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Abstract: The unprecedented health catastrophe derived from the severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2 infection) met with a phenomenal scientific response across the globe.
Worldwide, the scientific community was focused on finding a cure for the deadly disease. A wide
range of research studies has consistently revealed the link between SARS-CoV-2 infection severity
and abnormal gut microbiomes, suggesting its potential in developing novel therapeutic approaches.
Probiotics have been extensively studied to promote health in human hosts and reestablish a balance
in the dysbiotic gut microbiome; however, there is strong skepticism about their safety and efficacy.
Consequently, the metabolic signatures of probiotics, often referred to as "postbiotics", could prove of
paramount importance for adjuvant cures in patients with SARS-CoV-2. Postbiotics exhibit safety,
enhanced shelf-life, and stability and, therefore, could be implemented in SARS-CoV-2 prophylactic
strategies with no undue adverse side effects. The current study is a preliminary investigation of
the antiviral properties of postbiotic metabolites derived from Leuconostoc mesenteroides GBUT-21.
The study focuses on the potential biological role in inactivating SARS-CoV-2 and reducing related
inflammatory pathways.
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1. Introduction

COVID-19 escalated into a global pandemic in 2020, caused by a novel, highly conta-
gious human coronavirus variant called severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2). In addition to COVID-19, two zoonotic coronaviruses have spread from ani-
mal reservoirs to humans in the past two decades, leading to epidemic outbreaks of severe
acute respiratory syndrome coronavirus (SARS-CoV) across 2002–2004, along with ongoing
intermittent episodes of Middle East respiratory syndrome coronavirus (MERS- CoV) [1–4].
The SARS-CoV-2 virus is an enveloped, positive-sense, single-stranded RNA virus that
can replicate in the lower human respiratory tract [5]. The virus transmits in human hosts
through aerosols and respiratory droplets with an incubation period of 4–5 days before the
onset of disease symptoms [6–8]. The severity of infection may vary from asymptomatic
(with or without detectable virus) to mild or moderately symptomatic with the presence
of detectable virus, experiencing nonspecific clinical manifestations such as fever, chills,
sore throat, muscle pain, cough, headache, diarrhea, and loss of smell and taste [8–12].
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The severe SARS-CoV-2 pathology is marked by the presence of heavy viral load and the
onset of the disease called dyspnoea or shortness of breath due to hypoxemia, which could
progress to a potentially fatal condition, acute respiratory distress syndrome (ARDS), or
closely related pneumonia [12–15]. Research suggests that most patients with COVID-19
are either asymptomatic or with mild or moderate infection but approximately 10% experi-
ence a severe or potentially lethal illness [16]. The COVID-19 vaccine program continues
at the frontier of immune defense against COVID-19 infection worldwide. However, ef-
fective treatment options need to be explored, especially for underdeveloped countries
where procurement and implementation of vaccine regimens are slow and challenging. In
addition, the constant mutations in SARS-CoV-2 RNA potentially make it unrecognized by
the existing vaccines.

