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Abstract: Side effects of COVID-19 or other vaccinations may affect an individual’s safety, ability to
work or care for self or others, and/or willingness to be vaccinated. Identifying modifiable factors
that influence these side effects may increase the number of people vaccinated. In this observational
study, data were from individuals who received an mRNA COVID-19 vaccine between December
2020 and April 2021 and responded to at least one post-vaccination symptoms survey that was sent
daily for three days after each vaccination. We excluded those with a COVID-19 diagnosis or positive
SARS-CoV2 test within one week after their vaccination because of the overlap of symptoms. We used
machine learning techniques to analyze the data after the first vaccination. Data from 50,484 individ-
uals (73% female, 18 to 95 years old) were included in the primary analysis. Demographics, history
of an epinephrine autoinjector prescription, allergy history category (e.g., food, vaccine, medication,
insect sting, seasonal), prior COVID-19 diagnosis or positive test, and vaccine manufacturer were
identified as factors associated with allergic and non-allergic side effects; vaccination time 6:00–10:59
was associated with more non-allergic side effects. Randomized controlled trials should be conducted
to quantify the relative effect of modifiable factors, such as time of vaccination.

Keywords: vaccination; COVID-19; side effects; allergy; time-of-day-effects; machine learning;
model explanation

1. Introduction

COVID-19 vaccines have been distributed to billions of individuals worldwide and
have reduced serious illness, hospitalizations, and death [1]. As of July 2022, only 61%
of the world’s population has been fully vaccinated against COVID-19 [2]. An important
factor for vaccine hesitancy is concern about vaccine safety, efficacy, and side effects [3,4].
Understanding risk factors for vaccine-related side effects—especially ones that may be
modifiable—is important for clinicians, for patient safety, for patient expectations and
planning, and possibly for reducing hesitancy to be vaccinated.
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At MassGeneralBrigham (MGB), a large integrated healthcare system, surveys were
used to obtain information about post COVID-19 vaccination symptoms through email,
text message, phone, and smartphone application links as part of employee health mon-
itoring. Several publications using epidemiological analytic techniques have reported
important clinical information using this dataset, including the incidence of allergic and
non-allergic side effects after mRNA COVID-19 vaccination and their association with vari-
ables such as demographic characteristics, allergy history, and prior known infection with
SARS-CoV-2 [5–12]. This report explores new potential covariates, including time-of-day
for COVID-19 vaccinations (which is an easily modified factor), and utilized a different
analysis approach—Machine Learning (ML).

Age, sex, race, hormones, and body mass index (BMI) have previously been associated
with vaccination-related adverse effects for different vaccines [13–15]. We studied time-of-
day of vaccination as a potential predictor because of the well-known impact of circadian
rhythms on physiology [16] including immune responses [16,17] and because it is relatively
easily modified. Effects of time-of-day of COVID-19 vaccination on anti-Spike antibody
responses have been documented: late afternoon vaccination, being female and being
younger were associated with higher response [18]. Different side effects related to time-of-
day of other vaccines have also been reported [19,20].

ML is a powerful technique for diagnosis, detection, prediction, and prognosis in
medicine. Studies have used ML-based approaches to explain the contribution of different
variables (e.g., age, tumor size, and number of removed lymph nodes) in prediction of
10-year overall survival of breast cancer [21], identify the most critical factors in predicting
the prevalence of stroke [22], and predict the risk of hypoxemia during general anesthesia
and provide explanations of the risk factors (e.g., age, sex, BMI, blood pressure, temperature,
and medication) [23].

In this study, our aim was to identify predictors of post COVID-19 vaccine-related side
effects using ML methods on self-reported side effects for 3 days after the first vaccination
of an mRNA-based vaccine.

2. Materials and Methods
2.1. Data

The dataset was created from MGB electronic health record’s COVID-19 Datamart
and a REDCap (Research Electronic Data Capture [24]) survey that collected self-reported
symptoms for 1–3 days after each vaccination. Detailed information about the REDCap
side effect survey have been previously reported [5]. For this report, we only used data
from the first vaccination.

Data from individuals were included if they (i) received an mRNA COVID-19 vaccine
at a MGB site between December 2020 and April 2021, (ii) responded to at least one day
of the REDCap survey, (iii) had documented time-of-day of administration of COVID-
19 vaccine and (iv) did not have a COVID-19 diagnosis or positive polymerase chain
reaction test within one week after the vaccination (because of overlap of disease and
side-effect symptoms [5]). Individuals who received the Janssen adenovirus-based vaccine
were excluded from this analysis for two reasons: only 1486 (<3%) individuals who met
our inclusion criteria received a Janssen vaccine, and people with high risk of allergic
reaction were recommended for the Janssen vaccine and this could introduce a bias in our
dataset [25].

