core proteins might be associated with clearance of HCV infection. Zein et al. [73] 

reported that all of the four patients who spontaneously cleared HCV infection had IgG2 antibodies to 

HCV core proteins compared with only nine of 23 patients who did not clear the infection. Furthermore, 

the ratio of IgG2/IgG1 HCV core-specific antibody titres was >1 in three of the four patients. In 

addition, studies in patients with human papillomavirus (HPV) infection demonstrated that IgG2 

antibodies to capsid proteins were associated with protection from HPV disease using an ELISA and 

virus-like particles as antigens [74], though IgG2 antibodies could not be detected at all in another 

study when capsid proteins were used as antigens [75].  

8. Regulation of IgG Antibody Isotype Diversification and the Effect of HIV Infection 

Isotype diversification of IgG antibody responses occurs during the process of B-cell differentiation 

and maturation of the antibody response, which occurs in germinal centres of lymphoid tissue follicles 

following the interaction of naive B-cells with follicular dendritic cells and follicular-helper T-cells 

(TFH-cells) [76]. Immunoglobulin isotype switching during B-cell differentiation occurs through class 

switch recombination of immunoglobulin heavy chain genes, with switching to IgG2 and IgG4 occurring 

“downstream” of IgG3 and IgG1 [77], and results in broadening of IgG antibody function mediated by 

the Fc region (Table 1). Together, IgG1 and IgG2 comprise about 90% of serum IgG [78] and, therefore, 

exert the largest functional effect on an IgG antibody response.  

Regulation of immunoglobulin isotype switching is mediated primarily by molecules expressed on, 

or produced by, TFH-cells [76]. The most important are the co-stimulatory molecules, CD40 ligand and 

inducible co-stimulator (ICOS), as exemplified by the association of immunoglobulin deficiency with 

deficiency of these molecules [79,80], and the cytokines, IL-4, IL-10 and IL-21, as exemplified by the 

restoration of immunoglobulin production by B-cells from patients with IgA deficiency or common 

variable immunodeficiency disorder when cultured with these cytokines [81–83]. The co-inhibitory 

molecule programmed death (PD)-1 is also highly expressed by TFH-cells, and ligation by the ligand 

PD-L1 has been shown to down-regulate ICOS expression and IL-21 production and possibly contribute 

to TFH-cell dysfunction caused by HIV infection [84]. Pro-inflammatory cytokines, such IL-2, IL-6 and 

IFN-, also contribute to isotype diversification of IgG antibodies, but primarily by enhancing production 

of IgG subclasses rather than initiating isotype switching [85–89] (Figure 1). 
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Table 1. Isotype diversification of IgG antibodies leads to broadening of the function of an 

IgG antibody response.  

IgG3 IgG1 IgG2 IgG4 

Ligation of all Fc receptors, 

including FcRI in monomeric 

form (IgG3 > IgG1) 

Restricted ligation of Fc receptors 

and only when complexed, 

particularly large complexes 

Restricted ligation of Fc receptors 

and only when complexed, 

particularly large complexes 

Potent complement activation 

through the classical pathway 

(IgG3 > IgG1) 

Weak complement activation No complement activation 

Most resistant of all IgG isotypes 

to proteolytic degradation  

Produced after chronic immune 

stimulation, particularly  

parasite infections 

Predominant IgG subclass in 

plasma IgM-IgG complexes 
Regulated similarly to IgE 

Only IgG subclass to undergo 

covalent dimerization 
May form bispecific antibodies 

Predominant IgG subclass in 

phagocytic antibodies to 

polysaccharide antigens 
 

Figure 1. Isotype diversification of an IgG antibody response. IgG antibody isotype switching 

during B-cell differentiation in germinal centres results from class switch recombination of 

immunoglobulin heavy chain genes from “downstream” (IgG3 and IgG1) to “upstream” 

(IgG2 and IgG4) isotypes regulated by co-stimulatory molecules (CD40L and inducible  

co-stimulator (ICOS)) and cytokines (IL-4, IL-10 and IL-21). Pro-inflammatory cytokines 

(IL-2, IL-6 and IFN-) enhance immunoglobulin production with IFN- particularly 

increasing IgG2 production. CD4
+
 T-cell production of both IL-21 and IFN-is impaired 

by HIV infection. 