Postbiotics are active substances produced by microorganisms during their metabolic
activities and are known to exhibit a promising impact on host health. Postbiotics are a
thrust area of research nowadays, and there is a growing continuum of studies highlighting
their potential in combating viral infections, including SARS-CoV-2 infection. Biologically
potent postbiotic metabolites are accessed through the filtered culture of cell-free super-
natants from a bacterial culture. A study on Lactobacillus acidophilus and Lactobacillus casei
supernatants showed anti-inflammatory and antioxidant effects on intestinal epithelial
cells, resident macrophages, and neutrophils. The cell-free supernatant reduced the levels
of the proinflammatory tumor necrosis factor α (TNF-α) cytokine and increased secretion
of the anti-inflammatory cytokine interleukin 10 (IL-10) [17]. Therefore, postbiotics could
decrease the intensity of SARS-CoV-2 via their anti-inflammatory efficacy. A recent study
on supernatants derived from Lactobacillus and Bifidobacterium cultures showed that they
effectively prevent the invasion of enteroinvasive E. coli strains into enterocytes in vitro [18].
Postbiotics may reduce gut inflammation via the activation of regulatory T cells and reduce
systemic inflammation by fortifying the intestinal barrier to inhibit the translocation of
the virus to extra-intestinal organs. One such study showed that the metabolically active
supernatants of Lactobacillus plantarum were beneficial for the intestinal barrier’s maturation
and morphological structure [19]. The supernatant also decreased the inflammatory marker
concentrations (IL-1β and TNF-α) in the intestinal mucosa [19]. In a randomized clinical
trial, subjects fed with probiotic Lactobacillus rhamnosus GG were less likely to develop
COVID-19 symptoms compared to placebo [20–29]. A bidirectional gut-lung microbiome
axis has also been uncovered recently, which explains how microbiomes across the lung
and gut cross-communicate and, therefore, influence the host’s immune health [30–35]. Nu-
traceuticals, such as probiotics, contain lactic acid bacteria and have been used in food for
centuries to enhance immunity and fight infection. In a randomized, double-blind, placebo-
controlled trial, probiotic administration for seven days induced the anti-inflammatory
cytokine production (IL-10 and TGF-β1) while decreasing the pro-inflammatory (IL-6,
IL-12p70, IL-17, and TNF-α) cytokines involving 100 children with severe sepsis [36]. Fur-
ther support for this view was provided by a recent meta-analysis showing that probiotic
treatment reduced IL-6 and C-reactive protein levels among middle-aged and older indi-
viduals with chronic low-grade inflammation [37]. Despite their outstanding credentials,
some studies have shown adverse clinical and technological effects of probiotics, such as
limited strain survivability and lifespan, presence of virulence factors in certain strains,
unique colonization patterns specific to the strain, opportunistic infection-causing ability in
immunocompromised individuals, production of biogenic amines, unclear dosage instruc-
tions across the globe, etc [38]. Thus, functional bioactive molecules released by probiotics
termed postbiotics have become thrust research areas in recent years [39,40].

Despite the intricate interconnection between invasive viruses, the gastrointestinal
microbiome, and host physiology, scientists are endeavoring to establish new ways to
combat COVID-19, including the use of postbiotics as potential prophylactic. This study
evaluates the efficacy of postbiotics produced by Leuconostoc mesenteroides-enriched cell-
free supernatant GBUT-21, extracted from fermented camel milk in viral replication and
immune modulation.
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2. Materials and Methods
2.1. Isolation and Bacteria Growth

The fermented camel milk was lightly homogenized for isolating lactic acid bacteria
and then serially diluted from 10−1 to 10−6 using sterile phosphate buffer [41,42]. A 100 µL
tube from each dilution was plated on BCP agar plates and incubated at 37 ◦C for 24 h to
see the clear zone around the colonies. The clear zones around colonies were considered
to be the presence of lactic acid bacteria. Each colony was carefully picked with a sterile
loop and inoculated in MRS broth. The inoculated MRS broth was incubated at 37 ◦C for
24 h. Then, the samples were spread on MRS agar and preserved at −80 ◦C for further use.
Colonies that did not show a clear zone on BCP agar were discarded.

2.2. Bacteria Sample Preparation and Screening against SARS-CoV-2

The selected LAB isolates were grown following the same procedure as stated above.
The culture was centrifuged at 5000 × g for 10 min, and the supernatant was collected and
filter-sterilized using a syringe microfilter. The collected cell-free supernatant was freeze
dried in sterilized condition and stored at −80 ◦C until used. The selected isolates were
screened by culturing SARS-CoV-2 in HEK cells at approximately 80–90% confluency for
2 days in a BSL-3 environment [43]. HEK cells infected with the virus were treated with
different concentrations of samples. Only bacteria strains showing potent inhibition of the
virus were selected for further characterization.