Variables considered as potentially associated factors for side effects were: demo-
graphics (age, sex (Female or Male), race (Asian, White, Black, or Other Race (i.e., Un-
known/Missing, Other, Two or More, Declined, American Indian or Alaska Native, Native
Hawaiian or Other Pacific Islander)), and ethnicity (Hispanic, Non-Hispanic, or Other
Ethnicity (i.e., Unknown/Missing, or Declined))); any note of Epinephrine Autoinjector
Prescription (e.g., EpiPen); any history of allergy (divided into Food, Vaccine, Medication,
Insect sting, Seasonal, Latex and Other categories using coded and free-text data within
the electronic health record allergy list); any COVID-19 diagnosis/positive test prior to
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vaccination; vaccine manufacturer (Pfizer: New York, NY, USA or Moderna: Cambridge,
MA, USA); and clock time of vaccine administration and/or appointment. The number of
different allergy history categories for an individual was summed. The variables considered
for analysis were selected based on expert knowledge, feature selection approaches, and
their availability in the database.

Outcomes of interest were side effects queried at days 1, 2 and 3 post-vaccination by a
REDCap survey. The questions and response options were:

• Allergic symptoms: (Yes/No) (i) Rash or itching; (ii) Hives; (iii) Swollen lips, tongue,
eyes, or face; (iv) Respiratory symptoms (wheezing, chest tightness, or shortness of
breath).

• Non-allergic symptoms: (None/lower severity/higher severity) (i) New headache;
(ii) New fatigue; (iii) Joint pain; (iv) Muscle pain; (v) Fever.

This study was approved by the MGB human research committee and MGB Occupa-
tional Health Services.

2.2. Pre-Processing

Race and ethnicity were grouped into 4 categories to reduce the number of categories
tested: White/Non-Hispanic, Non-White/Non-Hispanic, Any-Race/Hispanic, and Any-
Race/Other-Ethnicity. For time-of-day of vaccination, there were two data entries available:
immunization time and appointment time. Immunization time was used preferentially;
appointment time was used only if immunization time was not available. Time-of-day
groupings for these analyses were 6:00–10:59, 11:00–15:59, and 16:00–21:59. Individuals
receiving vaccines before 6:00 and after 22:00 were excluded because of low numbers
(10 participants total).

To prepare the input features for analysis, categorical variables were converted into
dummy variables using OneHotEncoder, a scikit-learn (version 1.0.1) preprocessing pack-
age in Python. To avoid collinearity effect between the input variables, a Variance Inflation
Factor analysis was conducted (threshold = 5) [26].

To increase the classification performance, dimensionality reduction in the feature
set is often necessary. In this study, two feature selection methods were applied: Shapley
Additive exPlanations (SHAP) feature importance values (details below), and forward fea-
ture selection and backward feature elimination. Forward feature selection and backward
feature elimination consist of adding features one by one to the feature set. If an added
feature produced higher accuracy rate, it would stay in the feature set; otherwise, it would
be removed. Once all features were evaluated, features in the obtained feature set were
removed in inverted order if their subtraction did not negatively affect accuracy. After
obtaining SHAP feature importance values from the ML Extreme Gradient Boosting (XGB)
model, we chose the 8 best ranked features, since using more features did not improve our
model’s performance (specifics below).

For allergic symptoms, if the response to an allergic symptom for any of the 3 days
was “yes”, it was grouped as class 1 (=yes). If the response to an allergic symptom for all
of the 3 days was “no”, then it was grouped as class 0 (=no). If a participant completed
the survey for only one or two days and the responses on those days were both “no”, that
entry was removed, because we do not know if the response on the missing day would
have been “yes”. For non-allergic symptoms, similar logic was used to group as class 1
(=higher severity) or class 0 (=none/lower severity) or removal of entry.

2.3. Machine Learning Model

XGB, a tree-based ML model, was selected because of its execution speed and perfor-
mance [21], high interpretability, and the possibility of identifying the strongest predictors
by applying a model explanation such as TreeExplainer [26]. XGB (with max_depth = 3,
number of estimators = 50, and learning rate = 0.1) was applied to predict any allergic
(yes vs. no) and any non-allergic (higher severity vs. none and lower severity) side effects
reported for 3 days after the vaccination. The model was parametrized using a randomized
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search of different parameter settings with a 5-fold cross validation. Since the dataset is
not balanced in respect to the dependent variables, up sampling (RandomOverSampler an
imbalanced-learn (version 0.7.0) over_sampling package in Python) was used to increase
the number of samples for the minority classes (i.e., the yes responses to allergic symptoms
and the higher severity responses to non-allergic symptoms) in the training sets.