 

While B-cell activation and increased production of total IgG is characteristic of HIV infection, 

driven to a large degree by pro-inflammatory cytokines [90], IgG2 deficiency is common in HIV 

patients [47,91], and IgG2 and IgA are less abundant in lymph node germinal centres of HIV patients than 

controls [92]. Indeed, serum levels of the “upstream” isotypes, IgG3 and IgG1, are increased, whereas 

serum levels of the “downstream” isotypes, IgG2 and IgG4, are decreased in HIV patients [90,93], 

suggesting an acquired disorder of B-cell differentiation and isotype diversification similar to that in 

patients with primary antibody deficiency disorders [94].  
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Data from studies of cytokine regulation of IgG subclass production by B-cells [85,86,88] and of 

patients with IgG2 deficiency [89] indicate that IFN-plays a particularly important role in the production 

of IgG2. Decreased IgG2 production in HIV patients may therefore be a consequence of both impaired  

B-cell isotype switching associated with TFH-cell dysfunction [84,95] and impaired IFN-production that 

characterises HIV-induced immunodeficiency, but is preserved in HIV controllers [6]. We provided 

evidence in support of this proposal from a study of antibody responses to HIV p24 in ART-treated 

HIV patients enrolled into a clinical trial of a recombinant DNA vaccine encoding a fowlpox virus 

vector, HIV Gag-Pol and IFN- [96]. Although the number of patients was small, this study provided 

evidence that the vaccine construct containing the gene for IFN- increased IgG antibodies to HIV p24, 

including IgG2 antibodies, which were associated with better control of HIV replication after ART was 

ceased in patients who possessed the 131H genotype of FcRIIa, which results in the highest affinity 

binding of IgG2 antibodies to that receptor.  

It is notable that lymph node TFH-cells of patients with HIV-1 infection exhibit greater reactivity with 

Gag proteins than Env proteins [97]. Dysfunction of TFH-cells associated with HIV-1 infection [84,95,97] 

may therefore contribute to limited isotype diversification of IgG antibodies against HIV-1 Gag proteins. 

9. Potential Strategies for Enhancing Isotype Diversification of IgG Antibodies to  

HIV-1 Gag Proteins 

Therapeutic modulation of the isotype of vaccine-induced IgG antibodies is not an established 

procedure in humans, but has been achieved in dogs with a saponin-adjuvanted Leishmania vaccine [98]. 

Preliminary data from patients with HIV-1 infection suggest that IFN- might enhance vaccine-induced 

IgG2 antibodies to HIV-1 Gag proteins [96], and this potential approach to therapeutic vaccination 

should be considered further. Finally, inhibition of immune activation in HIV-1 patients by PD-1 blockade 

might also have beneficial effects on TFH-cell function [84] and antibody responses [99], and examination 

of IgG antibody isotype diversification might be examined in clinical trials of therapies that block the 

PD-1/PD-L1 pathway.  

10. Conclusions 

We propose that enhancing isotype diversification of IgG antibody responses against HIV-1 Gag 

proteins during vaccination, to include IgG2, as well as IgG3 and IgG1 antibodies, may result in an IgG 

antibody response that facilitates the accessory cell responses of NK cells and pDCs to elicit both ADCC 

responses by NK cells, as well as phagocytosis of complexed antibody by pDCs and a pDC-dependant 

antiviral response (Figure 2). Further experimental evidence is required to strengthen our hypothesis. 

In particular, studies are needed to establish that IgG2 antibodies inhibit HIV-1 replication and are not 

just a marker of Th1 responses. However, at a time when new approaches to the development of HIV 

vaccines are needed [2], we suggest that consideration should be given to vaccination strategies that 

will enhance isotype diversification of IgG antibodies against HIV-1 Gag proteins.  
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Figure 2. A diagrammatic representation of how isotype diversification of IgG antibodies 

against HIV-1 Gag proteins might enhance anti-viral accessory cell responses against HIV-1 

infection. It is proposed that IgG antibodies bind to HIV-1 Gag proteins expressed on the 

surface of cells infected by HIV-1, including resting CD4
+
 T-cells [9]. Activation of natural 

killer (NK) cells is elicited by “downstream” IgG isotypes (IgG3 and IgG1) via FcRIIIa. 

“Upstream” IgG isotypes (IgG2 and possibly IgG4) may also contribute to NK cell 

activation by ligating FcRIIIa, particularly in individuals carrying the 158V genotype. 

However, it is proposed that multimeric IgG2 antibodies primarily broaden the function of 

the antibody response by enhancing phagocytic activity against Gag proteins associated 

with HIV-1 RNA, as a consequence of the functional characteristics of IgG2 (see Table 1), 

which activates plasmacytoid dendritic cells (pDCs) via FcRIIa. Activation of pDCs leads 

to the production of IFN-which facilitates NK cell responses and induces the production 

of interferon-stimulated genes (ISGs) and to antigen presentation and/or stimulation of  

B- and T-cells (see text). HIV-1 infection impairs diversification of an IgG antibody 

response to “downstream” isotypes.  
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