To further check the in vitro antiviral inhibition of GBUT-21, we followed the pro-
cedure described by Rather et al. [43]. Briefly, the human embryonic kidney epithelial
cells (HEK-293 cells) with a cell density of approximately 4 × 104 per well were seeded in
96 well plates. After 24 h of incubation, the cells were incubated with 100 µL culture
medium for virus infection (DMEM supplemented with penicillin (100 U/mL) and strep-
tomycin (100 µg/mL) + GBUT-21-CFS (20, 40, 60 mg/mL w/v) + SARS-COV-2 virus (0.1
multiplicity of infection)). The cells were washed three times with PBS after 2 h of incu-
bation at 37 ◦C and then maintained in 100 µL of DMEM without virus. In addition, a
separate virus control was also inoculated without GBUT-21. Inhibition of virus load was
quantified using rt-PCR.

2.3. Biochemical Characterization of LAB Isolate

During the screening of LAB isolates against SARS-CoV2, Leuconostoc mesenteroides-
enriched supernatant, labeled as GBUT-21, showed strong viral inhibition. The biochemical
characterization of the strain was carried out using API 50CH strips supplied with API
50CHL medium. The protocol was followed as per the instructions provided by the
manufacturer [41,44–46]. Additionally, the molecular characterization of GBUT-21 was
conducted via 16S rRNA gene sequencing at Microgen, South Korea. The sequence received
was registered in GenBank for an accession number.

2.4. Determination of Cytotoxity

Following the protocol depicted elsewhere [43], Hela, HCE, and HEK-293 cells were
cultured in DMEM, supplemented with 10% FBS, penicillin 100 U/mL, and streptomycin
100 µg/mL. Then, the cells were incubated in a cell culture incubator supplied with 5% CO2
maintained at 37 ◦C. After 24 h of incubation, the plates were checked for contamination,
and cells with no contamination were treated with different concentrations of GBUT-21
prepared in DMEM. Similarly, an intact control cell was treated with only PBS and DMEM.

2.5. MTT Assay

After the incubation, as stated in Section 2.5 above, the cells in each well were washed
with PBS, and then, each well was treated with 5 mg/mL of MTT solution. The plates
were incubated at 37 ◦C for 45 to 50 min. The supernatant for each well was carefully
discarded, followed by dissolving formazan crystals in isopropanol. Finally, the absorbance
was measured at 570 nm.
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2.6. Estimation of Intracellular ROS

The ROS was measured from each group at 70% cell confluence. Briefly, when the
cells reached 70% confluence, they were treated with 10 µM of DCFH-DA prepared in
DMEM [43]. The plates were incubated at 37 ◦C for 30 min. Finally, each well was washed
with PBS, and the intensity of fluorescence was checked using a fluorescence microscope.

2.7. Immunofluorescent Assay

For immunocytochemistry, the HEK 293 cells from each group were washed prior to
fixing them in 4% formaldehyde for 15 min. Subsequently, cells were permeabilized with
Triton X (0.2%), followed by a signal enhancer [43]. Then, cells were blocked with five
percent PBS diluted goat serum and incubated with a primary antibody of pERK (1:100)
at 4 ◦C for 15 h. Then, the cells were incubated with secondary antibodies after washing
2–3 times with sterile PBS for 50–60 min. Finally, cell nuclei were counterstained using
DAPI, followed by PBS wash after rinsing with PBS. The images were taken by a camera
attached to a fluorescent microscope.

2.8. RT-qPCR

The RNA extraction was performed using a Quick-RNA Viral Kit following the man-
ufacturer’s protocol. The RNA was eluted in nuclease-free water and then 1 µg of RNA
with a total volume of 25 µL in a reaction mixture primed with random primers. The
combination was reverse transcribed for 5 min at 73 ◦C and 60 min for 37 ◦C, following the
same steps described elsewhere [43]. Real-time PCR was performed with 2 µL of cDNA,
10 pmol of each gene-specific primer, and Power SYBR®Green PCR Master Mix on a
7500 real-time PCR system.