2.4. Evaluation

A stratified k-fold (k = 5) cross-validation was used to validate the performance of
the ML model. This method uses a large part of the data (80% of the data) to train the
model, and a small part of the data (20% of the data) to test the model. The stratified
cross-validation was repeated 10 times and the average and the standard deviation (SD) of
F-score (Equation (1)) was calculated [27]. This evaluation metrics has a range of 0 to 1, a
higher value shows a better performance.

F − score = 2 × precision × recall
precision + recall

(1)

2.5. Explainability

One concern about ML is that the results are “black box” and not interpretable. To
address this, we chose TreeExplainer that uses SHAP values, a game theory method for
assigning an importance value to variables based on their contribution to the model [26],
and to explain the magnitude and direction of the contribution of each of the variables
to the model prediction [21]. This property therefore allows providing both new insights
into the model’s variables and the relations between them. SHAP values were generated
using the SHAP package (version 0.39.0 in Python). These values were used to obtain a
visualization of the overall feature importance for the model. Then, to show how each
variable contributed to the model’s output, we generated SHAP boxplots (by applying
a seaborn (version 0.11.2) boxplot package in Python) for categorical variables (e.g., sex,
race/ethnicity) and SHAP scatter plots for continuous variables (e.g., age). We also used
SHAP’s local explainability feature (SHAP Waterfall plot) to display the effect of each of
the variables for individual predictions.

The processing stages designed for this study are illustrated in Figure 1A,B. All
analyses were performed using open-source libraries in Python 3.7.
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Figure 1. (A): Creation of dataset; (B): Block diagram illustrating the processing stages used in this
study to identify predictors of post COVID-19 vaccine-related side effects.

3. Results

Data analyzed were from 50,484 individuals (Table 1, Figure 1A). Of these individuals,
60% received the Moderna vaccine; 73% were female; ages ranged from 18 to 95 years
old; 8% had prior COVID-19 diagnosis or positive test. A total of 2% had Epinephrine
Autoinjector Prescription; 28% had any history of allergy documented; and 34% received
their vaccine from 6:00 to 10:59, 44% from 11:00 to 15:59 and 22% from 16:00 to 21:59.
When both immunization and appointment time were available, the number of times for
whom there was difference in immunization vs. appointment time group (i.e., 6:00–10:59,
11:00–15:59, 16:00–21:59) was 2.6% (156 of 6011 appointments).
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Table 1. N: number of individuals and (%) percent of total participants.

Variables N (%)
Age in Years
Age Group 1 (18–40) 25,213 50
Age Group 2 (41–60) 18,529 37
Age Group 3 (61–95) 6742 13
Total 50,484 100
Sex
Female 36,801 73
Male 13,683 27
Total 50,484 100
Race/Ethnicity
White/Non-Hispanic 28,408 56
Non-White/Non-Hispanic 8066 16
Any Race/Hispanic 2662 5
Any Race/Other Ethnicity 11,348 23
Total 50,484 100
Prescription History
Epinephrine Autoinjector Prescription 1246 2
Allergy History
Any History of Allergy 14,197 28
COVID-19 Diagnosis/Positive PCR Test
Any Before Vaccination 1 3797 8
Vaccine Manufacturer
Pfizer 20,324 40
Moderna 30,160 60
Total 50,484 100
Clock Time of Vaccine Administration/Appointment
Time 1 (6:00–10:59) 17,254 34
Time 2 (11:00–15:59) 22,367 44
Time 3 (16:00–21:59) 10,863 22
Total 50,484 100

Medical conditions including any history of thrombosis, myocardial infarction, or
stroke were variables that did not show any impact on the model’s accuracy, and therefore,
were not included in the final feature set. Eight variables/features (age, sex, race/ethnicity,
Epinephrine Autoinjector Prescription, number of allergy history categories, any prior
COVID-19 diagnosis or positive test, vaccine manufacturer, and time-of-day of vacci-
nation) were used to build two predictive ML models; one for predicting any allergic
symptoms (yes vs. no) and one for predicting any non-allergic symptoms (higher severity
vs. none/lower severity) reported for 3 days after vaccination. The models showed predic-
tive F-score values of 84% (SD = ±0.01) for allergic symptoms and 81% (SD = ±0.01) for
non-allergic symptoms.