3. Results
3.1. Selection and Characterization of Lactic Acid Bacteria Isolate

To identify an LAB isolate, a colony that shows a yellow zone on the BCP agar plate
was confirmed as the presence of the lactic acid-producing bacterium. The selected colonies
were carefully picked and inoculated in MRS broth. Here, a total of 23 LAB were isolated
from fermented camel milk. However, only one strain, GBUT-21, showed strong antiviral
activity against SARS-CoV-2.

The biochemical characterization of GBUT-21 was carried out using an API50 KIT,
where the strain was seen close to Leuconostoc mesenteroides. A total of 22 carbohydrates
showed complete fermentation that changed color from violet in the strop capsule to yellow.
However, one carbohydrate was seen partially fermented in all three triplicate experiments,
which could be the result of less amount of culture inoculum. Overall, we considered
the partially fermented carbohydrate as fermented. Therefore, 23 carbohydrates showed
fermentation, as shown in Table S1.

The strain was further identified via molecular characterization using 16S rRNA gene
sequencing and was identified as Leuconostoc mesenteroides, and its supernatant hereafter
named Leuconostoc mesenteroides GBUT-21. The sequence was registered in GenBank with
accession number ON616405.

3.2. Virus Inhibition and Cell Viability

The bioactive compounds produced using probiotics hold curative potential against
a number of diseases. Here, we first evaluated the antiviral effect of a Camelus isolates
Leuconostoc mesenteroides GBUT-21 cell-free supernatant in the SARS-COV-2 virus-infected
HEK293 cells. The cells were treated with different concentrations of the GBUT-21, as
shown in Figure 1. Quantitative PCR (qPCR) analysis revealed a reduction in viral copies in
the culture supernatant treated with an increasing concentration of GBUT-21 CSF compared
to the DMSO-treated control sample (Figure 1). MTT analysis excluded any possibility
of cytotoxicity in mammalian cells, including HEK293, HCE, and Hela. GBUT-21 CSF
tolerance was highest in HEK293, followed by HCE cells and Hela (Figure 2). Above 80% of
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cell viability was maintained in Hek293 and HCE cells when treated with 40–60 mg/mL of
GBUT-21 CSF. However, cells showed sensitivity to the cell supernatant beyond 80 mg/mL
GBUT-21 CSF as the concentration resulted in less than 80% cell viability (Figure 2). The
results confer that GBUT-21 CSF could inhibit the replication of contagious human coronavirus
without any profound cytotoxicity effect if administered at 40–60 mg/mL of concentration;
therefore, the dosage at 40–60 mg/mL was used for all subsequent experiments.
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Figure 1. Inhibition of late-stage viral infection in HEK293. All experiments were performed in
triplicate. The results are presented as average values with standard deviations. An asterisk
(p < 0.05) indicates values that are significantly different from the control. Bars depict mean ± SD
of three independent experiments. *** p < 0.001, ** p < 0.01, * p < 0.05 vs. virus (infected).
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Figure 2. The therapeutic concentration of GBUT11 CSF is well-tolerated by human cell lines. MTT
assay was performed on HeLa, HEK, and HCE cell lines to check the percentage viability in the
presence of the sample. Cells were seeded in 96-well plates at a density of 4 × 105 and treated with the
sample for 24 h. Percentage viability: (a) HEK, (b) HeLa, and (c) HCE cells at different concentrations
of the sample.
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3.3. Estimation of Intracellular ROS

Several studies have linked the cytokine storm to the deterioration of the patient’s
condition when suffering from COVID-19 infection. It plays a significant role in developing
acute respiratory distress syndrome (ARDS) and multiple organ dysfunction [10,11,47–50].
Cytokine storms occur when there is an unregulated host immune response to different
triggers resulting in the auto-amplifying production of cytokines. The cytokine storm cycle
is perpetuated by oxidative stress due to hypoxia or increased intracellular reactive oxygen
species (ROS) levels in COVID-19 patients. Therefore, we continued examining the effect
of GBUT-21 CSF on the intracellular ROS levels produced in Hek293 cells infected with the
SARS-CoV-2 virus. Corroborating the previous studies, we found a significant increase
in ROS levels by approximately 3.5-fold after the infection of SARS-COV-2. Interestingly,
when the infected cells were treated with 20, 40, and 60 mg/mL of GBUT-21 CSF, ROS
levels significantly reduced to 2.5, 1.7-fold, and 0.9-fold, respectively (Figure 3).
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Figure 3. ROS staining via H2DCFDA staining. Treatment cells were stained with H2DCFDA
stain for 30 min and PBS washes were further given to get final fluorescence images under fluores-
cence microscope. (a) Fluorescence images. (b) Depicting mean fluorescence intensity. An asterisk
(p < 0.05) indicates values that are significantly different from the control. Bars depict mean ± SD of
three independent experiments. **** p < 0.0001, *** p < 0.001 vs. virus (infected).

3.4. Antiviral Effect Depicted by Immunofluorescent Assay

Activating intracellular signaling pathways, such as mitogen-activated protein kinase
(MAPK), are crucial for producing cytokines during a SARS-CoV-2 infection [51]. The



Vaccines 2022, 10, 1581 7 of 12

increasing proinflammatory cytokine production through these pathways damages airway
epithelial cells and alveolar tissues and plays a central role in establishing a cytokine
storm [52–54]. Viral activation of the MAPK pathway results in the phosphorylation of ERK
protein (p-ERK) and is often associated with viral infections. In mock non-infected HEK293
cells treated with 0.1% DMSO, the expression of p-ERK was virtually non-existent, whereas
in SARS CoV-2-infected cells treated with 0.1% DMSO, the expression of p-ERK was at its
peak across the nucleus and cytoplasm. Interestingly, an increasing concentration of GBUT-
21 CSF (20 mg/mL, 40 mg/mL, and 60 mg/mL) drastically reduced the phosphorylation
of ERK in SARS-CoV-2-infected cells, as shown in Figure 4.
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3.5. Gene Expression Profile

Hyperinflammation in patients infected with SARS-CoV-2 is marked by elevated
serum levels of proinflammatory cytokines such as IL-6, IFN-α, and IFN-β [55]. Patients
with COVID-19 have shown deteriorating lung function is almost exclusively related to
the inflammatory cytokine IL-6 [56]. We observed an upregulation of the proinflammatory
cytokine genes such as IFN-α, IFN-β, and IL-6 in SARS-CoV-2 infected cells compared to
the non-infected mock cells (Figure 5). Interestingly, GBUT-21 CSF treatment resulted in
a two-fold reduction in the expression of IFN- α and IL-6 genes, respectively. However,
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IFN-β did not show a stark decrease in expression upon GBUT-21 treatment in SARS-CoV-
2-infected cells. The findings suggest that GBUT-21 CSF exhibits antiviral activity and
regulates the inflammatory responses to the virus invasion.
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Figure 5. Gene expression of inflammatory markers in HEK 293 cells post infection with and without
treatment of GBUT-21. (a) IL-6. (b) IFN-α. (c) IFN-β. An asterisk (p < 0.05) indicates values that are
significantly different from the control. Bars depict mean ± SD of three independent experiments.
*** p < 0.001, ** p < 0.01, * p < 0.05 vs. virus (infected).