A SHAP feature importance plot was created using mean absolute SHAP values of the
ML model for predicting allergic symptoms (Figure 2A): this plot orders the input variables
(top to bottom along the y-axis) according to their importance to the ML model. The most
important predictors to predict any allergic symptoms were, in descending order: number
of allergy history categories, sex, race/ethnicity, age, Epinephrine Autoinjector Prescription,
any prior COVID-19 diagnosis or positive test, vaccine manufacturer, and time-of-day of
vaccination (Figure 2A).
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Figure 2. Feature importance plot using the mean absolute SHAP values for (A): allergic side
effects and (B): non-allergic side effects. Colors: grey—demographics, blue—allergy history cate-
gory/prescription for Epinephrine, red—any prior COVID diagnosis or positive test, purple—vaccine
manufacturer, black—time-of-day of vaccination.

The SHAP boxplot (Figure 3A) shows the direction of impact of the categorical vari-
ables on the model output in predicting report of allergic symptoms for 3 days after
vaccination. Positive SHAP values are associated with a higher likelihood of reporting
symptoms and negative SHAP values are associated with a lower likelihood of reporting
symptoms. Females, Non-White/Non-Hispanic, Any-Race/Hispanic, Epinephrine Au-
toinjector Prescription, those who had any prior COVID-19 diagnosis or positive test, and
people who received the Moderna vaccine were more likely to report allergic symptoms.
No significant (i.e., the SHAP value of 0 was within 5–95% distribution of values) effect of
time-of-day was found for allergic symptoms. For the continuous variable of age, younger
adults of both sexes were more likely to report allergic side effects (Figure 3B), with mag-
nitude approximately constant for ages 30–60 and then a decline in likelihood starting at
~60 years of age. There was a monotonically increasing effect of number of allergy history
categories on the likelihood to report allergic side effects (Figure 3C).

For any non-allergic symptoms, the most important predictors in descending order of
magnitude were any prior COVID-19 diagnosis or positive test, age, sex, vaccine manu-
facturer, race/ethnicity, time-of-day of vaccination, number of allergy history categories,
and Epinephrine Autoinjector Prescription (Figure 2B). For non-allergic symptoms, in
addition to the factors significant for allergic symptoms, significant effects of time-of-day
(morning vaccinations (6:00–10:59) were also associated with more non-allergic side effects
(Figure 3D); there was also a more linear effect of age on likelihood of non-allergic symp-
toms (Figure 3E). A lower magnitude of the monotonically increasing effect of the number
of allergy history categories was also seen (Figure 3F).
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Figure 3

C F

Figure 3. (A): SHAP value boxplot that shows the direction of impact of each variable on model’s
output for allergic side effects. Positive SHAP values are indicative of having side effects, while
negative SHAP values are indicative of not having side effects. Box limits indicate 25th and 75th
percentile, vertical line within the box indicates 50th percentile, and other vertical lines indicate 5th
and 95th percentiles; (B): SHAP feature independent plot for age vs. sex showing the impact of age
on model output and (C): SHAP value scatter plot for number of allergy history categories showing
the impact of this variable on model output. (D–F): as in (A–C) except for non-allergic side effects.
Colors in (A,D): grey—demographics, blue—prescription for epinephrine, red—any prior COVID
diagnosis or positive test, purple—vaccine manufacturer, black—time-of-day of vaccination.
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SHAP values can also be used to create a “local” explanation for every observa-
tion/individual in the dataset (in addition to the global effects detailed above). To illustrate
a local explanation for specific individual predictions, Waterfall plots were used: Figure 4
presents four examples. Each row in SHAP Waterfall plot shows the positive or negative
contribution (x-axis) of each input variable (y-axis) to the overall likelihood of having aller-
gic (Figure 4A,B) or non-allergic side effects (Figure 4C,D). For example: (i) characteristics
such as being young (Age = 28), female, Hispanic, with a history of allergy, receiving
Moderna and being vaccinated 6:00 to 10:59 and 16:00 to 21:59 (06-11H = 1, 16-22H = 1)
increase the chance of having side effects after vaccination (ii) characteristics such as being
male, White Non-Hispanic, any race other ethnicity, no history of Autoinjector Epinephrine
Prescription, no history of allergy, no prior COVID diagnosis or positive test, receiving
Pfizer, and being vaccinated between 11 to 15:59 (11-16H = 1) decrease the chance of having
side effects after vaccination.
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Figure 4. SHAP Waterfall plots exampling local/individual predictions for 4 individuals showing
the contribution of each variable to the prediction. The gray text in front of each variable name is the
value of the particular variable. The baseline value (E[f(X)]) is displayed below the x-axis, indicating
the expected value of the model. The model output for each individual (f(x)) is shown on top of each
panel; it is the sum of SHAP values calculated for all variables. Positive SHAP values push the model
to predict having side effects, while negative SHAP values push the model to predict no side effects.
Allergic side effects: (A): a 28 year old white Non-Hispanic male who received Moderna between 16
and 21:59. (B): a 28 year old male with any race Other Ethnicity who received Moderna between 16
and 21:59; Non-allergic side effects: (C): a 28 year old white Non-Hispanic female who received Pfizer
between 11 and 15:59, and (D): a 28 year old male with any race Hispanic who received Moderna
between 06 and 10:59. Absolute SHAP values < 0.01 were not presented on the figures. Colors:
grey—demographics, blue—allergy history category/prescription for epinephrine, red—any prior
COVID diagnosis or positive test, purple—vaccine manufacturer, black—time-of-day of vaccination.