4. Discussion

In this study, we investigated the antiviral activity of metabolically active cell-free
supernatant against SARS-CoV-2 from the culture of Leuconostoc mesenteroides GBUT-21.
The active compounds in GBUT-21 CSF eradicated the virus to a large extent, with the
effect becoming more pronounced with increased concentrations. The postbiotic present
in the GBUT-21 CSF would have exerted an anti-SARS-CoV-2 effect through competitive
inhibition by directly binding at the ligand-binding pockets of the ACE2 receptor [57].
Several studies have investigated the receptor blocking effect of bacteriocins, a lactobacillus
postbiotic compound, and found that plantaricin forms strong hydrogen bonds with ACE2
receptors [57–60] and the residual binding domain (RBD) of spike protein S [57]. Therefore,
bacteriocins present in the postbiotics could form a potent competitive inhibitor for the
SARS-CoV-2 virus. In addition, an intracellular mechanism for the antiviral activity of
postbiotics has been proposed, which suggests that the postbiotic metabolite may interfere
in essential processes such as viral RNA replication. An in silico study by Anwar et al.
demonstrated that bacteriocin was able to bind tightly by blocking RNA-dependent RNA
polymerase (RdRp) of SARS-CoV-2, which inhibited the viral replication cycle in host
cells [57]. A parallel in silico molecular docking study showed antiviral activity of a
postbiotic derived from L. plantarum Probio-88 using plantaricins against SARS CoV-2
helicase nsp13 [43]. Helicases have the role of separating self-annealed ss-RNA by using
ATP as an energy source. The study confirmed the establishment of hydrogen bonds and
a high binding affinity of plantaricins to helicase nsp13, which might serve as a blocker
by preventing the binding of ss-RNA on helicase. Therefore, it is highly likely that GBUT-
21 CSF has bacteriocin activity, and the reduction in viral load could either be due to
competitive inhibition at the ACE2 or at the residual binding domain (RBD) of spike
protein S. The reduction in SARS-CoV-2 load could also be as a result of inhibition of
RNA-dependent RNA polymerase (RdRp) or helicase nsp13.

The treatment with GBUT-21 CSF in SARS-CoV-2-infected cells reduced the inflamma-
tory cytokines (IL6, INF-alpha, and INF-beta), which is also corroborated by the decrease
in the reactive oxygen species (ROS) levels and reduced activity of the Raf/MEK/ERK
(p-ERK) signaling pathway. Researchers suggest that after the successful viral invasion, the
activation of intracellular signaling pathways, such as mitogen-activated protein kinase
(MAPK) and nuclear factor kappa B (NF-κB), is vital for producing cytokines [51]. Through
these pathways, the increased production of pro-inflammatory cytokines, particularly
IL-6, results in decreased ventilation, acute lung injury, and ARDS, culminating in a life-
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threatening cytokine storm [52–54]. Therefore, a reduction in the levels of pro-inflammatory
cytokines, including IL-6, after the treatment with GBUT-21 CSF exhibits the protective role
of postbiotics against the SARS-CoV-2 virus. The reduced activity of the Raf/MEK/ERK
signaling pathway and cytokine levels after the treatment with GBUT-21 CSF may help
combat the life-threatening cytokine storm, which is a significant cause of death due to
SARS-CoV-2 infection.

The preliminary data depicted in this study substantially indicates that the metaboli-
cally active postbiotics derived from Leuconostoc mesenteroides GBUT-21 could be protective
against SARS-CoV-2 infection. Nonetheless, it is too early to determine exactly how the
Leuconostoc mesenteroides GBUT-21 works. Therefore, it is important to unravel molecular
signaling details and validate clinical outcomes in the future. Additionally, the current
work only involves cell line models; future validation of the strain in animal models would
be highly beneficial.

5. Conclusions

Over the past two years, enormous strides have been carried out in understanding the
molecular mechanism and bioactive metabolites in postbiotics that could be effective against
viruses such as the deadly SARS-CoV-2. Probiotic effector molecules are being continuously
refurbished as postbiotics, allowing them to provide health benefits that radically open basic
research to translational aspects. However, the lack of comprehensive data on the antiviral
effects of postbiotics underscores the need for further investigation. However, the existing
evidence suggests that these molecules possess extraordinary properties from clinical,
technological, and economic perspectives. We demonstrated that the postbiotic metabolites
derived from Leuconostoc mesenteroides GBUT-21 exhibited SARS-CoV-2 inhibitory activity
and could form part of precision postbiotics or be used in an adjunct therapy along with
vaccines for effective therapeutic and preventive interventions against this deadly disease.
In addition, the active metabolites in the cell-free supernatant demonstrated potent anti-
inflammatory activities, which could help mitigate a life-threatening condition, the cytokine
storm, in COVID-19 patients.
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40. Żółkiewicz, J.; Marzec, A.; Ruszczyński, M.; Feleszko, W. Postbiotics—A Step beyond Pre-and Probiotics. Nutrients 2020, 12, 2189.

[CrossRef]
41. Paray, B.A.; Rather, I.A.; Al-Sadoon, M.K.; Fanar Hamad, A.-S. Pharmaceutical Significance of Leuconostoc Mesenteroides

KS-TN11 Isolated from Nile Tilapia, Oreochromis Niloticus. Saudi Pharm. J. 2018, 26, 509–514. [CrossRef] [PubMed]
42. Adedokun, E.O.; Rather, I.A.; Bajpai, V.K.; Choi, K.-H.; Park, Y.-H. Isolation and Characterization of Lactic Acid Bacteria from

Nigerian Fermented Foods and Their Antimicrobial Activity. J. Pure Appl. Microbiol. 2014, 8, 3411–3420.
43. Rather, I.A.; Choi, S.-B.; Kamli, M.R.; Hakeem, K.R.; Sabir, J.S.M.; Park, Y.-H.; Hor, Y.-Y. Potential Adjuvant Therapeutic Effect of

Lactobacillus Plantarum Probio-88 Postbiotics against Sars-Cov-2. Vaccines 2021, 9, 1067. [CrossRef] [PubMed]
44. Bajpai, V.K.; Han, J.-H.; Nam, G.-J.; Majumder, R.; Park, C.; Lim, J.; Paek, W.K.; Rather, I.A.; Park, Y.-H. Characterization and

Pharmacological Potential of Lactobacillus Sakei 1I1 Isolated from Fresh Water Fish Zacco Koreanus. DARU J. Pharm. Sci.
2016, 24, 8. [CrossRef]

45. Seo, B.J.; Rather, I.A.; Kumar, V.J.R.; Choi, U.H.; Moon, M.R.; Lim, J.H.; Park, Y.H. Evaluation of Leuconostoc Mesenteroides
YML003 as a Probiotic against Low-Pathogenic Avian Influenza (H9N2) Virus in Chickens. J. Appl. Microbiol. 2012, 113, 163–171.
[CrossRef]

46. Rather, I.A.; Seo, B.J.; Kumar, V.J.R.; Choi, U.-H.; Choi, K.-H.; Lim, J.; Park, Y.-H. Biopreservative Potential of Lactobacillus Plantarum
YML007 and Efficacy as a Replacement for Chemical Preservatives in Animal Feed. Food Sci. Biotechnol. 2014, 23, 195–200. [CrossRef]

47. Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; et al. Pathological Findings of
COVID-19 Associated with Acute Respiratory Distress Syndrome. Lancet Respir. Med. 2020, 8, 420–422. [CrossRef]

48. Chousterman, B.G.; Swirski, F.K.; Weber, G.F. Cytokine Storm and Sepsis Disease Pathogenesis. Semin. Immunopathol.
2017, 39, 517–528. [CrossRef]

49. Shimabukuro-Vornhagen, A.; Gödel, P.; Subklewe, M.; Stemmler, H.J.; Schlößer, H.A.; Schlaak, M.; Kochanek, M.; Böll, B.; von
Bergwelt-Baildon, M.S. Cytokine Release Syndrome. J. Immunother. Cancer 2018, 6, 56. [CrossRef]