4. Discussion

We used an explainable ML method to identify predictors of post-COVID-19 vac-
cine side effects in a large dataset. Our results are consistent with several recent pub-
lications [5,6,8,9] that documented both non-allergic and allergic type side effects after
COVID-19 vaccination and identified the effect of different factors influencing the severity
of reported side effects after COVID-19 vaccinations. These findings include: (i) association
of reported non-allergic symptoms after vaccination with demographic characteristics and
prior COVID-19 diagnosis or positive test [5,8]. We also documented that female, younger
individuals, Non-White race, Hispanic ethnicity, and those with prior COVID-19 infection
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were more likely to report non-allergic side effects after vaccination. (ii) association of re-
ported allergic reactions to mRNA COVID-19 vaccines with a history of allergic reaction [6]
(iii) the Moderna vaccine is associated with more allergic reactions than the Pfizer vaccine.

We also identified previously unreported factors affecting side effects reported after
the first dose of an mRNA COVID-19 vaccine: number of allergy history categories, a
history of Autoinjector Epinephrine Prescription and the modifiable factor, time-of-day of
vaccination. Circadian rhythms are physical, mental, and behavioral changes that display
a period of approximately 24 h [28]. These rhythms influence almost all areas of physiol-
ogy, including the sleep-wake cycle, body temperature, blood pressure, and heart rate [16].
Chronomedicine aims to incorporate knowledge of biological rhythms to increase treatment
effectiveness, including reduction in side effects. Timing the administration of a drug to co-
incide with peak levels of its physiologic target has shown clinical benefits in hypertension,
hypercholesterolemia, cancer, and other areas [29]. Currently, health care professionals
rarely consider time-of-day in their diagnosis and treatment administration [30] and often
vaccination times are chosen by convenience. The information about time-of-day may
be used to better define relevant physiology (i.e., the multiple components of a response
to vaccination, some of which may differ by time-of-day) and improve clinical care. For
example, altering the time of COVID-19 vaccination to lower unwanted side effects would
be a relatively low-cost and scalable change in practice.

Electronic health data provide the opportunity to improve healthcare. Handling these
large and complex datasets requires special computational techniques that can deal with
these datasets. ML techniques have broad applications in healthcare and are helpful in
identifying patterns in large datasets [31]. Developments in the area of ML and model
explanation, and strong methods to compute and visualize the magnitude and direction of
impact of input variables on model’s outputs, can help translate knowledge from science to
practice [26,32]. Given our multidimensional datasets, the application of ML can be useful
since its strength includes dealing with many input variables.

Limitations of this work are that the data are from an observational study. Randomized
clinical trials should be performed to further test our hypotheses of time-of-day effects.
Collecting time-of-day of vaccination data and data about sleep obtained before or after
the vaccination [33–36] should be included in future studies. Future work should also
(i) explore side effects occurring during the 3 days after the second dose using these
techniques: (ii) the impact of night shift work before and/or after COVID-19 vaccination
on self-reported side effects, and (iii) target underlying physiological reasons.

5. Conclusions

In this study, we used XGB, a ML model to predict the occurrence of self-reported
COVID-19 vaccination side effects using a range of variables (e.g., demographics, history
of allergy, vaccine manufacturer and time-of-day of vaccination). We then used a model
explanation technique (SHAP) to identify the important predictors of COVID-19 vaccine-
related side effects and explain the effect of the input variables on model’s output. Our
results demonstrate that demographics, any history of allergy, any prior COVID diagnosis
or positive test, vaccine manufacturer, and time-of-day-of-vaccination (6:00–10:59 associated
with significantly more non-allergic side effects) effects on side effects reported for three
days after the first dose of a COVID-19 vaccination. This information can be used to
understand the risk factors of adverse events and for planning of possible time-out of
work for healthcare workers and patients (e.g., reduce risk for needing to miss work after
vaccination).
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