http://doi.org/10.1016/j.arcmed.2021.03.002
http://doi.org/10.3389/fmed.2021.640073
http://www.ncbi.nlm.nih.gov/pubmed/33681266
http://doi.org/10.1111/1751-2980.12851
http://doi.org/10.1126/science.abc1669
http://doi.org/10.1136/gutjnl-2020-320891
http://doi.org/10.1177/1756284820974914
http://doi.org/10.1016/j.virusres.2020.198018
http://doi.org/10.26355/eurrev_202010_23448
http://doi.org/10.1136/gutjnl-2020-323020
http://www.ncbi.nlm.nih.gov/pubmed/33431578
http://doi.org/10.1016/j.cell.2020.04.011
http://www.ncbi.nlm.nih.gov/pubmed/32330414
http://doi.org/10.1016/j.fsi.2020.05.054
http://www.ncbi.nlm.nih.gov/pubmed/32473360
http://doi.org/10.1136/gutjnl-2020-322294
http://doi.org/10.1097/CCM.0000000000003279
http://www.ncbi.nlm.nih.gov/pubmed/29957709
http://doi.org/10.1016/j.arr.2018.05.004
http://doi.org/10.1038/s41591-019-0439-x
http://doi.org/10.3920/BM2012.0046
http://doi.org/10.3390/nu12082189
http://doi.org/10.1016/j.jsps.2018.02.006
http://www.ncbi.nlm.nih.gov/pubmed/29844722
http://doi.org/10.3390/vaccines9101067
http://www.ncbi.nlm.nih.gov/pubmed/34696175
http://doi.org/10.1186/s40199-016-0147-8
http://doi.org/10.1111/j.1365-2672.2012.05326.x
http://doi.org/10.1007/s10068-014-0026-3
http://doi.org/10.1016/S2213-2600(20)30076-X
http://doi.org/10.1007/s00281-017-0639-8
http://doi.org/10.1186/s40425-018-0343-9


Vaccines 2022, 10, 1581 12 of 12

50. Wan, S.; Yi, Q.; Fan, S.; Lv, J.; Zhang, X.; Guo, L.; Lang, C.; Xiao, Q.; Xiao, K.; Yi, Z.; et al. Characteristics of Lymphocyte Subsets
and Cytokines in Peripheral Blood of 123 Hospitalized Patients with 2019 Novel Coronavirus Pneumonia (NCP). medRxiv 2020.
[CrossRef]

51. Battagello, D.S.; Dragunas, G.; Klein, M.O.; Ayub, A.L.P.; Velloso, F.J.; Correa, R.G. Unpuzzling COVID-19: Tissue-Related
Signaling Pathways Associated with SARS-CoV-2 Infection and Transmission. Clin. Sci. 2020, 134, 2137–2160. [CrossRef]
[PubMed]

52. Puchelle, E.; Zahm, J.M.; Tournier, J.M.; Coraux, C. Airway Epithelial Repair, Regeneration, and Remodeling after Injury in
Chronic Obstructive Pulmonary Disease. Proc. Am. Thorac. Soc. 2006, 3, 726–733. [CrossRef] [PubMed]

53. Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; et al. Dysregulation of Immune
Response in Patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis. 2020, 71, 762–768. [CrossRef]

54. Song, P.; Li, W.; Xie, J.; Hou, Y.; You, C. Cytokine Storm Induced by SARS-CoV-2. Clin. Chim. Acta 2020, 509, 280–287. [CrossRef]
55. del Valle, D.M.; Kim-Schulze, S.; Huang, H.H.; Beckmann, N.D.; Nirenberg, S.; Wang, B.; Lavin, Y.; Swartz, T.H.; Madduri, D.;

Stock, A.; et al. An Inflammatory Cytokine Signature Predicts COVID-19 Severity and Survival. Nat. Med. 2020, 26, 1636–1643.
[CrossRef] [PubMed]

56. Robinson, P.C.; Richards, D.; Tanner, H.L.; Feldmann, M. Accumulating Evidence Suggests Anti-TNF Therapy Needs to Be given
Trial Priority in COVID-19 Treatment. Lancet Rheumatol. 2020, 2, e653–e655. [CrossRef]

57. Anwar, F.; Altayb, H.N.; Al-Abbasi, F.A.; Al-Malki, A.L.; Kamal, M.A.; Kumar, V. Antiviral Effects of Probiotic Metabolites on
COVID-19. J. Biomol. Struct. Dyn. 2021, 39, 4175–4184. [CrossRef]
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